饱和黏土循环剪切特性与软化变形的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,海洋资源与海洋空间的开发和利用日益引起国内外的高度重视。然而由于海洋环境极端恶劣,而且海洋建筑物地基往往由软黏土、粉质黏土与可液化砂土等不良工程土壤组成,在对海域土质的循环特性没有深入了解的情况下进行工程建设与设计,将会造成海床与地基失稳,以致带来巨大的生命和财产损失。因此,为配合海洋工程设计与建设,必须进行黏土的循环特性试验研究。在深海和极浅滩海域,吸力式沉箱基础受到了海洋石油界的广泛关注,但是目前对于吸力式沉箱等新型海洋基础的工作机理及其稳定性分析尚未得到统一认识,因此为完善吸力式沉箱基础的设计理论体系与计算方法,亟需开展系统地试验研究、理论分析与数值计算等方面的综合研究。
     为此,论文针对饱和黏土试样,利用土工静力—动力液压—三轴扭转多功能剪切仪等土工试验设备,对UU试验条件下黏土的单调剪切试验特性、动剪切模量与阻尼比等动力特性与循环软化变形特性进行了较为深入而系统地对比分析与研究。在大量的单调与循环剪切试验基础上,建议了能够考虑应变速率效应的双曲线静力本构模型以及考虑静应力与循环应力联合作用的循环软化总变形拟静力计算模型,并在大型有限元软件ADINA平台上对建议的模型进行了数值实施与二次开发,考虑吸力式沉箱基础单调加载阶段地基变形速率的影响,对沉箱地基的竖向与水平向单调承载力以及循环软化变形进行了数值分析。论文的主要研究内容及所取得的研究成果包括如下几个方面:
     (1)饱和黏土制样技术的改进。通常获取原状土样花费较大,而且原状土样的饱和程度往往较低,土工试验时需要对试样进行真空处理使其饱和,经过如此处理的试样很难反映实际应力状态,而对于实际的非饱和土样目前无论在实验技术还是计算理论方面尚处于探索阶段。因此,采用实验室土样制备技术制备黏土试样,对制备的土样进行试验研究,是目前探索饱和土的变形与强度特性一种途径。通过对比泥浆加压固结制样法和真空预压制样法存在的优缺点,在吸取两种制样方法优点及其使用经验的基础上,对饱和黏土的制样设备进行了改进。改进黏土制样方法具有操作简便、制样时间短等优点,所制备试样具有成份均一、饱和程度高,且易于切削制备圆柱或空心圆柱试样等特点。
     (2)饱和黏土的单调剪切特性与非线性静力本构模型。在CU和UU条件下进行了单调三轴和单调扭剪试验,通过对试验结果的综合比较分析,着重探讨了应变速率和约束压力对黏土应力—应变关系特性、强度特性与孔隙水压力发展特性的影响。结果表明,当应变速率较低时,应力—应变关系一般经历弹性、屈服、应变强化等阶段,而当应变速率较高时,应力—应变关系在经历弹性、屈服、应变强化达到峰值之后,在较高应变条件下还会发生应变软化,当应变超过一定值之后,随着应变增加,不同应变速率下的偏应力差别减小;约束压力对应力—应变关系模式的影响较小,但在CU试验中,屈服极限和强度随约束压力的增加而增大,而在UU试验中,应力—应变关系与强度不依赖于约束压力;不排水强度随应变速率的增加而增大,通过采用参考应变速率及其相应的不排水强度进行归一化处理,在双对数坐标下,不排水强度与应变速率之间的经验关系近似地符合线性关系。考虑不固结不排水条件和应力—应变关系的应变速率效应,建议了饱和黏土的非线性本构模型,在达到破坏时的偏应力q_f之前,应力—应变关系基本上符合双曲线模式,而在超过q_f之后的应力—应变关系按理想塑性处理,所建议的模型含有4个待定常数,由UU三轴试验确定。
     (3)循环剪切变形特性与应变破坏标准。通过单向与双向耦合循环剪切试验对饱和黏土的不排水剪切变形特性与应变破坏标准及其孔隙水压力发展特性进行了研究,试验结果表明:初始剪应力对于黏土的循环应力—应变关系模式具有显著的影响,当初始剪应力较小或循环应力分量较大时,试样的变形以循环效应为主,而当初始剪应力较大或循环应力分量较小时,此时试样的变形呈现出明显的累积效应特征;在循环扭剪试验中,尽管没有施加任何轴向应力,但由于试样的循环扭动而产生轴向应变,并随循环应力增大,轴向偏差应变增长速率加大;在竖向—扭转耦合剪切试验中,尽管在耦合双向都施加对称的循环应力,但剪切向应变分量的循环效应比较明显,而轴向应变的累积效应比较显著,这与普通循环三轴或扭剪试验的结果不同。在单向循环剪切试验中,黏土试样的单向总应变同时包含不断累积的残余应变和循环应变两部分,通过对各种循环应力路径模式下的试验数据比较分析,建议了一个能够综合考虑轴向应变和剪切向应变,同时反映残余应变与循环应变特征的综合应变算式,该算式与单向总应变的表达式是一致的,试验数据表明这个综合应变具有普遍适用性和较好的稳定性。在不固结不排水条件下,无论对于循环扭剪试验还是竖向—扭转耦合试验,孔隙水压力总是在所施加的约束压力大小附近波动,而且随循环应力的增加孔隙水压力的波动范围有所加大,但并不具有固结不排水试验中孔隙水压力累积上升的特征。
     (4)大应变(>10~(-3))条件下动剪切模量与阻尼比等动力特性。单级与分级加载循环剪切试验表明:采用多个试样单级加载与采用一个试样分级加载所得的应力—应变滞回圈、初始骨干曲线、动剪切模量与阻尼比都较为一致,采用分级加载试验测定动剪切模量与阻尼比等动力特性是可行的;初始剪应力对分级加载的应力—应变滞回圈的发展模式和动剪切模量与阻尼比都有较为显著的影响,初始剪应力对动剪切模量与阻尼比的影响主要体现在动力参数的逐次变化过程上;对于某一给定的剪应变幅值,耦合循环应力中的轴向偏差应力对动剪切模量具有增大作用,动剪切模量发展与轴向偏差应力的大小关系密切,尤其是在扭转向循环剪应力较小的情况下,轴向偏差应力越大,动剪切模量的增大越显著,而当扭转向循环剪应力较大时,轴向偏差循环应力对动剪切模量的增大效用降低。
     (5)循环剪切强度特性及其简便确定方法。循环剪切强度与循环次数、初始剪应力之间关系曲线的确定,对于海洋平台设计与稳定性分析具有重要意义。循环剪切试验表明,对于给定的初始剪应力,循环剪切强度的大小是由循环软化效应和应变速率效应共同作用的结果。结合单调强度与应变速率之间的对应关系,提出了近似消除速率效应的循环强度归一化方法,通过归一化表明,不同破坏次数的循环强度与初始剪应力之间关系的数据点落在一个相当狭窄的区域内,初始剪应力与归一化循环剪切强度之间关系可用一个二次方程拟合表示。以此为基础,对循环强度简便确定方法进行了初步探讨,通过少量单调与循环剪切试验对待定参数确定之后,就可以估算不同循环次数的循环剪切强度,对于解决海洋地基稳定性分析中的试验工作量巨大等问题具有一定意义。
     (6)循环蠕变特性与循环软化总变形计算模型。对循环剪切试验结果的分析表明:循环软化总应变由初始静应力引起的应变和循环蠕变两部分组成。其中,循环蠕变主要受循环应力幅值、初始静应力大小及其加载速率的影响。根据循环蠕变随循环次数的变化特点,将循环次数与时间等效,仿照Singh-Mitchell蠕变模型参数确定方法,建议了循环蠕变的经验计算模式。进而对循环软化总应变的两个组成部分,即初始静应变与循环蠕变,分别结合非线性弹性理论与屈服面流变理论,建立了循环软化总变形计算模型。考虑到不排水条件,所建议计算模型仅含有7个试验参数,由单调与循环剪切试验可以确定。尽管该模型属于拟静力模型的范畴,但是模型不仅能够区分施加荷载的性质(单调荷载或循环荷载),而且能够分别计算单调加载与循环加载两个加载过程所产生的变形,并且考虑了单调荷载及其加载速率对总变形的影响。
     (7)循环软化总变形计算模型的有限元实施。循环软化总应变计算模型是基于单调与循环剪切试验建立的拟静力模型,较为准确地反映了静应力与循环应力共同作用所产生的循环蠕变等循环剪切特性。尽管大型有限元软件ADINA不仅具有强大的求解非线性问题的功能,而且具有优秀的前、后处理界面,但不具有反映这种循环特性的本构模型,需要对其进行二次开发。为此,论文对非线性弹性材料模型与循环蠕变材料模型的二次开发进行了探索,进而对循环软化总应变计算模型在大型有限元软件ADINA平台上进行了数值实施,并详细叙述了模型的二次开发过程及其计算方法与步骤。
     (8)吸力式沉箱地基的单调承载力与循环软化总变形的有限元数值分析。考虑单调加载阶段吸力式沉箱地基变形速率的影响,对沉箱地基的单调承载力与循环软化总变形进行了数值分析。计算结果表明:对于单个沉箱基础,黏土地基的竖向与水平向单调承载力随着地基变形速率的增加而增大;对于给定的单调荷载与循环荷载组合,竖向与水平向循环软化总变形随循环次数的增加而增长,循环软化总变形的逐次增长速率逐渐减小。在竖向单调与竖向循环荷载联合作用下,基础附近泥面处土体由于基础的下沉挤压而向上移动,地基变形模式主要为沉箱附近土体的整体沉陷;在竖向单调荷载与水平向循环荷载联合作用下,沉箱基础与土体出现开裂,沉箱基础顶部的水平向转动位移随循环次数的增加而增大。
In recent years, the exploitation and utilization of marine source and space are highlynoticed by international society. However, due to the extremely bad marine environment andsoft and weak ground foundation composed of disadvangtageous engineering soils, such assoft clay, silty clay and fluid sand, the instability of the seabed and ground foundation beneathharbor construction will occur and induce the expense of huge wealth and life if oceanengineering is designed before the cyclic behavior of marine soil is not understood. Therefore,in order to cooperate with ocean engineering design, it is necessary to study cyclic behavior ofsoils by performing the geotechnical tests. Suction caisson foundation is paid attention to bymarine petroleum kingdom in the shallow maritime space and deep sea area, but because theworking mechanics and computational method for stability analysis of suction caissonfoundation are not clarified yet, so it urgently needs to carry on the research for theoryanalysis and computational method in order to perfect the design theory system.
     In this dissertation, the geotechnical testing equipments including the advanced apparatusfor static and dynamic universal triaxial and torsional shear soil testing are employed toperform montonic triaxial tests and cyclic shear tests under unconsolidated-undrainedcondition. Through a series of tests on saturated clay, the montonic shear behavior, dynmicbehavior including dynamic shear modulus and damping ratio and cyclic softeningdeformation behavior of clay are synthetically examined and studied. Based on analyzingthese abundant monotonic and cyclic shear testing results, the static hyperbolic constitutivemodel for considering the effect of strain rate and cyclic softening general strain calculationalmodel for considering the effects of the combination of static and cyclic stresses arerespectively recommended. Numerical implementation of the finite element method for thesetwo models and secondary development are completed on the platform of the universal finiteelement software ADINA. Furthermore, emphasizing the effect of deformation rate of groundfoundation, the numerical analysis for montonic bearing capacity and cyclic softening generaldeformation of the ground foundation beneath suction caisson are carried out. The maininvestigative contents and achievements consist of the following parts.
     (1) The improved preparing technique of saturated clay samples. Due to huge expense inobtaining original clay samples and many disadvantages in analyzing the geotechnical testingresults for original clay samples, such as low saturation degree, moreover because it is verydiffcult to reflect the actual stress state when the original clay samples are dealt with throughvacuum suction pressure in geotechnical testing in order to analyze the testing results byutilizing saturated soil theory due to undeveloped unsaturated soil theory, so it is an approachto investigate the strength and deformation behavior of saturated clays by utilizing saturatedclay samples prepared in the laboratory. Through comparing with one-dimensional slurry consolidation method and slurry vacuum suction consolidation method, the advantages ofthese two methods are assimilated and the equipment for preparing clay samples has beennewly designed. The improved method possesses the advantages of convenient operation andshorter time of preparing samples. The prepared clay samples have the homogeneous propertyand highly saturated degree, and were easy to cut for preparing the cylinder orhollow-cylinder testing samples.
     (2) Monotonic shear behavior and static non-linear constitutive model of saturated clay.The monotonic triaxial and torsional shear tests for saturated clay samples are performedunder consolidated-undrained (CU) and unconsolidated-undrained (UU) conditions. Throughcomparing with these testing results, the studies are emphasized on the effects of strain rateand confined pressure on stress-strain relations and strength behavior. Experimental dataindicate that strain hardening appears at low strain rate while strain softening occurs afterpeak strength at high strain rate. Nevertheless, the difference of deviatoric stress at differentstrain rates will decrease after the strain increases to a certain value. Undrained strength ofthis clay increases with increase of strain rate under the condition of UU tests. In addition,they are revealed that strain-stress relation and strength behavior are mainly affected by strainrate. However they are almost independent on confining pressure under the condition of UUtests. An empirical linear relation which correlates shear strength and strain rate under doublelogarithm coordinates is established through normaiization which makes use of referencestrain srate and corresponding reference strength. A non-linear constitutive model isrecommended through considering the UU experimental condition and the effects of strainrate on stress-strain relations. Before the failure deviatoric stress q_f is attained, stress-strainrelations accord with hyperbolic pattern. After the failure deviatoric stress q_f is attained,stress-strain relations are disposed according to ideal plasticity. This model only includes 4experimental constants which are obtained through monotonic triaxial tests under UUcondition.
     (3) Cyclic shear deformation behavior and cyclic strain failure criterion: Through a seriesof cyclic torsional shear tests and coupled vertical and torsional shear tests on saturated clayunder unconsolidated-undrained condition, undrained shear deformation behavior, cyclicstrain failure Criterion and pore water pressure development behavior are examined. Thetesting data show that the patterns of cyclic stress-strain relations are distinctly influenced byinitial shear stress. The predominant deformation behavior is characterized by a cyclic effectunder the condition of low initial shear stress or high cyclic stress. Whereas, the predominantbehavior is characterized by an accumulative effect when initial shear stress is high and cyclicstress is low. Although no axial deviatoric stresses are exerted in cyclic torsional shear tests,axial deviatoric strain occurs due to cyclic torsional action. With the increase of cyclic stress,the magnitude of increment of axial deviatoric strain for each cycle increases. But thepredominant strain is shear strain. Although symmetric cyclic stresses are exerted intwo-direction coupled cyclic shear tests, the component of cyclic torsional shear strain hasdistinct cyclic effect, but the component of axial deviatoric strain is characterized by an accumulative effect. These specialities are different from cyclic triaxial or cyclic torsionaltests. For various combinations of the static and cyclic stresses, the cyclic single-directiongeneral strain is composed of the strain caused by initial shear stress and the strain induced bythe combination of static and cyclic stresses. Through comparing with experimental results forall cyclic stress patterns, a general strain failure criterion for clay is recommended forconsidering the integrative effects of torsional shear strain and axial deviatoric strain as wellas cyclic strain and accumulative strain. This failure criterion is considered to be stable innumber for all cyclic stress patterns by comparing to strain criterion currently used. The porewater pressure always fluctuates around the confined pressure with the increase of cyclenumber. It seemed that the fluctuant amplitude increases with the increase of cyclic stress. Butthe buildup of pore water pressure does not occur in cyclic single-direction shear tests andtwo-direction coupled shear tests.
     (4) Dynamic behavior including dynamic shear modulus and damping ratio under thecondition of large strain (>10~(-3)). The testing data in single-graded and graded loading cyclicshear tests indicate that the graded loading method is doable to determine dynamic behaviorsince initial backbone curves, dynamic shear modulus and damping ratio obtained from singlegrade loading by many soil samples are consistent with the ones obtained from graded loadingby one soil sample. Initial shear stress influences development pattern of stress-strainhysteresis loops, dynamic shear modulus and damping ratio measured by graded loading.Effects of initial shear stress on dynamic shear modulus and damping ratio are mainlyreflected by variation pattern step by step during graded loading. The deviatoric stress incoupled cyclic stress raises dynamic shear modulus for a given shear strain amplitude.Especially for the case of small amplitude of cyclic shear stress, along with increase of axialdeviatoric stress, dynamic shear modulus increases obviously. Whereas, for the case of largeamplitude of cyclic shear stress, the increscent effect of axial deviatoric cyclic stress ondynamic shear modulus decreases.
     (5) Cyclic shear strength behavior and simple and convenient determination approach forcyclic shear strength. The relations of cyclic strength, cycle numbers and initial shear stresshave the significance for design and stability analysis of offshore platform. Testing data incyclic shear tests indicate that cyclic shear strength is determined by the effects of cyclicsoftening and strain rate for given initial shear stress. Based on the relation between montonicstrength and strain rate, the normalization approach of eliminating the effect of strain rate isrecommended. Through utilizing this normalization approach, the data points between cyclicstrength for different cycle number and initial shear stress locate in a narrow strip. Therelation between initial shear stress and normalization cyclic shear strength may be expressedby a quadratic equation. The simple and convenient determination approach of cyclic shearstrength is discussed according to this relation. The cyclic strength of different cycle numbermay be estimated after five experimental constants are determined through a few monotonicand cyclic shear tests. It is significant to reduce experimental workload in the stabilityanalysis for offshore ground foundation.
     (6) Cyclic creep behavior and cyclic softening general strain computational model. Thetesting data in cyclic shear tests show that cyclic softening general strain is made up of thestrain caused by initial shear stress and cyclic creep strain induced by the combination of thestatic and cyclic stress. Cyclic creep strain is mainly influenced by peak value of cyclic stress,initial shear stress and strain rate used for exerting initial shear stress. According to thespecialities of cyclic creep strain and based on the equivalent between time and cycle number,an experiential cyclic creep strain calculational expression is recommended by using themeasure of equivalent stress. Furthermore, cyclic softening general strain model is set up,whose two compositive parts, namely initial static strain and cyclic ceep strain, arerespectively employing non-linear elasticity theory and yielding surface rheology theory. Thismodel only includes 7 experimental constants, which can be determined in monotonic andcyclic shear tests. Although this.model belongs to the pseudo-static model, it can differentiatethe loading properties, such as monotonic loading or cyclic loading. This model not only canconsider the effect of strain rate used for exerting initial shear stress but also can respectivelycalculate the deformations in the monotonic loading and cyclic loading phase.
     (7) Implementation of finite element method for cyclic softening general straincomputational model. On the base of a great many monotonic and cyclic shear tests, cyclicsoftening general strain computational model is established, and it exactly reflects the cycliccreep behavior for various combination of static and cyclic stress. Although universal finiteelement software ADINA not only possesses the function of solving nonlinear problem butalso has the outstanding interface of forward and backward disposal, it does not include theconstitutive model which reflects this cycIic shear behavior. So it is necessary to developnumerical implementation on the software ADINA platform. In the dissertation, the secondarydevelopments for non-linear material model and cyclic creep material model on the softwareADINA platform are firstly carried out. Then numerical implementation of cyclic softeninggeneral strain computational model is carried out. Moreover, its development process andcalculational methods are elaborately explained.
     (8) Numerical analysis of finite element for monotonic bearing capacity and cyclicsoftening deformation of ground foundation beneath suction caisson. Emphasizing on theeffect of clay ground deformation rate during monotonic loading, the numerical analysis formontonic bearing capacity and cyclic softening general deformation of the clay ground hasbeen carried out. The calculational results show that vertical and horizontal montonoicbeating capacity of single suction caisson increases with the increase of clay grounddeformation rate. For the given combination of static and cyclic stresses, vertical andhorizontal cyclic softening deformations increase along with the increase of cycle number.The increscent magnitude of cyclic softening deformation for each cycle decreases duringcyclic loading. For. the combination of vertical montonic and cyclic loads, the soil bodylocating on the surface near the suction caisson will move upward due to extrusion of thedescending foundation, and the main deformation pattern of the foundation exhibits the dentof the whole soil body near suction caisson. Whereas, for the combination of vertical monotonic loads and horizontal cyclic loads, the cranny between soil body and f suctioncaisson appears, and the horizontal and rotational displacement of suction caisson increasesalong with the increase of cycle number.
引文
[1] Aubeny C P, Murff D J, Roesset J M. Geotechnical issues in deep and ultra-deep waters[A]. 10th International Conference on Computer Methods and Advances in Geomechanics[C], USA, 2001, 13-26.
    [2] 长江口航道建设有限公司、中交第四航务工程勘察设计院、中交第一航务工程勘察设计院等单位.长江口深水航道治理工程设计文件与研究报告(一套)[R].2001-2003.
    [3] 吴建政.山东全新世滨海软土与工程地质灾害的研究.海洋地质与第四纪地质[J].1995,15(3):43-54.
    [4] 栾茂田,王栋,郭莹,等.海床与海洋地基的动力分析理论与设计方法研究进展评述[A].第三届全国土动力学学术会议论文集[C],北京:中国建筑工业出版社,2002,28-48.
    [5] 王栋.波浪作用下海床动力响应与液化的数值分析[博士学位论文][D].大连:大连理工大学,2002.
    [6] Luan M T, Wang D. Dynamic response of seabed under wave-induced loading[A]. In: Proceedings of the 4th International Conference on Re cent Advances of Geotechnical Earthquake Engineering and Soil Dynamics[C], San Diego, March 26-31, 2001.
    [7] 钱寿易,楼志刚,杜金声.海洋波浪作用下土动力特性的研究现状和发展[J].岩土工程学报,1982,4(1):16-23.
    [8] Madsen O S. Wave-induced pore pressures and effective stresses in a porous bed[J]. Geotechnique, 1978, 28(4): 377-393.
    [9] Ishihara K, Yowhata I. sand response to cyclic rotation of principal stress rotation in soils[J]. Soils and Foundations, 1983, 23(4): 11-26.
    [10] 栾茂田,张晨明,王栋,郭莹.波浪作用下海床孔隙水压力发展过程与液化的数值分析[J].水利学报,2004,(2):94-100.
    [11] Zen K., Yamazaki H. Mechanism of wave-induced liquefaction and densification in seabed[J]. Soils and Foundations, 1990a, 30(4): 90-104.
    [12] Zen K, Yamazaki H. Oscillatory pore pressure and liquefaction in seabed induced by ocean waves[J]. Soils and Foundations, 1990b, 30(4): 147-161.
    [13] 常瑞芳.海岸工程环境[M].青岛:青岛海洋大学出版社,1997.
    [14] 李玉成.波浪对海上建筑物的作用[M].北京:海洋出版社,1990.
    [15] 杨少丽,沈渭铨,杨作升.波浪作用下海底粉砂的液化机理分析[J].岩土工程学报,1995,17(4):28-37.
    [16] Ishihara K, Yamazaki A. Analysis of wave -induced liquefaction in seabed deposits of sand[J]. Soils and Foundations, 1984, 24(3): 85-100.
    [17] 郭莹.复杂应力条件下饱和松砂的不排水动力特性试验研究[博士学位论文][D].大连:大连理工大学,2003.
    [18] 栾茂田,郭莹,李木国,等.土工静力—动力液压三轴—扭转多功能剪切仪研发及应用[J].大连理工大学学报,2003,43(5):670-675.
    [19] Tatsuoka F. Some recent developments in triaxial systems for cohesionless soils[A]. Advanced Triaxial Testing of Soil and Rock[C], ASTM STP977(Edited by Robert T D, Ronald C C, Marshall L S), AETM, Philadelphia, 1988, 7-67.
    [20] Andersen K H, Kleven A and Heien D. Cyclic soil data for design of gravity structure[J]. Journal of Geotechnical Engineering, ASCE, 1988, 114(5): 517-539.
    [21] Lefebvre G, Pfendler P. Strain rate preshear effects in cyclic resistance of sost clay[J]. Journal of Geotechnical Engineering, ASCE, 1996, 122(I): 21-26.
    [22] Lanzo G, Vucetic M, Doroudian M. Reduction of shear modulus at small strains in simple shear[J]. Journal of Geotechnical Engineering, ASCE, 1997, 123(11): 1035-1042.
    [23] Lai J, Daniel D E, Wright S G. Effects of cyclic loading on internal shear strength of unreinforced geosynthetic clay liner[J]. Journal of Geotechnical Engineering, ASCE, 1998, 124(1): 45-52.
    [24] Matesic L, Vucetic M. Strain-rate effect on soil secant shear modulus at small cyclic strains[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2003, 129(6): 536-549.
    [25] 李作勤.扭转三轴试验综述.岩土力学[J].1994,15(1):80-93.
    [26] Hight D W, Gens A, Symes M J. The development of a new hollow cylinder apparatus for investigating the effects of principal stress rotation in soils[J]. Geotechnique, 1983, 33(4): 355-384.
    [27] Nakata Y, Hyodo M, Murata H, Yasufuku N. Flow deformation of sands subjected to principal stress rotation. Soils and Foundations[J]. 1998, 38(2): 115-128.
    [28] 李万明,周景星.扭剪与三轴试验试验中孔压不均匀性的研究[J].岩土力学,1991,12(4):33-39.
    [29] 张国平,王洪瑾,周克骥.内外室压力不等的空心圆柱扭剪仪的研制[A].见:第七届土力学及基础工程学术会议论文集[C],北京:中国建筑工业出版社,1994,65-70.
    [30] 刘汉龙,周云龙,余湘娟,Nakasono T.静动多功能振动、扭剪三轴仪研制[A].见:刘汉龙主编,土动力学与岩土地震工程(第六届全国土动力学学术会议论文集)[C],北京:中国建筑工业出版社,2002,540-545.
    [31] 顾尧章,李相菘,沈志刚.土动力学中的自振柱试验[J].土木工程学报,1984,12(2):39-45.
    [32] 李敏霞,杨泽群,陈建秋.地震模拟振动台技术的开发与应用[J].世界地震工程,1996,2:49-54.
    [33] 方重.模拟地震振动台的近况及其发展[J].世界地震工程,1999,15(2):89-91.
    [34] 黄志全,王思敬.离心模型试验技术在我国的应用概况[J].岩石力学与工程学报,1998,17(2):199-203.
    [35] 章为民,赖忠中,徐光明.电液式土工离心机振动台的研制[J].水利水运工程学报,2002,2(1):63-66.
    [36] 闫澍旺,邱长林,孙宝仓,章为民.波浪作用下海底软黏土力学性状的离心模型试验研究[J].水利学报,1998,(9):66-70.
    [37] 魏汝龙.软粘土的土样扰动及其影响[J].水利水运科学研究,1986,(2):75-90.
    [38] 魏汝龙.软粘土取样技术及其改进[J].岩土工程学报,1986,(6):113-125.
    [39] 王年香,魏汝龙.沿海软粘土取土质量的对比分析[J].工程地质学报,1994,2(2):66-75.
    [40] Strachan P. Liquefaction prediction in the marine environment[A]. In: Proceedings of IUTAM and IUGG[C], Edited by Denness B. Newcastle: Graham & Trotman Publication, 1983, 149-157.
    [41] Dyvik R, Andersen K H, Hansen S B et al. Field tests of anchors in clay. Ⅰ: Description[J]. Journal of Geotechnical Engineering, ASCE, 1993, 119(10): 1515-1531.
    [42] Leroueil S, Samson L, Bozozuk M. Laboratory and field determination of preconsolidation pressures at Gloucester[J]. Canadian Geotechnical Journal, 1983, 20(3): 19-23.
    [43] Bennett R H et al. In-situ porosity and permeability of selected carbonate sediment: Great Bahama Band-part 1: measures; part 2: Microfabric[J]. Marine Geotechnology, 1990, 9: 1-48.
    [44] 张荣堂,Lunne T.土样扰动对低塑性软粘土影响的试验研究[J].岩石力学与工程学报,2002,21(增2):2350-2355.
    [45] Esring M I, Kirby R C. Implications of gas content for predicting the stability of submarine slopes[J]. Marine Geotechnology, 1977, 2: 81-100.
    [46] Zhang Rong-tang, Lunne T. Deepwater sample disturbance due to stress relief[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(3): 356-360.
    [47] 徐杨青,郭见扬.海洋土特殊工程性质的成因分析[J].岩土力学,1989,10(4):67-74.
    [48] Lu T, Bryant W R, Slowey N C. Regression analysis of physical and geotechnical properties of surface marine sediments[j]. Marine Georesources and Geotechnology, 1998, 16(3): 201-220.
    [49] Sills G C, Gonzalez R. Consolidation of naturally gassy soft soil[J]. Geotechnique, 2001, 51(2): 629-639.
    [50] 栾茂田,许成顺,郭莹,何扬,李木国.静力与动力组合应力条件下饱和松砂变形特性的试验研究[J].土木工程学报,2005,38(3):81-86.
    [51] 沈瑞福,王洪瑾.动主应力轴连续旋转下砂土的动强度[J].水利学报,1996,(1):27-33.
    [52] Boulanger R W, Seed R B. Liquefaction of sand under bidirectional monotonic and cyclic loading[J]. Journal of Geotechnical Engineering, ASCE, 1995, 121 (12): 870-878.
    [53] Yamamuro J A, Covert K M. Monotonic and cyclic liquefaction of very loose sands with high silt content[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2001, 127(4): 314-324.
    [54] Hφeg K, Dyvik R, Sandb(?)kken G. Strength of undisturbed versus reconstituted silt and silty sand specimens[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2000, 126(7): 606-617.
    [55] 王淑云,鲁晓兵,时钟民.颗粒级配和结构对粉砂力学性质的影响[J].岩土力学,2005,26(7):1029-1032.
    [56] 衡朝阳,何满潮,裘以惠.含黏粒砂土抗液化性能的试验研究[J].工程地质学报,2001,9(4):339-344.
    [57] 杨少丽,Sandven R,林霖,李安龙.改进的室内粉土制样技术[J].岩土工程学报,2000,22(3):379-380.
    [58] 吴京平,褚瑶,楼志刚.颗粒破碎对钙质砂变形及强度特性的影响[J].岩土工程学报,1997,19(5):49-55.
    [59] Hyde A F L, Ward S J. A pore pressure and stability model for a silty clay under repeated loading[J]. Geotechnique, 1985, 35(2): 113~125.
    [60] Yasuhara K, Yamanouchi T, Hirao K. Cyclic strength and deformation of normally consolidated clay[J]. Soils and Foundations, 1982, 22(3): 77-91.
    [61] Yasuhara K, Murakami S, Song B W, Yokokawa S, Hyde A F L. Postcyclic degradation of strength and stiffness for low plasticity silt[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2003, 129(8): 756-769.
    [62] Lin H, Penumadu D. Experimental investigation on principal stress rotation in Kaolin clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2005, 131(5): 633-642.
    [63] Sheahan T C, Ladd C C, Germaine J T. Rate-dependent undrained shear behavior of saturated clay[J]. Journal of Geotechnical Engineering, ASCE, 1996, 122(2): 99-108.
    [64] 纪玉诚,闫澍旺.室内真空预压制备土样的技术及应用[J].水运工程,1997,12:1~2.
    [65] 刘汉龙,余湘娟.土动力学与岩土地震工程研究进展[J].河海大学学报,1999,27(1):6-15.
    [66] 白冰,肖宏彬.软土工程若干理论与应用[M].北京:中国水利水电出版社,2002.
    [67] Hardin B O, Richart F E. Elastic wave velocities in granular soils[J]. Journal of the Soil Mechanics and Foundation Engineering Division, ASCE, 1963, 89(1): 33-65.
    [68] Hardin B O, Black W L. Vibration modulus of normally consolidated clay[J]. Journal of the Soil Mechanics and Foundation Engineering Division, ASCE, 1968, 94(2): 353-369.
    [69] Hardin B O, Drnevich V P. Shear modulus and damping in soils: measurement and parameter effects[J]. Journal of the Soil Mechanics and Foundation Engineering Division, ASCE, 1972a, 98(6): 603-624.
    [70] Hardin B O, Drnevich V P. Shear modulus and damping in soils: design equations and curves[J]. Journal of the Soil Mechanics and Foundation Engineering Division, ASCE, 1972b, 98(7): 667-692.
    [71] Hardin B O, Blandford G E. Elasticity of particulate materials[J]. Journal of Geotechnical Engineering, ASCE, 1989, 115(6): 788-805.
    [72] Seed H B, Wong R T, Idriss I M, Tokimatsu K. Moduli and Damping factors for dynamic analysis of cohesionless soils[J]. Journal of Geotechnical Engineering, ASCE, 1986, 112(11): 1016-1032.
    [73] 袁晓铭,孙锐,孙静,孟上九,石兆吉.常规土类动剪切模量比和阻尼比的试验研究[J].地震工程与工程振动,2000,20(4):133-139.
    [74] 袁晓铭,孙静.非等向固结下砂土最大动剪切模量增长模式及Hardin公式修正[J].岩土工程学报,2005,27(3):264-269.
    [75] 陈国兴,刘雪珠.南京及临近地区新近沉积土的动剪切模量和阻尼比的试验研究[J].岩石力学与工程学报,2004,23(8):1403-1410.
    [76] 郭莹,栾茂田,董秀珠,王栋.不同应力条件下砂土动模量特性的试验对比研究[J].水利学报,2003,5:41-45.
    [77] Kagawa T. Moduli and damping factors of soft marine clays[J]. Journal of Geotechnical Engineering, ASCE, 1992, 118(9): 1360-1375.
    [78] 顾尧章.海底黏土的剪切模量.岩土工程学报[J],1995,17(2):29-35.
    [79] Andersen K H, Pool J H, Brow S F, Rosenbrand W F. Cyclic and static laboratory tests on Drammen clay[J]. Journal of the Geotechnical Engineering Division, ASCE, 1980, 106(5): 499-529.
    [80] Vucetic M, Dobry R. Effect of soil plasticity on cyclic response[J]. Joumal of Geotechnical Engineering, ASCE, 1991, 117(1): 89-107.
    [81] Teachavorasinskun S, Thongchim P, Lukkunaprasit P. Shear modulus and damping of soft Bangkok clays[J]. Canadian Geotechnical Journal, 2002, 39: 1201-1208.
    [82] 翟瑞彩,要明伦.海底软黏土动剪切模量的数值计算与模糊概率分析[J].岩土工程学报,1997,19(6):103-106.
    [83] 吕悦军,唐荣余,沙海军.渤海海底土类动剪切模量比和阻尼比的试验研究[J].防灾减灾工程学报,2003,23(2):35-42.
    [84] Burland J B. Ninth Laurits Bjerrum Memorial Lecture: "Small is beautiful"—the stiffness of soils at small strain[J]. Canadian Geotechnical Journal, 1989, 26: 499-516.
    [85] Puzrin A M, Burland J B. Non-linear model of small strain behavior of soils[J]. Geotechnique, 1998, 48(2): 217-233.
    [86] Shiwakoti D R, Tanaka H, Tanaka M, Mishima O. A study on small strain shear modulus of undisturbed soft marine clays[A]. Proceedings of the Tenth International Offshore and Polar Engineering Conference[C], Seattle, USA, 2000, 455-460.
    [87] 姬美秀,陈云敏,黄博.弯曲元试验高精度测试土样剪切波速法[J].岩土工程学报,2003,25(6):732-736.
    [88] Zhou Yan-guo, Chen Yu-min, Huang Bo. Experimental study of seismic cyclic loading effects on small strain shear modulus of saturated sands[J]. Journal of Zhejiang University(Science), 2005, 6(3): 229-236.
    [89] Doroudian M, Vucetic M. A direct simple shear device for measuring small-strain behavior[J]. Geotechnical Test Journal, 1995, 18(1): 69-85.
    [90] 孔宪京,贾革续,邹德高,娄树莲,韩国城.微小应变堆石料德变形特性[J].岩土工程学报,2001,23(1):32-37.
    [91] 孔宪京,娄树莲,邹德高,贾革续,韩国城.筑坝堆石料的等效动剪切模量与等效阻尼比[J].水利学报,2001,8:20-25.
    [92] 何昌荣.动模量和阻尼的动三轴试验研究[J].岩土工程学报,1997,19(2):39-48.
    [93] 马时冬.平台地基在波浪荷载的循环位移和固结沉降估算[J].岩土力学,1991,12(4):1-10.
    [94] Lee K L, Seed H B. Cyclic stress conditions causing liquefaction of sand[J]. Journal of the Soil Mechanics and Foundations Division, ASCE, 1967, 93(1): 47-70.
    [95] 何扬,栾茂田,许成顺,郭莹,张振东.复杂应力条件下松砂振动孔隙水压力与体变特性的试验研究[J].地震工程与工程振动,2005,25(6):127-134.
    [96] 郭莹,刘艳华,栾茂田,许成顺,何扬.复杂应力条件下饱和松砂振动孔隙水压力增长的能量模式[J].岩土工程学报,2005,27(12):1380-1385.
    [97] 沈瑞福,王洪瑾,周克骥,周景星.动主应力轴连续旋转下砂土孔隙水压力发展及海床稳定性判断[J].岩土工程学报,1994,16(3):70-78.
    [98] Towhata I, Ishihara K. Shear work and pore water pressure in undrained shear[J]. Soils and Foundations, 1985, 25(3): 73-84.
    [99] 谢定义.土动力学[M].西安:西安交通大学出版社,1988.
    [100] Matsui T, Ohara H, Ito T. Cyclic stress-strain history and shear characteristics of clay[J]. Journal of the Geotechnical Engineering Division, ASCE, 1980, 106(10): 1101-1120.
    [101] Vucetic M, Dobry R. Degradation of marine clays under cyclic loading[J]. Journal of Geotechnical engineering, ASCE, 1988, 114(2): 133-149.
    [102] Matasovic N, Vucetic M. A pore pressure model for cyclic straining of clay[J]. Soils and Foundations, 1992, 32(3): 156-173.
    [103] Matsui T, Bahr M A, Abe N. Estimation of shear characteristics degradation and stress-strain relationship of satuarated clays after cyclic loading[J]. Soils and Foundations, 1992, 32(1): 161-172.
    [104] 周建,龚晓南.循环荷载作用下饱和软粘土应变软化研究.土木工程学报[J],2000,33(5):75-78.
    [105] Idriss I M, Dobry R, Sihgh R D. Nonlinear behavior of soft clay during cyclic loading[J]. Journal of the Geotechnical Engineering Division, ASCE, 1978, 104(12): 1427-1447.
    [106] 要明伦,聂栓林.饱和软粘土动变形计算的一种模式[J].水利学报,1994,(7):51-55.
    [107] Jian Zhou, Xiaonan Gong. Strain degradation of saturated clay under cyclic loading[J]. Canada Geotechnical Journal, 2001, 38: 208-212.
    [108] Hyde A F L, Brown S F. The plastic deformation of a silty clay under creep and repeated loading[J]. Geotechnique, 1976, 26(1): 173-184.
    [109] Yilmaz M T, Pekcan O, Bakir B S. Undrained cyclic shear and deformation behavior of silt-clay mixtures of Adapazari, Turkey[J]. Soil Dynamics and Earthquake Engineering, 2004, 24: 497-507.
    [110] Yasuhara K, Hirao K, Hyde A F L. effects of cyclic loading on undrained strength and compressibility of clay[J]. Soils and Foundations, 1992, 32(1): 100-116.
    [111] 高广运,顾中华,杨宏明.循环荷载下饱和黏土不排水强度计算方法[J].岩土力学,2004,25(增2):379-382.
    [112] Andersen K H and Lauritzsen R. Bearing capacity for foundations with cyclic loads[J]. Journal of Geotechnical Engineering, ASCE, 1988, 114(5): 540-555.
    [113] 刘振纹.软土地基上桶形基础的稳定性研究[博士学位论文][D].天津:天津大学博士学位论文,2002.
    [114] 黄绍铭,高大钊.软土地基与地下工程[M].北京:中国建筑工业出版社,2005,7.
    [115] 汪闻韶.土的动力强度和液化特性[M].北京:中国电力出版社,1997.
    [116] 邵生俊,谢定义.饱和砂土的动强度及破坏准则[J].岩土工程学报,1991,13(1):24-33.
    [117] 谢定义.饱和砂土体液化的若干问题[J].岩土工程学报,1992,14(3):90-98.
    [118] 李广信.土的清华弹塑性模型及其发展[J].岩土工程学报,2006,28(1):1-10.
    [119] 章根德.地质材料本构模型的最新进展[J].力学进展,1994,24(3):374-385.
    [120] 郑颖人.岩土塑性力学的新进展—广义塑性力学[J].岩土工程学报,2003,25(1):1-10.
    [121] 沈珠江,刘恩龙,张铁林.岩土二元介质模型的一般应力应变关系[J].岩土工程学报,2005,27(5):489-494.
    [122] 杨光华.21世纪应建立岩土材料的本构模型[J].岩土工程学报,1996,18(4):116-117.
    [123] 殷建华.土的三模量非线性模型及其推广[J].岩土力学,2000,21(1):16-19.
    [124] 殷宗泽.土力学学科发展的现状与展望[J].河海大学学报,1999,27(1):1-5.
    [125] 谢定义.21世纪土力学的思考[J].岩土工程学报,1997,19(4):111-114.
    [126] 姚仰平.真三轴应力条件下砂土的非线性动力本构关系的新研究[博士学位论文][D].西安:西安理工大学,1995.
    [127] 屈智炯.土的塑性力学[M].成都,成都科技大学出版社,1987.
    [128] 沈珠江.土的弹塑性应力应变关系的合理形式[J].岩土工程学报,1980,2(2):11-19.
    [129] 沈珠江.土的三重屈服面应力应变模式[J].固体力学学报,1984,(2):163-174.
    [130] 栾茂田,罗锦添,李焯芬,等.不排水条件下全风化花岗岩残积土工程特性与本构模型[J].大 连理工大学学报,2000,40(增刊):83-89.
    [131] 郑颖人,沈珠江,龚晓南.岩土塑性力学原理[M].北京:中国建筑工业出版社,2002.
    [132] 史宏彦.无粘性土的应力矢量本构模型[博士学位论文][D].西安:西安理工大学,2000.
    [133] 孔亮.复杂应力条件下土体弹塑性本构模型研究[博士学位论文][D].重庆:后勤工程学院,2002.
    [134] Matsuoka H, Sun De'an. Extension of mobilized plane (SMP) to frictional and cohesive materials and its application to cemented sands [J]. Soils and Foundations, JSSMFE, 1995, 35(4): 63-72.
    [135] 罗汀,路德春,姚仰平.考虑应力路径影响下砂土的三维本构模型[J].岩土力学,2004,25(5):688-693.
    [136] 袁静,龚晓南,益德清.岩土流变模型的比较研究[J].岩石力学与工程学报,2001,20(6):772-779.
    [137] 黄文熙.土的工程性质[M].北京:水利电力出版社,1983.
    [138] Singh A, Mitchell J K. General stress-strain-time functions for soils[J]. Journal of the Soil Mechanics and Foundations Division, A SCE, 1968, 94(1): 21-46.
    [139] Mesri G, Febres-Cordero E, Shieds D R, et al. Shear stress-strain-time behavior of clays[J]. Geotechnique, 1981, 31 (4): 537-552.
    [140] Lin H D, Wang C C. Stress-strain-time function of clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 1998, 124(4): 289-296.
    [141] 吴世明.土动力学[M].北京:中国建筑工业出版社,2000.
    [142] Dafalias Y F, Hermann L R. Bounding surface formulation of soil plasticity. In: Pande G N, Zienkiewicz O C. Soil Mechanics-Transient and Cyclic Loads[M]. John Wiley and Son, 1982.
    [143] Pestana J M, Biscontin G, Nadim F, Andersen K. Modeling cyclic behavior of lightly overconsolidated clays in simple shear[J]. Soil Dynamics and Earthquake Engineering, 2000, 19: 501-519.
    [144] Tao Li, Meissner H. Two-surface plasticity model for cyclic undrained behavior of clays[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2002, 128(7): 613-626.
    [145] Narasimha Rao S, Panda A P. Non-linear analysis of undrained cyclic strength of soft marine clay[J]. Ocean Engineering, 1999, (26): 241-253.
    [146] Carter J P, Booker J R, and Wroth C P. A critical state soil model for cyclic loading. In: Pande G N and Zienkiewicz O C. Soil Mechanics-Transient and cyclic loads[M]. John Wiley and Son, 1982.
    [147] Katti D R, Desai C S. Modeling and testing of cohesive soil using disturbed-state concept[J]. Journal of Geotechnicai Engineering, ASCE, 1995, 121(5): 648-658.
    [148] Sukumaran B, Mccarron W O, Jeanjean P, Abouseeda H. Efficient finite element techniques for limit analysis of suction caisson under lateral loads[J]. Computers and Geotechnics, 1999, 24(2): 89-107.
    [149] Zdravkovic L, Potts D M, Jardine R J. A parametric study of the pull-out capacity of bucket foundations in soft clay[J]. Geotechnique, 2001, 51(1): 55-67.
    [150] Supachawarote C, Randolph M F, Gourvenec S. Inclined pull-out capacity of suction caisson[A]. Proceedings of the 14th International Offshore and Polar Engineering Conference[C], Toulon, France, 2004, 332-339.
    [151] Taiebat H A, Carter J P. Interaction of forces on caissons in undrained soils[A]. Proceedings of the 15th International Offshore and Polar Engineering Conference[C], Seoul, Korea, 2005, 625-632.
    [152] 范庆来,栾茂田,杨庆.软基上沉入式大圆筒结构的水平承载力分析[J].岩土力学,2004,25(增2):191-195.
    [153] 陈福全,杨敏.大直径圆筒结构码头性状分析[J].同济大学学报,2002,30(7):797-801.
    [154] 王刚,陈杨,张建民.大圆筒结构倾覆稳定分析的有限元法[J].岩土力学,2006,27(2):238-241.
    [155] 刘海笑,王世水.改进的等效线性化计算模型及在结构海床耦合系统动力分析中的应用[J].中国港湾建设,2006,(1):12-15.
    [156] 范庆来,栾茂田,杨庆,齐剑峰.考虑循环软化效应的软基上深埋大圆筒结构承载力分析[J].大连理工大学学报,2006,46(5):702-706.
    [157] 中国江河河口研究及治理、开发问题研讨会[A].中国江河河口研究及治理、开发问题研讨会文集[C],北京:中国水利水电出版社,2003.
    [158] 许成顺.复杂应力条件下饱和砂土剪切特性及本构模型的试验研究[博士学位论文][D]大连大连理工大学,2006.
    [159] 钱家欢,殷宗泽.土工原理与计算[M].北京:中国水利水电出版社,2000.
    [160] Richardson A M, Whitman R V. Effect of strain-rate upon undrained shear resistance of a saturated remoulded fat clay[J]. Geotechnique, 1963, 13(4): 310-324.
    [161] Berre T, Bjerrum L. Shear strength of normally consolidated clays[A]. Proceedings the 8th International Conference on Soil Mechanics and Foundation Engineering[C], Moscow, USSR, 1973, 1: 39-49.
    [162] Vaid Y P, Campanella R G. Time dependent behavior of undisturbed clay[J]. Journal of the Geotechnical Engineering Division, ASCE, 1977, 103(7): 693-709.
    [163] 蔡羽,孔令伟,郭爱国,等.剪应变率对湛江强结构性黏土力学性状的影响[J].岩土力学,2006,27(8):1235-1240.
    [164] 沈珠江.理论土力学[M].北京:中国水利水电出版社,2000.
    [165] Martin P P, Seed H B. One-dimensional dynamic ground response analysis[J]. Journal of the Geotechnical Engineering Division, ASCE, 1982, 108(7): 935-954.
    [166] 陈国兴,谢君斐,张克绪.土的动模量和阻尼比的经验估计[J].地震工程与工程振动,1995,15(1):73-84.
    [167] 张茹,涂扬举,费文平,赵忠虎.振动频率对饱和黏土动力特性的影响[J].岩土力学,2006,27(5):699-704.
    [168] 孔亮,王燕昌,郑颖人.土体动本构模型研究评述[J].宁夏大学学报(自然科学版),2001,22(1):17-22.
    [169] 王洪瑾,马奇国,周景星,周克骥.土在复杂应力状态下的动力特性研究[J].水利学报,1996,(4):57-64.
    [170] Bouckovalas G, Hφeg K. Computational model for saturated sand subjected to cyclic loading[J]. Soils and Foundations, 1987, 27(4): 34-44.
    [171] 石兆吉,郁寿松,翁鹿年.塘沽新港地区震陷计算分析[J].土木工程学报,1988,21(4):24-34.
    [172] 周健,屠洪权,安原一哉.动力荷载作用下软黏土的残余变形计算模式[J].岩土力学,1996, 17(1):54-60.
    [173] 土工试验技术手册[M].南京水利科学研究院土工研究所编著,北京:人民交通出版社,2003,94-95.
    [174] 朱登峰,黄宏伟,殷建华.饱和软粘土的循环蠕变特性[J].岩土工程学报,2005,27(9):1060-1064.
    [175] 李军世,林咏梅.上海淤泥质粉质黏土的Singh-Mitchell蠕变模型[J].岩土力学,2000,21(4):363-366.
    [176] 张学言,闫澍旺.岩土塑性力学基础[M].天津:天津大学出版社,2004,119-120.
    [177] Bathe K J. ADINA users' Manual Version 8.1[M]. Watertown, MA 02472 USA: ADINA R & D Inc, 2003.
    [178] Kojic M, Bathe K J. The effective-stress-function algorithm for thermo-elasto-plasticity and creep[J]. International Journal of Numerical Method Engineering, 1987, 24(8): 1509-1532.
    [179] Wakai A, Gose S, Vgai K. 3D elasto-plastic finite element analysis of pile foundations subjected to lateral loading[J]. Soils and Foundations, 1999, 39(1): 47-111.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700