水杨酸酯与环糊精超分子体系光谱研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
荧光探针技术由于具有方法多样、灵敏度高、设备依赖性小等优点,成为人们研究超分子物理与化学问题的有力手段。相比于以往的荧光探针,基于激发态分子内质子转移(ESIPT)的有机分子具有荧光量子产率高、Stokes位移较大和光稳定性好等优点,成为化学、生物学领域的新一代荧光探针,被广泛应用于检测胶束、环糊精、蛋白质分子等微观环境方面。
     水杨酸衍生物是研究ESIPT反应的重要模型分子。在氢键性环境中,水杨酸酯因形成基态分子间氢键和分子内氢键而呈现出双重荧光。基于分子内氢键的ESIPT荧光位于可见光区,而基于分子间氢键的荧光则位于紫外光区,其相对强度对所处微环境有依赖性。水杨酸酯可作为荧光探针,定性地表征微观环境的氢键特性。
     环糊精(CDs)的疏水空腔,可选择性包合与其尺寸大小相匹配的分子。由于环糊精的内腔尺寸和疏水性会影响被包合客体分子的光化学和光物理性质,通过和环糊精作用可以探测ESIPT光化学过程。
     本论文工作主要包括以下两方面内容:
     第一部分以长链的水杨酸-2′-乙基己基酯(EHS)和短链的水杨酸甲酯(MS)为例,研究了水杨酸酯在不同性质溶剂中的双重荧光光谱。结果表明,水杨酸酯的双重荧光与其能否和溶剂形成氢键,以及形成氢键的能力强弱有很大的关系。随着溶剂形成氢键能力的增强,长、短波长荧光比值(Ia/Ib)显著减小,水杨酸酯分子在溶液中更倾向于形成分子间氢键,且短波长荧光会随溶剂极性的减小发生蓝移。水杨酸酯可作为荧光探针,定性地表征微观环境(氢键及极性)的特性。
     第二部分研究了不同类型环糊精及环糊精衍生物对EHS和MS双重荧光光谱的影响,具体内容如下:
     (1)考察了α-CD、β-CD和γ-CD对EHS双重荧光的影响,通过比较客体分子与CDs空腔的大小推测了包合物的结构,认为在α-CD和β-CD与EHS形成的包合物中,主-客体浓度比例不同时,分别生成1:1型、2:1型包合物;在所研究的浓度范围内,γ-CD与EHS只生成1:1型络合物,空腔尺寸是影响EHS与三种环糊精包合作用的主要因素。
     (2)考察了β-CD及不同取代度甲基修饰β-CD对EHS双重荧光光谱的影响,讨论了四种β-CD与EHS形成的超分子体系中的包合模式和氢键作用,以及EHS的识别能力。结果表明,EHS在β-CD、DM-β-CD、HDM-β-CD和HTM-β-CD溶液中都会出现ESIPT双重荧光,生成主-客体包合物。与β-CD相比,甲基的引入一方面可以增加空间位阻,另一方面降低了环糊精空腔的极性,取代基的个数和位置是影响空间位阻的重要因素。以EHS作为双重荧光探针,不仅可以对甲基的位置而且可以对甲基的个数进行识别。
     (3)采用荧光光谱法研究β-CD、M-β-CD和HP-β-CD对MS的包合作用,测定了包合物的稳定常数,并对比了三种β-CD对短链MS和长链EHS双重荧光的影响,从包合模式的角度解释了光谱的不同变化。结果表明,MS的双重荧光与所处微环境的氢键性质密切相关,β-CD取代基的大小会导致空腔口处的极性和空间位阻不同,相应改变了分子间氢键相互作用。当MS、EHS分子进入β-CD空腔时会引起其基态互变异构体之间平衡的移动,但包合模式的不同会导致光谱的不同变化。包合物稳定常数测定表明,三种β-CD对MS包合能力的大小为M-β-CD>HP-β-CD>β-CD。
The fluorescence probe technique is an attractive means for investigating supramolecular physical and chemical problems due to its variety, high sensitivity and low dependence on equipment. Compared to former fluorescence probes, a new family of fluorescence probes based on excited state intramolecular proton transfer (ESIPT) has been widely used to probe the microenvironments of micellar media, cyclodextrins and proteins because of their photophysical characteristics such as intense fluorescence, large Stokes shifts and significant photostability.
     Salicylates are typical molecules with ESIPT reaction. In hydrogen-bonding environment, salicylates exhibit dual fluorescence from the ground-state intermolecular and the intramolecular hydrogen-bonding forms. The ESIPT fluorescence from intramolecular hydrogen bonding form appears in the visible region, while the fluorescence from the intermolecular hydrogen bonding appears in the UV region, which is dependent on microenvironment around salicylates. Thus salicylates can be used as a fluorescence probe to qualitatively characterize the microenvironment of the hydrogen bonds.
     The hydrophobic cavities of cyclodextrins (CDs) are capable of incorporating guest molecules with a suitable size. As the size and hydrophobicity of cyclodextrin cavity could affect the photochemical and photophysical properties of incorporated guest molecules, CDs can be used as a host to detect the photochemical process of ESIPT.
     This thesis consists of two parts:
     Part 1 mainly describes the dual fluorescence of 2′-ethylhexyl (EHS) salicylate and methyl salicylate(MS) in various solvents. The results obtained indicate that salicylate shows very different dual fluorescence in solvents with different H-bonding ability. The intensity ratio of long wavelength emission to short wavelength emission (Ia/Ib) markedly decreases with increasing H-bonding ability of the solvent and the short wavelength emission blue-shifts with decreasing solvent polarity. Salicylates can be used for fluorescence probe to detect the hydrogen bonding effect and polarity of microenvironment.
     In Part 2, the influences of CDs and its derivatives on the dual fluorescence of EHS and MS were studied.
     (1) Dual fluorescence of EHS was examined in aqueous solution containingα-CD,β-CD andγ-CD. A detailed comparison of molecular structures and sizes provides the geometry of inclusion complexes. EHS was found to form the 1:1 inclusion complexes withα-CD,β-CD in aqueous solution at its lower concentration. Higher concentration of EHS is needed for the formation of the 1:2 cage-type inclusion complexes. The formation of 1:1γ-CD-EHS was examined. The cavity size is primary factor in inclusion processes.
     (2) Dual fluorescence of EHS was examined in aqueous solution containing natural and methylatedβ-CDs. The geometry of inclusion complexes, the hydrogen bonding effect in supramolecular inclusion and the recognition of EHS were discussed. The results show that EHS forms host-guest inclusion complexes inβ-CD, DM-β-CD, HDM-β-CD and HTM-β-CD solution and all complexes exhibit dual fluorescence. On the one hand, the methyl substitution would result in the steric hindrance. On the other hand, the methyl substitution would reduce the polarity of CD cavity. Effect of number and position of methyl substituents on the steric hindrance was important. As a novel ESIPT fluorescence probe, EHS depends on the number and the position of the methyl substituent.
     (3) Dual fluorescence of MS was examined in aqueous solution containingβ-CD, methylated-β-cyclodextrin(M-β-CD) and 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) and compared with that of EHS. It was found that dual fluorescence of MS closely correlate with the hydrogen bonding property of its surrounding microenvironment. The sizes of substituents at the rim ofβ-CD result in different polarity and steric hindrance at the cavity opening. The intermolecular hydrogen bonding interaction of MS changes in the presence of differentβ-CDs accordingly. When MS and EHS are bound toβ-CDs, their ground state equilibria shift but different geometry of inclusion complexes leads to different dual fluorescence. The formation constants indicate that the binding strength ofβ-CD and its derivatives to MS is in the order M-β-CD>HP-β-CD>β-CD.
引文
[1]吴世康,荧光探针技术在高分子科学中的应用,化学进展, 1996, 8(2): 118-128.
    [2] Keeling Tucker T., Brennan J. D., Fluorescent Probes as Reporters on the Local Structure and Dynamics in Sol-Gel-Derived Nanocomposite Materials, Chem. Mater., 2001, 13(10): 3331-3350.
    [3] Behera G. B., Mishra B. K., Behera P. K., Panda M., Fluorescent probes for structural and distance effect studies in micelles, reversed micelles and microemulsions, Adv. Colloid. Interf. Sci., 1999, 82(1-3): 1-42.
    [4] Reichardt C., Solvatochromic Dyes as Solvent Polarity Indicators, Chem. Rev., 1994, 94(8): 2319 -2358.
    [5] Kasha M., Proton-transfer spectroscopy, J. Chem. Soc. Faraday Trans., 1986, 82(2): 2379-2392
    [6] Chou P. T., Chao M., John H., Excited state intramolecular proton transfer for N-substituted-3-hydroxypyridinones, Chem. Phys. Lett., 1994, 220(3-5): 229-234.
    [7] Nickel B., Albert A. R., Dual phosphorescene from 2-(2’-hydroxyphenyl) benzoxazole in amorphous solid solution: Temperature dependence of dispersive kinetics of nonexponential triplet decay, Chem. Phys., 1994, 184(1-3): 261-271.
    [8] Lavtchieva L., Enchev V., Sedarchina Z., Golden rule study of excited state proton-transfer in 2-(2’-hydroxyphenyl) benzoxazole and 2-(2’-hydroxy-4-methyphenyl) benzoxazole, J. Phys. Chem., 1993, 97(2): 306-310.
    [9] Woolfe G., Thistlethawite P. J., Direct observation of excited state intramolecular proton transfer kinetics in 3-hydroxyflavone, J. Am. Chem. Soc., 1981, 103(23): 6916-6923.
    [10] Carter T. P., Van Benthem M. H., Gillespie G. D., Fluorescence and fluorescence excitation spectra of 1-aminoanthraquionone in an n-heptane Shpol'skii matrix, J. Phys. Chem., 1983, 87(11): 1891-1898.
    [11] Carter T. P., Gillespie G. D., Connolly M. A., Intramolecular hydrogen bonding in substituted anthraquinones by laser-induced fluorescence1. 1, 4-Dihydroxyanthraquinone(quinizarin), J. Phys. Chem., 1982, 86(2): 192-196.
    [12] Nayak M. K., Dogra S. K., Inter-and intramolecular hydrogen bond in methyl 2-hydroxy-9H-1- carbazole carboxylate:effect of solvents and acid concentration, J. Photochem. Photobiol. A, 2004, 161(2-3): 169-183.
    [13] Balamurali M. M., Dogra S. K., Excited state intramolecular proton transfer in 2-(2′-amino-3-Pyridyl)-benzimidazole: effect of solvents, Chem. Phys., 2004, 305(1-3): 95-103.
    [14] Forés M., Duran M., SolàM., Intramolecular proton transfer in the ground and the two lowest-lying singlet excited states of 1-amino-3-propenal and related species, Chem. Phys., 1998, 234(1-3): 1-19.
    [15] Das K., Sarkar N., Ghosh A. K., Majumdar D., Nath D. N., Bhattacharyya K., Excited-state intramolecular proton transfer in 2-(2-Hydroxyphenyl)benzimidazole and-benzoxazole: effect of rotamerism and hydrogen bonding, J. Phys. Chem., 1994, 98(37): 9126-9132.
    [16] Felker P. M., Lambert W. R., Zewail A. H., Picosecond excitation of jet-cooled hydrogen- bonded systems: Dispersed fluorescence and time-resolved studies of methyl salicylate, J. Chem. Phys., 1982, 77(3): 1603-1605.
    [17] Herek J. L., Pedersen S., Ba?ares L.,Zewail A. H., Femtosecond real-time probing of reactions. IX. Hydrogen-atom transfer, J. Chem. Phys., 1992, 97(12): 9046-9061.
    [18] Douhal A., Lahmani F., Zehnacker-Rentien A., Excited-state intramolecular proton transfer in jet-cooled 1-hydroxy-2-acetonaphthone, Chem. Phys., 1993, 178(1-3): 493-504.
    [19] Bosch E., Moreno M., Lluch J. M., A semiclassical simulation for tunneling dynamics of malonaldehyde and hydrogenoxalate anion, Chem. Phys., 1992, 159(1): 99-107.
    [20] Douhal A., Lahmani F., Zewail A. H., Proton-transfer reaction dynamics, Chem. Phys., 1996, 207(2-3): 477-498.
    [21] Das K., Sarkar N., Majumdar D., Bhattacharyya K., Excited-state intramolecular proton transfer and rotamerism of 2-(2′-hydroxyphenyl)benzimidazole, Chem. Phys. Lett., 1992, 198(5): 443-448.
    [22] Hass K. C., Schneider W. F., Estévez C. M., Bach R. D., Density functional theory description of excited-state intramolecular proton transfer, Chem. Phys. Lett., 1996, 263(3-4): 414-422.
    [23] Forés M., Duran M., SolàM., Orozco M., Luque F. J., Theoretical evaluation of solvent effects on the conformational and tautomeric equilibria of 2-(2'-Hydroxyphenyl)benzimidazole and onits absorption and fluorescence spectra, J. Phys. Chem., 1999, 103(23): 4525-4532.
    [24] McMorrow D., Kasha M., Intramolecular excited-state proton transfer in 3-hydroxyflavone. Hydrogen-bonding solvent perturbations, J. Phys. Chem., 1984, 88(11): 2235-2243.
    [25] Mordziński A., Kühnle W., Kinetics of excited-state proton transfer in double benzoxazoles: 2,5-bis(2-benzoxazolyl)-4-methoxypheno, J. Phys. Chem., 1986, 90(7): 1455-1458.
    [26] Ernsting N. P., Mordzinski A., Dick B., Excited-state intramolecular proton transfer in jet-cooled 2,5-bis(2-benzothiazolyl)hydroquinone, J. Phys. Chem., 1987, 91(6): 1404-1407.
    [27] Laermer F., Elsaesser Y., Kaiser W., Femtosecond spectroscopy of excited-state proton transfer in 2-(2′-hydroxyphenyl)benzothiazole, Chem. Phys. Lett., 1988, 148(2-3): 119-124.
    [28] Brucker G. A., Kelley D. F., Proton transfer in matrix-isolated naphthol/ammonia complexes, Chem. Phys., 1989, 136(2): 213-221.
    [29] Douhal A., Lahmani F., Zehnacker-Rentien A., Amat-Guerri F., Excited-state proton(or hydrogen atom)transfer in jet-cooled 2-(2'-hydroxyphenyl-5-phenyloxazole, J. Phys. Chem., 1994, 98(47): 12198-12205.
    [30] Lee S. I., Jang D. J., Proton transfers of aqueous 7-hydroxyquinoline in the first excited singlet, lowest triplet and ground states, J. Phys. Chem., 1995, 99(19): 7537-7541.
    [32] Fahrni C. J., Henary M. M., VanDerveer D. G., Excited-state intramolecular proton transfer in 2-(2'-tosylaminophenyl)benzimidazole, J. Phys. Chem. A, 2002, 106(34): 7655-7663.
    [32] Grabowska A., Sepiol J., Rulliere C., Mechanism and kinetics of proton-transfer reactions in excited, internally hydrogen-bonded benzoxazole derivatives as studied by picosecond transient absorption and stimulated emission pumping, J. Phys. Chem., 1991, 95(25): 10493-10495.
    [33] Chou P. T., Chen Y. C., Yu W. S., Chou Y. H., Wei C. Y., Cheng Y. M., Excited-State Intramolecular Proton Transfer in 10-Hydroxybenzo[h]quinoline, J. Phys. Chem. A, 2001, 105(10): 1731-1740.
    [34] Woolfe G. J., Melzig M., Schneider S., D?rr F., The role of tautomeric and rotameric species in the photophysics of 2-(2′-hydroxyphenyl)benzoxazole, Chem. Phys., 1983, 77(2): 213-221.
    [35] Bardez E., Monnier E., Valeur B., Dynamics of excited-state reactions in reversed micelles. 2. Proton transfer involving various fluorescent probes according to their sites of solubilization, J. Phys. Chem., 1985, 89(23): 5031-5036.
    [36] Eaton D. F., Cyclodextrin complexation as a probe of molecular photophysics, Tetrahedron, 1987, 43(7): 1551-1570.
    [37] Loken M. R., Hayes J. W., Gohlke J. R., Brad L., Excited-state proton transfer as a biological probe. Determination of rate constants by means of nanosecond fluorimetry, Biochemistry, 1972, 11(25): 4779-4786
    [38] Klymchenko A. S., Demchenko A. P., Multiparmaetric probing of intermolecular interactions with fluorescent dye exhibiting excited state intermolecular proton transfer, Phys. Chem. Chem. Phys., 2003, 5: 461-468.
    [39] Sytnik A., Gormin D., Kasha M., Interplay between excited-state intramolecular proton transfer and charge transfer in flavonols and their use as protein-binding-site fluorescence probes, Proc. Natl. Acad. Sci. USA, 1994, 91(25):11968 -11972
    [40] Shi X. Y., Ma W. Y., Wu S. K., Sun C. M., The aggregation behavior of collagen in aqueous solution and its property of stabilizing liposomes in vitro, Biomaterials, 2001, 22(12): 1627-1634
    [41] Klymchenko A. S., Demchenko A. P., Probing AOT Reverse Micelles with Two-Color Fluorescence Dyes Based on 3-Hydroxychromone, Langmuir, 2002, 18(15): 5637 -5639
    [42] Roberts E. L., Chou P. T., Alexander T. A., Agbaria R. A., Warner I. M., Effects of organized media on the excited-state intramolecular proton transfer of10-Hydroxy benzo[h]quinoline, J. Phys. Chem., 1995, 99(15): 5431-5437.
    [43] O'connor D. B., Scott G. W., Coulter D. R., Yavrouian A., Temperature dependence of electronic energy transfer and quenching in copolymer films of styrene and 2-(2'-hydroxy-5'-vinylphenyl)-2H–benzotriazole, J. Phys. Chem., 1991, 95 (25): 10252-10261.
    [44] Hofor T., Kruck P., Kaiser W., Dynamics of photochemical reactions studied by degenerate four-wave mixing, Chem. Phys. Lett., 1994, 224(3-4):411-416.
    [45] Costela A., Garcia M. I., Degenerate four-wave mixing in pheuylbenzimidazole proton transfer laser dyes, Chem. Phys. Lett., 1996, 249(5-6): 373-380.
    [46] Shang X., Tang G., Zhang G., Optical nonlinearities and transient dynamics of 2-(2’-hydroxypheny) benzoxazole studied by single beam and time-resolved two color scan techniques, J. Opt. Soc. Am., 1998, 15 (2): 854-860
    [47] Gai F., Fehr M. J., Petrich J .W., Observation of excited-state tautomerization in the antiviralagent hypericin and identification of its fluorescent species, J. Phys. Chem., 1994, 98(22): 5784-5795.
    [48] Douhal A., Guerri F. A., Acuna A. U., Photoinduced intramolecular proton transfer and charge redistribution in Imidazopyridines, J. Phys. Chem., 1995, 99 (1): 76-80.
    [49] Roberts E. L., Chou P. T., Alexander T. A., Effects of organized media on the excited state intramolecular proton transfer of Hydroxybenzoquinoline, J. Phys. Chem., 1995, 99(15): 5431-5437
    [50] Weller A., Innermolecularer protonübergang in angeregten Zustand, Z. Elektrochem., 1956, 60: 1144.
    [51] Acuna A. U., Amat-Guerri F., Catalán J., Dual fluorescence and ground state equilibria in methyl salicylate, methyl 3-chlorosallcylate and methyl 3-fed-butylsalicylate, J. Phys. Chem., 1980, 84(6): 629-631.
    [52] Acuna A. U., Catalán J., Toribio F., Photo energy relaxation and thermal effects on gas-phase electronically excited methyl salicylate, J. Phys. Chem., 1981, 85(3): 241-245.
    [53] GB 7916-87,中华人民共和国化妆品卫生标准
    [54]童林荟,环糊精化学,北京,科学出版社, 2001: 20.
    [55]董川,李俊芬,双少敏,杨频,环糊精包结物的形成及光谱表征,光谱实验室, 2000, 17(3): 247-256.
    [56]戚文彬,环糊精衍生物在荧光分析中的应用进展(上),分析科学学报, 1997, 13(3): 249-255.
    [57]戚文彬,环糊精衍生物在荧光分析中的应用进展(下),分析科学学报, 1997, 13(4): 334-340.
    [58]张勇,黄贤智,荧光光谱法研究α-溴代萘与β-环糊精2:2重叠包络物的形成,化学学报, 1997, 55(l): 69-75.
    [59]江云宝,黄贤智,陈国珍,荧光光谱和吸收光谱研究醇与β-环糊精的相互作用,化学物理学报, 1991, 7(3): 289-293.
    [60]朱晓峰,许旭,林炳承,β-环糊精和十二烷基硫酸钠包合作用的微量热法研究,高等学校化学学报, 1998, 19(9): 1504-1506.
    [61]刘淑琴,刘志敏,潘景浩,环糊精及其包合物的电化学研究及应用,电化学, 1996, 2(4): 430-434
    [62]李培芝,毛敏媛,朱婷婷,循环伏安法研究硝基药物的β-环糊精包络物,分析化学, 1994, 22(1): 58-60.
    [63]王烈群,景舒,张宏宇,包合物的研制及溶出速率测定,中国中药杂志, 1994, 25(12): 540-543.
    [64]张有明,魏太保,β-环糊精对D/L-酪氨酸对映体的手性识别及超分子包合物的合成,应用化学, 1998, 15(6): 45-48.
    [65]侯曙光,王培玉,盐酸雷尼替丁-β-环糊精包合物的研制,中国药学杂志, 1996, 31(8): 479-481.
    [66]雍国平,李光水,郑飞,周会舜,β-环糊精包合物的结构研究,高等学校化学学报, 2000, 21(7): 1124-1126.
    [67]缪振春,核磁共振技术在药物与环糊精包合物的结构分析中的应用,药物分析杂志, 1985, 5(5):316-319.
    [68] Wood D. J., Hruska F. E., Saenger W., 1HNMR study of the inclusion of aromatic moleculesinα-cyclodextrin, J. Am. Chem. Soc., 1977, 99(6): 1735-1740.
    [69]刘东红,李蕾, Bragg方程和X光的折射率,山东工业大学学报, 2000, 30(6): 525-527.
    [70] Shi X. Y., Fan R. F., Zhang Y. Q., Synthesis and characterization of water-soluble carboxymethyl-cyclodextrin polymer as capillary electrophoresis chiral selector, Chin. Chem. Lett., 2000, 11(l): 69-72.
    [71] Shuang S. M., Choi M F., Retention behaviour and fluorimetric detection of procaine hydrochloride using carboxymethyl-beta-cyclodextrin as an additive in reversed-phase liquid chromatography, J. Chromatogr. A, 2001, 919(2): 321-329.
    [72]郭瑞云,常俊标,林素凤,β-环糊精包结几种萘衍生物的圆二色性的研究,光谱学与光谱分析, 1996, 16(2): 38-41.
    [73]杨阳,陈慧兰,β-环糊精/KI3包合物的制备及性质研究,无机化学学报, 1999, 15(5): 631-635.
    [74] Steven D. F., Jan V. S., No?l B., De Schryver F. C., On the use of dynamic fluorescence measurements to determine equilibrium and kinetic constants, The inclusion of pyrene inβ-cyclodextrin cavities, Chem. Phys. Lett., 1996, 249(1-2): 46-52.
    [75] Hamai S., Kikuchi K., Room-temperature phosphorescence of 6-bromo-2-naphthol in poly(vinyl alcohol) films containing cyclodextrins, J. Photochem. Photobiol. A: Chem., 2003,161(1): 61-68
    [76] Wu J. J., Wang Y., Chao J. B., Wang L. N., Jin W. J., Room temperature phosphorescence of 1-bromo-4-(bromoacetyl)naphthalene induced synergetically byβ-Cyclodextrin and Brij30 in the presence of oxygen, J. Phys. Chem. B., 2004, 108(26): 8915-8919.
    [77] Xie J. F., Xu J. G., Chen G. Z., Liu C. S., Room temperature phosphorescence ofα-bromonaphthalene induced byβ-cyclodextrin in the presence of cyclohexane, Sci. China, Ser. B: Chem., 1996, 39(4): 416-424.
    [78] Zhong H. Q., Vivien M., Luis D., Molecular recognition:α-cyclodextrin and penicillin V inclusion complexation, J. Org. Chem., 1991, 56(4): 1537-1542.
    [79]陈亮,王宝俊,黄淑萍,氟哌酸环糊精包结配合物的研究,波谱学杂志, 1998, 15(3): 243-248.
    [80] Kauffman J. M., Review of progress on scintillation fluors for the detectors of the SSC, Radiat. Phys. Chem., 1993, 41(1-2): 365-371.
    [81] Chou P. T., Martinez M. L., Photooxygenation of 3-hydroxyflavone and molecular desing of the radiation hard scintillator based on excited-state proton transfer, Radiat. Phys. Chem., 1993, 41(1-2): 373-378.
    [82] Hamai S., Association of inclusion compounds ofβ-cyclodextrin in aqueous solution, Bull. Chem. Soc. Jpn., 1982, 55: 2721-2729.
    [83]尚小明,汤国庆,张桂兰,激发态分子内质子转移分子2-(2′-羟基苯基)间氮杂氧茚(HBO)放大的自发辐射效应的实验和理论研究,光学学报, 1996 , 16 (6): 738-745
    [84]彭湘红,张俐娜,黄进,β-环糊精包合维生素D2的稳定性及结构研究,武汉大学学报(自然科学版), 1999, 45(4): 423-426.
    [85]王烈群,景舒,萘普生-β-环糊精包合物的研制及溶出速率测定,中国医药工业杂志, 1994, 25(12) :540-543.
    [86]李伟,丁宵森,番茄红素β-环糊精包合物的制备,食品科技, 2002, 43 (10): 39-40.
    [87]张胜强,张琦,柠檬醛β-环糊精包合物的研究,中国药科大学学报, 1999, 30(6): 435-437.
    [88] Agbaria R. Gill A. D., Extended 2,5-diphenyloxazole-gamma-cyclodextrin aggregates emitting 2,5-diphenyloxazole excimer fluorescence,J. Phys. Chem., 1988, 92(5): 1052-1055.
    [99] Murai H., Nizunuma Y., Ashikawa K., Yamamoto Y., Intermolecular energy transfer of the spin-polarized triplet state in aγ-cyclodextrin cavity, Chem. Phys. Lett., 1988, 144(4):417-420.
    [90] Lyapustina S. A., Metelitsa A. V., Bulgarevich D. S., Alexeev Y. E., Knyazhansky M. I., The twisted-intramolecular-charge-transfer-state-forming compound as a guest for cyclodextrins, J. Photochem. Photobiol. A,: Chem., 1993, 75(2): 119-123.
    [91] Cox G. S., Turro N. J., Methyl salicylate fluorescence as a probe of the geometry of complexation to cyclodextrins, J. Photochem. Photobiol., A: Chem., 1984, 40: 185-188.
    [1]游效曾,巢启荣,朱龙根,分子电子器件的化学研究,化学通报, 1989, 7(11): 7-13.
    [2] Chou P. T., Martinez M. L., Clements J. H., The observation of solvent-dependent proton–transfer /charge-transfer lasers from 4'-diethylamino-3-hydroxyflavone, Chem. Phys. Lett., 1993, 204(5-6): 395-399.
    [3]尚小明,汤国庆,张桂兰,陈文驹, 2-(2'-羟基苯基)间氮杂氧茚放大的自发辐射效应的实验和理论研究,光学学报, 1996, 16(5): 738-745.
    [4] Kauffman J. M., Review of progress on scintillation fluors for the detectors of the SSC, Radiat. Phys. Chem., 1993, 41(1-2): 365-371.
    [5] Donald B. O., Gary W. S., R. C. Daniel, Y. Andre, Temperature dependence of electronic energy transfer and quenching in copolymer films of styrene and 2-(2'-hydroxy-5'- vinylphenyl)-2H-benzotriazole, J. Phys. Chem., 1991, 95(25): 10252-10261 .
    [6] Das R., Mitra S., Nath D., Mukherjee S., Excited state proton transfer reaction as a probe for the microenvironment of a binding site of bovine serum albumin: effect of urea, J. Phys. Chem., 1996, 100(39): 14514-14519.
    [7] Sytnik A., Del Valle J. C., Steady-state and time-resolved study of the proton-transfer fluorescence of 4-Hydroxy-5-azaphenanthrene in model solvents and in complexes with human serum albumin, J. Phys. Chem., 1995, 99(34): 13028-13032.
    [8] Sytnik A., Gormin D., Kasha M., Interplay between excited-state intramolecular proton transfer and charge transfer in flavonols and their use as protein-binding-site fluorescence Probes, Proc. Natl. Acad. Sci. USA, 1994, 91(25): 11968 -11972.
    [9] Sytnik A., Litvinyuk I., Energy transfer to a proton transfer fluorescence probe: tryptophan to a flavonol in human serum albumin, Proc. Natl. Acad. Sci. USA, 1996, 93(23): 12959-12963.
    [10] Das R., Mitra S., Mukerjee S., Intramolecular proton transfer in the first excited singlet state of 4-methyl-2,6-diformylphenol: effect of non-polar and weakly polar aprotic solvents, Spectrochim. Acta, 1995, 51(3): 363-369.
    [11] Marks D., Zhang H., Glasbeek M., Solvent dependence of (sub)picosecond proton transfer in photo-excited[2,2′-bipyridyl]-3,3′-diol, Chem. Phys. Lett., 1997, 275(4): 370-376.
    [12]汤国庆,尚小明,张桂兰,陈文驹,介质环境对2-(2′-羟基苯基)间氮杂氧茚质子转移光谱的微扰,化学物理学报, 1996, 9(3): 251-257.
    [13] Douhal A., Dabrio J., Sastre R., Room temperature proton switching hydroxylquinoline dissolved in rigid hydroxylic and carboxylic polymeri matrices, J. Phys. Chem., 1996, 100(1): 149-154.
    [14] Arnaut L. G., Formosinho S J., Excited-state proton transfer reactions I. Fundamentals and inter-molecular reactions, J. Photochem. Photobiol., A: Chem., 1993, 75(1): 1-21.
    [15] Formosinho S. J., Arnaut L. G., Excited-state proton transfer reactions II. Intramolecular reactions, J. Photochem. Photobiol., A: Chem., 1993, 75(1): 21-48.
    [16] GB 7916-87,中华人民共和国化妆品卫生标准
    [17] Ford D., Thistlethwaite P. J., Woolfe G. J., The fluorescence behaviour of methyl and phenyl salicylate, Chem. Phys. Lett., 1980, 69(2): 246-250.
    [18] Law K. Y., Shoham J., Photoinduced proton transfers in methyl salicylate and methy 2-hydroxy -3-naphthoate, J. Phys. Chem., 1994, 98(12): 3114-3120.
    [19] Kohler G. J., Sovlent effects on the fluorescence properties of anilines, J. Photochem., 1987, 38: 217-238.
    [20] Birk J. B., Photophysics of aromatic molecules, New York: Wiley Interscience Press, 1970.
    [21] Weller A., Progress of reaction Kinetics, Porter G Ed London: Pergamon Press, 1961: 187-188.
    [22] Cundall R. B., Jones M. W., Photochemistry, London: the Royal Society of Chemistry Press, 1981: 124-129.
    [23]欧阳心心,佟振合,疏水作用对光化学和光物理过程的影响,化学学报,1988, 46: 191-194.
    [24]陈国珍,黄贤智,郑株梓,许金钩,王尊本,荧光分析法,北京:科学出版社, 1990, 77: 115–116.
    [25]王春,杜新贞,丁宁,杨燕,卢小泉,陈慧,水杨酸-2′-乙基己基酯在胶束中的增溶位点,物理化学学报,2007, 23(9): 1337-1341.
    [1] Matsushita Y., Hikida T., The effect of cyclodextrin complexation on the fluorescence properties of ethyl-4′-dimethylaminobenzoate, Chem. Phys. Lett., 1999, 313(1-2): 85-90.
    [2] Jiang Z. T., Li R., Xi J. B., Yi B. Q., Determination of trace amounts of manganese byβ-cyclodextrin polymer solid phase spectrophotometry using 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol, Anal. Chim. Acta, 1999, 392(2-3): 247-253.
    [3] Emara S., Morita I., Tamura K., Razee S., Masujima T., Effect of cyclodextrins on the stability of adriamycin, adriamycinol, adriamycinone and daunomycin, Talanta, 2000, 51(2): 359-364.
    [4] D’Souza V. T., Lipkowitz K. B., Cyclodextrins: introduction, Chem. Rev., 1998, 98(5): 1741-1742.
    [5] Turro N. J., Okubo T., Chung C. J., Analysis of static and dynamic host-guest associations of detergents with cyclodextrins via photoluminescence methods, J. Am. Chem. Soc., 1982, 104(7): 1789-1794
    [6] Nakamura A., Sato S., Hamasaki K., Ueno A., Toda F., Association of 1:1 inclusion complexes of cyclodextrins into homo-and heterodimers: A spectroscopic study using a TICT-forming fluorescent probe as a guest compound, J. Phys. Chem., 1995, 99(27): 10952-10959.
    [7] Hamai S., Inclusion of 2-chloronaphthalene byα-cyclodextrin and room-temperature phosphorescence of 2-chloronaphthalene in aqueous D-glucose solutions containingα-cyclodextrin, J. Phys. Chem. B., 1997, 101(9): 1707-1712.
    [8] Du X. Z., Jing Y. B., Lin L. R., Huang X. Z., Chen G. Z., Phosphorescence-probed study on the association of surfactants withβ-cyclodextrin, Chem. Phys. Lett., 1997, 268(1-2): 31-35.
    [9] Hamai S., Pyrene excimer formation in gamma-cyclodextrin solutions: association of 1:1 pyrene-gamma-cyclodextrin inclusion compounds, J. Phys. Chem., 1989, 93(17): 6527-6529.
    [10] Panja S., Chakravorti S., 4-(N,N-dimethylamino)cinnamaldehyde/α-cyclodextrin inclusion complex, Spectrochim. Acta A, 2002, 58(1): 113-122.
    [11] Panja S., Bangl P. R., Chakravorti S., Modulation of photophysics due to orientational selectivity of 4-N,N-dimethylamino cinnamaldehydeβ-cyclodextrin inclusion complex indifferent solvents, Chem. Phys. Lett., 2000, 329(5-6): 377-385.
    [12] Shi X. Y., Fan R. F., Zhang Y. Q., Gu, J. I., Fu R. N., Synthesis and characterisation of water-soluble carboxymethyl-cyclodextrin polymer as capillary electrophoresis chiral selector, Chin. Chem. Lett., 2000, 11(1): 69-70.
    [13] Shuang S. M., Yang Y., Pan J. H., Study on molecular recognition of para-aminobenzoic acid species byα-,β- and hydroxypropyl-β-cyclodextrin, Anal. Chim. Acta, 2002, 458(2): 305-310.
    [14] Park H. R., Mayer B., Wolschann P., Kohler G., Excited-state proton transfer of 2-naphthol inclusion complexes with cyclodextrins, J. Phys. Chem., 1994, 98(24): 6158-6166.
    [15] Roberts E. L., Chou P. T., Alexander T. A., Agbaria R. A., Warner I. M., Effects of organized media on the excited-state intramolecular proton transfer of 10-Hydroxybenzo[h]quinoline, J. Phys. Chem., 1995, 99(15): 5431-5347.
    [16]潘祖亭,王润涛,徐勉懿,苯对β-环糊精-水杨酸包络反应影响的荧光光谱法研究,武汉大学学报(自然科学版), 1997, 43(2): 153-158.
    [17] Escandar G. M., Spectroscopic study of salicylate–cyclodextrin systems in the presence and absence of alcohols, Spectrochim. Acta A, 1999, 55(9): 1743-1752.
    [18] GB 7916-87,中华人民共和国化妆品卫生标准
    [19] Junquera E., Ruiz D., Aicart E., Role of hydrophobic effect on the noncovalent interactions between salicylic acid and a series ofβ-cyclodextrins, J. Colloid Interface. Sci., 1999, 216(1): 54-160.
    [20] Rekharsky M. V., Inoue Y., Complexation thermodynamics of cyclodextrins, Chem. Rev., 1998, 98(5): 1875-1917.
    [21]王春,杜新贞,丁宁,杨燕,卢小泉,陈慧,水杨酸-2′-乙基己基酯在胶束中的增溶位点,物理化学学报, 2007, 23(9): 1337-1341
    [22] Szejtli J., Introduction and general overview of cyclodextrin chemistry, Chem. Rev., 1998, 98(5): 1743-1753.
    [23] Mentzafos D., Mavridis I. M., Schenk H., Crystal structure of the 1:1 complex of heptakis(2,3,6-tri-O-methyl)cyclomaltoheptaose (permethylatedβ-cyclodextrin) with ethyl laurate, Carbohydr. Res., 1994, 253(3): 39-50.
    [24] Du X. Z., Lu W. H., Ding N., Dai H. X., Teng X. L., Deng H. L., Spectral properties andsupramolecular inclusion complexes ofβ-cyclodextrin with flexible amphiphilic and rigid compounds, J. Photochem. Photobiol. A: Chem., 2006, 177(1): 76-82.
    [1] Inoue Y., Hakushi T., Liu Y., Tong L. H., Shen B. J., Jin D. S., Thermodynamics of molecular recognition by cyclodextrins. 1. Calorimetric titration of inclusion complexation of naphthalenesulfonates with alpha-, beta-, and gamma-cyclodextrins: enthalpy-entropy compensation, J. Am. Chem. Soc., 1993, 115(2): 475-481.
    [2] Breslow R., Dong S. D., Biomimetic reactions catalyzed by cyclodextrins and their derivatives, Chem. Rev., 1998, 98(5): 1997-2012.
    [3]林丽榕,江云宝,黄贤智,陈国珍,甲基化的β-环糊精与十六烷基三甲基溴化胺的相互作用,物理化学学报, 1997, 13(8): 747-751.
    [4]张强,刘育,β-环糊精及其衍生物对脂肪族手性对映体及有机染料的分子识别研究,高等学校化学学报, 2004, 25(3): 458-461.
    [5] Kasha M., Proton-transfer spectroscopy, J. Chem. Soc. Faraday Trans., 1986, 82(2): 2379-2392.
    [6] Chou P. T., Chao M., John H., Excited state intramolecular proton transfer for N-substituted-3-hydroxypyridinones, Chem. Phys. Lett., 1994, 220(3/5): 229-234.
    [7] Nickel B., Albert A. R., Dual phosphorescene from 2-(2’-hydroxyphenyl) benzoxazole in amorphous solid solution. Temperature dependence of dispersive kinetics of nonexponential triplet decay, Chem. Phys., 1994, 184(1/3): 261-271.
    [8] Lavtchieva L., Enchev V., Smedarchina Z., Golden rule study of excited state proton-transfer in 2-(2’-hydroxyphenyl) benzoxazole and 2-(2’-hydroxy-4-methyphenyl) benzoxazole. J. Phys. Chem., 1993, 97(2): 306-310.
    [9]万新,分子内氢键对化合物性质的影响,大学化学, 1994, 9(5): 58-62.
    [10] Kl?pffer W., Naundorf G., On the fluorescence of methyl salicylate in hydrogen bonding solvents,J. Lumin., 1974, 8(6): 457-461.
    [11] Smith K. K., Kaufmann K. J., Picosecond studies of intramolecular proton transfer, J. Phys. Chem., 1978, 82(21): 2286-2291.
    [12] Acuna A. U., Amat-Guerri F., Catalán J., Dual fluorescence and ground state equilibria in methyl salicylate, methyl 3-chlorosallcylate, and methyl 3-fed-butylsalicylate, J. Phys. Chem.,1980, 84(6): 629-631.
    [13] Ford D., Thistlethwaite P. J., Woolfe G. J., The fluorescence behaviour of methyl and phenyl salicylate, Chem. Phys. Lett., 1980, 69(2): 246-250.
    [14] Law K. Y., Shoham J., Photoinduced proton transfers in methyl salicylate and methy 2-hydroxy-3-naphthoate, J. Phys. Chem., 1994, 98(12): 3114-3120.
    [15] GB 7916-87,中华人民共和国化妆品卫生标准
    [16] EEC Directive 83/574, 1983, No. L332, 38-42
    [17] Japanese Standard of Cosmetic Ingredients, Tokyo: Yakuji Nippo Ltd., 1985
    [18] Mentzafos D., Mavridis I. M., Schenk H., Crystal structure of the 1:1 complex of heptakis(2,3,6-tri-O-methyl)cyclomaltoheptaose (permethylatedβ-cyclodextrin) with ethyl laurate, Carbohydr. Res., 1994, 253(3): 39-50.
    [19] Du X. Z., Lu W. H., Ding N., Dai H. X., Teng X. L., Deng H. L., Spectral properties and supramolecular inclusion complexes ofβ-cyclodextrin with flexible amphiphilic and rigid compounds, J. Photochem. Photobiol. A: Chem., 2006, 177(1): 76-82.
    [20] Brown G. R., Caira M. R., Griffith V. J., Nassimbeni L.R., van Oudtshoorn B. J., Inclusion of ibuprofen by heptakis(2,3,6-tri-O-methyl)-β-cyclodextrin: An X-ray diffraction and thermal analysis study, J. Incl. Phenom., 1996, 26(3): 281-294.
    [21] Tanford C., The Hydrophobic Effect: Formation of Micelles and Biological Membranes, Wiley, New York, 1980, 51.
    [22]商志才,俞庆森,林瑞森,分子体积及表面积的Monte Carlo模拟计算,物理化学学报, 1997, 13(12): 1097-1100.
    [23] Szejtli J., Introduction and general overview of cyclodextrin chemistry, Chem. Rev., 1998, 98(5): 1743-1754.
    [24] Rekharsky M. V., Inoue Y., Complexation thermodynamics of cyclodextrins, Chem. Rev., 1998, 98(5): 1875-1917.
    [25] Junquera E., Ruiz D., Aicart E., Role of hydrophobic effect on the noncovalent interactions between salicylic acid and a series ofβ-cyclodextrins, J. Colloid Inter. Sci., 1999, 216(1): 54-160.
    [26] Escandar G. M., Spectroscopic study of salicylate–cyclodextrin systems in the presence and absence of alcohols, Spectrochim. Acta A, 1999, 55(9): 1743-1752.
    [27] Harata K., Structural aspects of stereo differentiation in the solid state, Chem. Rev., 1998, 98(5): 1803-1828.
    [28] Steiner T., Saenger W., Crystal structure of anhydrous heptakis-(2,6-di-O-methyl) cyclomaltoheptaose (dimethyl-β-cyclodextrin), Carbohydr. Res., 1995, 275(1): 73-82.
    [1]何坚,孙宝国.香料化学与工艺学.北京:化学工业出版社, 1995: p401.
    [2]安甲驹,王伯英.实用精细化工词典.北京:轻工业出版社, 1988.
    [3] A. Weller, Innermolecularer protonübergang in angeregten Zustand, Z. Elektrochem., 1956, 60: 1144.
    [4] Kl?pffer W., Naundorf G., On the fluorescence of methyl salicylate in hydrogen bonding solvents,J. Lumin., 1974, 8(6): 457-461.
    [5] Smith K. K., Kaufmann K. J., Picosecond studies of intramolecular proton transfer, J. Phys. Chem., 1978, 82(21): 2286-2291.
    [6] Acuna A. U, Amat-Guerri F., Catalán J., Dual fluorescence and ground state equilibria in methyl salicylate, methyl 3-chlorosallcylate, and methyl 3-fed-butylsalicylate, J. Phys. Chem., 1980, 84(6): 629-631.
    [7] Ford D., Thistlethwaite P. J., Woolfe G. J., The fluorescence behaviour of methyl and phenyl salicylate, Chem. Phys. Lett., 1980, 69(2): 246-250.
    [8] Acuna A. U., Catalán J., Toribio F., Photo energy relaxation and thermal effects on gas-phase electronically excited methyl salicylate, J. Phys. Chem., 1981, 85(3): 241-245.
    [9] Law K. Y., Shoham J., Photoinduced proton transfers in methyl salicylate and methy 2-hydroxy-3-naphthoate, J. Phys. Chem., 1994, 98(12): 3114-3120.
    [10]童林荟,环糊精化学,北京:科学出版社, 2001.
    [11] Escandar G. M., Munoz de la pena A., Room-temperature phosphorescence of acenaphthene in aerated solutions in the presence of bromoalcohols andγ-cyclodextrin, Anal. Chim. Acta, 1998, 370(2): 199-205.
    [12] Martin Del Valle E. M., Cyclodextrins and their uses, Process. Biochem., 2004, 39(9): 1033-1046.
    [13]苏小笛,刘六战,沈含熙,水溶性β-环糊精交联聚合物对双客体芳香席夫碱的荧光识别作用研究,高等学校化学学报, 1997, 18(8): 1275-1280.
    [14] Wagner B. D., MacDonald P. J., The fluorescence enhancement of 1-anilinoaphthalene-8-sulfonate (ANS) by modifiedβ-cyclodextrins, J. Photochem.Photobiol., A: Chem., 1998, 114(2): 151-157.
    [15]易健民,唐阔文,β-环糊精/环氧氯丙烷交联聚合物毛细管气相色谱固定相的制备及用于某些位置异构体和对映体的分离,分析化学, 2000, 28(10): 1291-1294.
    [16] Liao Y., Bohnc C., Alcohol effect on equilibrium constants and dissociation dynamics of xanthone-cyclodextrin complexes, J. Phys. Chem., 1996, 100(2): 734-743.
    [17] Cox G S, Turro N J. Methyl Salicylate Fluorescence as A Probe of the Geometry of Complexation to Cyclodextrins . Photochem. Photobiol., 1984, 40: 185-188.
    [18] Du X. Z., Lu W. H., Sun Y. C., Deng H. L., Hou, J. G., Steric Considerations in Supramolecular Inclusion of Modifiedβ-cyclodextrins with Triton X-100 and a-bromon aphthalene,Supramol. Chem., 2005, 17(3): 209-216.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700