沼泽湿地小气候效应的观测与模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以三江平原洪河国家级自然保护区沼泽湿地及周边农田为研究对象,采用野外定位观测和数值模拟相结合的方法,对沼泽湿地冷湿小气候效应的时空分布特征进行了统计分析和数值模拟研究,结果表明:
     在生长季的6—9月,沼泽湿地地上0.5—5m高度范围内,气温低,相对湿度大;在空间上,贴地层0.5m高度冷湿效应最强,随着高度的增加,冷湿效应逐渐减弱;不同月份中,7月份冷湿效应最显著。在一日之内,白天的午后时段(12:00–14:00),湿地与旱田的气温和相对湿度差异最大。
     在夏季的7、8月份,沼泽湿地和旱田0–10cm地温日变化规律相似,均呈正弦曲线。湿地地温日变化波动幅度小于旱田;在相同土壤深度上,湿地的地温低于旱田。
     通过WRF模式对洪河国家级湿地自然保护区及周边农田夏季晴朗天气的数值模拟发现:WRF模式能够比较精确的反应出研究区域湿地和农田地表2m高度温度和比湿的差异。
     在夏季晴朗天气的白天时段,湿地边缘的气温高于湿地中心,但低于周围农田,从湿地边缘地带向中心区域气温逐渐降低,沼泽湿地在白天表现出“冷岛”效应,午后14:00“冷岛”效应最显著,到夜间22:00湿地的“冷岛”效应基本消失。日间“冷岛”效应在高度上随时间发生变化,清晨6:00时,湿地的“冷岛”范围可影响到200m高度,午后14:00时,湿地的“冷岛”效应可延伸至600m的高度。
     无论白天还是夜间,地表2m高度处,湿地上空相对湿度始终都高于农田,湿地表现出“湿岛”效应。从农田到湿地边缘再到湿地中心,其相对湿度的分布规律是:农田<湿地边缘<湿地中心。在一天之内,湿地上空夜间相对湿度大于白天,夜间2:00时最大,白天14:00最低;农田相对湿度日变化的幅度大于湿地,二者在夜间相对湿度差异最小,在午后14:00时差异最大。沼泽湿地和农田上空的相对湿度均随高度递减,在距地面200m高度范围内,湿地上空的相对湿度均大于农田。
Relying on the Honghe National Nature Reserve of the Sanjiang Plain, this studyinvestigated the temporal-spatial variations of microclimate effects (i.e., cold-humideffect) in marsh wetland. Temperature and humidity from marsh wetlands andsurrounding farmlands were measured in the field and simulated at regional scale bythe model of Weather Research and Forecasting (WRF).
     Compared to surrounding farmlands, the temperature was lower and relativehumidity (RH) was higher at three heights (0.5,2and5m) in marsh wetlands duringthe growing season (from June to September). This indicates the cold-humid effect ofmarsh wetland. The cold-humid effect was most significant at0.5cm, and graduallydecreased with the increasing height. During the non-growing season, the mostsignificant cold-humid effect occurred in July. The biggest differences of temperatureand humility between marsh wetland and farmland were found from12:00to14:00based on daily measurements.
     The daily variations of soil temperatures (0,5and10cm) at marsh wetland andfarmland were similar in July and August, with a sinusoidal change. During a day, thechange range of soil temperature in marsh wetland was less than that in farmland. Atthe same depth, soil temperature in marsh wetland was lower than that in farmland.
     The simulations from WRF model show that: WRF model provided comparablevalues of temperature and RH at the height of2m from wetland underlying surface insummer sunny day as compared to that measured in the field.
     During the summer sunny day, air temperature measured at the edge of wetlandwas higher than at the center of wetland, but was lower than that at surroundingfarmland. There was a decreasing trend of air temperature from the edge to the centerof wetland. The marsh wetland represented a significant cold-island effect, withmaximum effect at14:00and gradually decreased during the night, with minimumeffect at22:00. Our study showed that the cold-island effect of marsh wetland couldbe found at the height of200m at6:00, and the height could extend to600m at14:00.
     The RH of marsh wetland was higher than that in farmland during both thedaytime and nighttime at the height of2m, indicating the ‘wet-island effect’ inwetland. The value of RH was highest at the center of wetland, followed at the edgeof wetland and lowest at farmland. Similar diurnal variations of RH were determinedin both wetland and farmland. The RH of marsh wetland was higher in the daytimethan that in the nighttime, with the maximum values at2:00and minimum values at14:00. The change range of RH in a day was higher in farmland then that in marshwetland. The difference of RH between wetland and farmland is biggest during thenighttime, whereas lowest at14:00. At both marsh wetland and farmland, the RHvalues decreased with increasing height. Within the range of200m height, RH valuesin marsh wetland were higher than surrounding farmland.
引文
Avissar R, Pielke R A.A parameterization of heterogeneous land surface for Atmosphericnumerical model and its impact on regional meteorology [J]. Monthly Weather Review,1989,117,2113-2136.
    Avissar R, E W Eloranta, K Gurer et al. An evaluation of the Large-eddy simulation option of theregional atmospheric modeling system in simulating a convective boundary layer: AFIFE casestudy[J]. J Atmos Sci,1998,57(7):1109-1130.
    Arnell, N W. Relative effects of multi-decadal climate varability and change in the mean andvariability of climate due to global warming: future streamflow in Britain[J]. Journal ofHydrology,2003,270(3):195-213.
    Copeland, J. H. R. A. Pielke, and T. G. F. Kittel. Potential climatic impacts of vegetation change:A regional modeling study[J]. Geophys. Res.,1996,101(D3),7409-7418.
    Costanza R, d’Arge R, de Groot R, et al. The value of the world’s ecosystem service and naturalcapital[J]. Nature,1997,386(14):145-156.
    C J Vorosmarty, Pamela Green. Global water resource: vunerability from climate change andpopulation growth[J]. Science,2000:284-288.
    Deardorff J W. Numerical investigation of neutral and unstable planetary boundary layers[J]. JAtmos Sci,1972,29(1):91-114.
    D. Martinez-Castro, R. Porfirio da Rocha, A. Bezanilla-Morlot, et al. Sensitivity studes of theReg CM3simulation of summer precipitation, temperature and local wind field in theCaribbean Region[J]. Theoretical and Applied Climatology,2006,86:5-22.
    Frank E A,Richard L S. A micrometeorological investigation of restored California wetlandecosystem[J]. American Meteorological Society,2003,9(5):1170-1172.
    Frederic K D, Major D C. Climate change and water resources. Climate Change,1997,37:7-23.
    Fiedler F.,Panofsky H. A. The geostrophic drag coefficient and the’effective’roughness length.Quarterly Journal of the Royal Meteorological Society.1972,98(415):213-220.
    Georh A.GRELL et a1.Fully Coupled “Online”Chemistry within the WRF Mode1.84th AMSAnnual Meting,Seattle,U.S.A.Jan.10_一l5.2O04.
    Henderson-Sellers A, Durbidge T B, Pitman A J, et al. Tropical deforestation: Modeling local toregional scale climate change[J]. Geophys. Res.,1993,98(D4):7289-7315.
    Hechtel L M, R B Stull, C-H Moeng. The effects of non-homogeneous surface fluxes on theconvective boundary layer: A case study using large-eddy simulation[J].J Atmos Sci,1990,47(14):1721-1741.
    Harald Kunstmann, Christiane Stadler. High resolution distributed atmospheric-hydrologicalmodeling for Alpine catchments[J]. Journal of Hydrology,2005,324:105-124.
    Isidora Jankov ata1.An Investigation of IH0lPConvective System Predictability Using a Matrix of19WRF Members,84th AMS Annual Meting.Seattle,U. S.A.2004,2:31-40.
    Jason C.Knievel at a1.The INumal Mode of Summer Rainfall Across the Conterminous UllitedStatesin10.Km Simulation by the WRF Mode1.84th AMS Annual Meting,Seattle,U.S.A.2004,2:10-15.
    J.E.Grayson, M.G.Chapman, A.J. Underwood. The assessment of restoration of habitat in urbanwetland[J]. Land scape and Urban Planning,1999(43):227-236.
    Kost er, R. and M. S uarez. A com parat ive an al ysis of tw o l and sur face h et erogeneityrepres ent at ion s, J. Cl im.,1992,5,1379-1390.
    Lynn, B H., F. Ambramopoulos, and R, Avissar,1995a: Using similarity theory to parameterizemesoscale heat flues generated by subgrid–scale landscape discontinuities in GCMs[J].J.Climate,8,932-951
    Liang X Z,Choi H I, Kunkel K E’ et al. Surface boundary conditions for mesoscale regionalclimate models[J]. Earh interactions,2005,9:1-28.
    Liang X Z, Choi H I, Kunkel K E, et al. Development of the regional Climate-Weather Researchand Forecasting modl (CWRF):Surface boundary conditions[J]. Scientific Report, ISWS SR,2005,01:1-32.
    Leung L. R..Y. Qian. The sensitivity of precipitation and snowpack simulations to modelresolution via nesting in regions of complex terrain[J]. Journal of Hydrometeorology,2003,4(6):1025-1043.
    Millennium R. Ecosystems and Human WellBeing: Wetlands and Water Synthesis[M].Washington DC: World Resources Institute,2005.
    M.Tewari.at a1.Implem entation and Verification of the Ullified Noah Land Surface Modelin theWRF Model,84th AMS Annual Meting.Seatde,U.S.A.Jan.10_一l5.2004.
    Mason P.J. The formation of areally-averaged roughness lengths.1988.
    Noh,Y.,W.G. Cheon,S-Y. Hong, and S. Raasch.: Improvement of the K-profile model for theplanetary boundary layer based on large eddy simulation data. Bound.–LayerMeteor.,2003,107:401-427.
    Noilhan,J,. and S. Planton.A simple parameterization of land surface processes for meteorologicalmodels. Mon. Wea. Rev.,1989,117,536-549.
    P.Welsh at a1.Implementing the Weather Research andForecast(WRF)Model with Local DataAssimilation in a NWCS WFO,84th AMS Annual Meting,Seattle,U S.A.Jan.10_一l5.2004.
    Robot, Costanz. The value of Ecosystem Service and Napital in the World[J]. Nature.1997,387(15):235-260.
    Roger A P. Influence of the spatial distribution of vegetation and soil on the prediction of cumulusconvective rainfall[J]. RevGe–ophysics,1999, manuscript.
    Schmid H. P., Source Areas for Scalars and Scalar fluxes[J].Boundary-Layer Meteorol. l994,67:293-3l8.
    Suh MS,Lee DK.Impacts of land use/cover changes on surface climate over east Asia for extremeclimate cases using RegCM2[J]. Geophysical Research.2004,109, D02108. doi:10.1029/2003JD003681
    Sen, O. L., B. Wang, and Y. Wang. Re-greening the desertification lands in northern China:Implications from a regional climate model experiment[J]. Meteor. Soc. Japan,2003b,(submitted).
    Twine T E, Kucharik C J, Foley J A. Effects of land cover change on the energy and water balanceof the Mississippi River basin [J]. Hydrometeorology,2004,5(4):640-655.
    Wieringa J. Roughness-dependent geographical interpolation of surface wind speed averages.Quarterly Journal of the Royal Meteorological Society.1986,112(473):867-889.
    Wang, Y., L. R. Leung, J. L. McGregor, D.-K. Lee, W.–C. Wang, Y.–H. Ding, and F. Kimura.Regional climate modeling: Progress, challenges and prospects[J]. Meteor. Soc. Japan,2004,(revised).
    安兴琴,吕世华.金塔绿洲大气边界层特征的数值模拟研究[J].高原气象,2004,23(2):200-207.
    宝日娜,杨泽龙,刘启,等.达里诺尔湿地的小气候特征[J].中国农业气象,2006,27(3):171-174.
    陈玉春,吕世华,高艳红.不同尺度绿洲环流和边界层特征的数值模拟[J].高原气象.2004,23(2):177-183.
    崔宝山,杨志峰等.湿地生态系统模型研究进展[J].地球科学进展,2001,16(3):252-257。
    崔保山,杨志峰.湿地生态健康的时空尺度特征[J].应用生态学报,2003,14(1):121~125.
    崔丽娟,张曼胤,王义飞,等.鄱阳湖湿地环境质量分异及风险表征[J].东北师大学报(自
    然科学版),2006,38(3):114-120.
    曹兴,陈荣毅,杨举芳,季枫,王进,等.沙漠腹地秋季地温变化特征及其余气温的关系[J].干旱气象,2011,04,0433-0438.
    陈炯,王建捷.北京地区夏季边界层结构日变化的高分辨模拟对比[J].应用气象学报,2006,17(4):403-410.
    陈铭,张柏,王宗明,张树清,李晓峰,刘殿伟.三江平原别拉洪河流域湿地农田化过程研究[J].湿地科学,2007,5(1):69-75.
    戴俐卉,洪景山,莊秉潔,蔡徽霖,倪佩贞. WRF模式台湾地区土地利用类型之更新与个案研究[J].大气科学,2008,36(1):43-61.
    傅国斌,李克让.全球变暖与湿地生态系统的研究进展[J].地理研究,2001,20(1):120-128.
    高俊琴,吕宪国,刘红玉,等.湿地冷湿效应初探[J].农村生态环境,2003(19):18-21
    高俊琴,吕宪国,李兆富.三江平原湿地冷湿效应研究[J].水土保持学报,2002,16(4):149-151.
    高艳红,程国栋,崔文瑞,等.陆面水文过程与大气模式的耦合及其在黑河流域的应用[J].地球科学进展,2006,21(12):1283~1291.
    管伟,廖宝文,林梨扬,等.广州南沙人工红树叶林湿地小气候效应研究[J].生态科学,2008,27(2):95–101.
    黑河地区地-气相互作用观测实验研究(HEIFE)学术总结报告[R].1987-1994,4-7,22-24.
    韩慧丽,靖元孝,杨丹菁,等.水库生态系统调节小气候及净化空气细菌的服务功能——以深圳梅林水库和西丽水库为例[J].生态学报,2008,28(8):3553-3562.
    洪雯,王毅勇.夏季晴天沼泽湿地贴地气层气温和相对湿度日变化特征[J].湿地科学,2009,7(1):60-66.
    姜金华,胡非,刘熙明,等.水、陆不均匀条件下大气边界层结构的模拟研究[J].南京气象学院学报,2007.30(2):162-169.
    胡非,洪钟祥,雷孝恩.大气边界层和大气环境研究进展[J].大气科学,2003,24(4):712-728.
    胡娅敏,丁一汇.东亚地区区域气候模拟的研究进展[J].地球科学进展,2006,21(9):956-964.
    黄鹤.白洋淀地区水陆非均匀下垫面上大气边界层特征的数值模拟研究[D].兰州大学(硕士学位论文)2004.
    栾兆擎,邓伟,白军红,等.洪河国家级自然保护区湿地生境安全保护[J].水土保持研究,2003,10(3):154~157.
    刘宁微,王奉安. WRF和MM5模式对辽宁暴雨模拟的对比分析[J].气象科技,2006,34(4):364-369.
    刘罡,蒋维楣,罗云峰.非均匀下垫面边界层研究现状与展望[J].地球科学进展,2005,20(2):223-230.
    刘兴土,马学慧.三江平原地区的自然环境变化与生态保育[M].北京:科学出版社,2002.陆健健,何文珊,童春富,等.湿地生态学[M].高等教育出版社.2006.
    李艳,高阳华,陈鲜艳,杜钦,等.三峡下垫面变化对区域气候效应的影响研究[J].南京大学学报(自然科学),2011,47(3):331-338.
    李广玉,叶思源,张正贤,高宗军.湿地的研究展望及其保护对策[J].海洋地质动态,2005,6(30):123-130.
    李科,李科,王毅勇,王瑗.三江平原季节性积水沼泽湿地能量平衡要素研究.湿地科学,2008,6(2):113-119.
    李莉娜,刘兆礼,闫敏华,王毅勇,洪雯.茅台草、漂筏苔草沼泽湿地与大豆近地层晴夜气温和相对湿度分布及对比研究[J].湿地科学,2010,3(1):86-91.
    吕雅琼,杨显玉,马耀明.夏季青海湖局地环流及大气边界层特征的数值模拟[J].高原气象,2007,26(004):686-692.
    缪国军,张镭,舒红.利用WRF对兰州冬季大气边界层的数值模拟[J].气象科学,2007,27(2):169-175.
    倪宏伟,李君.洪河自然保护区生物多样性[M].哈尔滨:黑龙江科技出版社.1999.
    聂晓,王毅勇.沼泽湿地局地小气候“冷湿岛”效应[J].生态与农村环境学报,2010,26(2):189-192.
    彭新东,程麟生.黑河地区边界层平均结构和通量的数值模拟[J].兰州大学学报(自然科学版),1994,30(3):156-161.
    彭小芳,孙逊,袁少雄,等.广州城市湿地的景观特点及小气候效应[J].生态环境,2008,17(6):2289-2296.
    潘小多,李新,炒振华.区域尺度近地面气候要素驱动数据研制的研究综述[J].地球科学进展,2010,25(12):1314-1324.
    苏从先,胡隐櫵,张永平.河西地区的小气候特征和冷岛效应[J].大气科学,1987,11(4):390-396.
    宋长春.湿地生态系统对气候变化的响应[J].湿地科学,2003,1(12):122-125.
    田幼华.南疆水陆混合下垫面大气边界层特征研究[D].新疆大学(硕士学位论文)2011.
    王颖,张镭,胡菊,等. WRF模式对山谷城市边界层模拟能力的检验及地面气象特征分析[J].高原气象,2010,29(6):1397-1407.
    杨静,唐建军.乌鲁木齐地区相对湿度的气候分析及预报[J].新疆气象,2000,23(2):6-8.
    王胜,张强,为过安,等.降水对荒漠土壤水热性质强迫研究[J].高原气象,2004,23(2):253-258.
    王绍武,葛全胜,王芳,等.全齐气候变暖争议中的核心问题[J].地球科学进展,2010,25(6):656-665.
    王佳. WRF模式在调节大气降水的数值试验研究[D].南京信息工程大学(硕士学位论文)2008.
    王宗明,陈铭,宋开山,刘殿伟,张柏,李方,张树清.三江平原别拉洪河流域湿地农田化过程中湿地-农田景观梯度时空特征分析.水土保持学报,2008,2(1):195-198.
    薛具奎,胡隐櫵.绿洲与沙漠相互作用的数值模拟研究[J].自然科学进展,2001,11(5):514-517.
    徐玉貌,刘红年,徐桂玉.大气科学概论[M].南京,南京大学出版社,2000.
    谢志清,刘晶淼,丁裕国,等.干旱及高寒荒漠区土壤温湿度特征及相互影响分析[J].高原气象,2005,24(3):16-32.
    闫敏华,邓伟,马学慧.大面积开荒扰动下的三江平原近45年气候变化[J].地理学报,2001,56(2):159-170.
    阎宇平.非均匀下垫面地气相互作用的数值模拟研究[D].中国科学院寒区旱区环境与工程研究所(博士学位论文).1999.
    闫之辉,邓莲唐. WRF模式中的微物理过程及其预报对比试验[J].沙漠与绿洲气象,2007,1(6):1-6.
    杨罡,刘树华,朱蓉,周荣卫.鄱阳湖地区大气边界层特征的数值模拟[J].地球物理学报,2011,54(4):876-908.
    殷志强,秦小光.扎龙湿地形成背景及其生态环境意义.地球科学进展,2006,25(3):32-38.
    赵求东,刘志辉,等.基于EOS/MODIS遥感数据改进式融雪模型[J].干旱区地理,2007,30(6):916-920.
    赵红玉,赵志春,吕宪国.中国湿地资源极其保护研究[J].资源科学,1999(11):34-37.
    周德民,宫辉力.洪河保护区湿地水文生态模型研究[M].北京:中国环境科学出版社.2007.
    张芸,吕宪国,倪健.三江平原典型湿地冷湿效应初步研究[J].生态环境,2004,13(1):37-39.
    左洪超,吕世华,胡隐櫵,等.非均匀晓丹么边界层的观测和数值模拟研究(1):冷岛效应和逆湿现象的完整物理图像[J].高原气象,2004,23(2):155-162.
    张树清,张柏,汪爱华等.三江平原湿地消长与区域气候变化关系研究[J].地球科学进展,2001,16(6):836-841.
    张树清,陈铭,王丹丹,王宗明,庄艳平.消失的沼泽[J].森林与人类,2006,2(5):76-81.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700