4-(N,N-二甲氨基)苯甲酸酯与环糊精超分子体系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一章:本章介绍了环糊精超分子化学领域的基本概况及其研究进展。同时介绍了TICT化合物对二甲氨基苯甲酸酯类化合物在光物理和光化学领域的研究发展历程,及其荧光传感和分子识别方面的应用。对4-(N,N-二甲氨基)苯甲酸-3甲基丁酯(IADMAB)的结构性质和其在防晒剂方面的应用情况做了简要介绍。
     第二章:本章通过紫外吸收光谱和荧光光谱对IADMAB在不同极性介质中的光谱、光物理行为进行了具体的研究。结果表明,随溶剂极性的增大,IADMAB的最大吸收波长红移,精细结构消失,吸收带逐渐变的平滑,在醇水混合溶剂中也出现了类似的变化趋势。在荧光光谱中,荧光峰向长波方向移动,激发态分子发生电荷转移,与基态相比偶极矩变大,出现双重荧光,同时相对荧光强度也随之减小。这一实验结果将为设计新的以光诱导电荷转移为基础的荧光传感提供理论依据,IADMAB可以用作荧光探针。
     第三章:本章以IADMAB为荧光体,运用荧光光谱、紫外吸收光谱、核磁共振光谱和正己醇竞争包合实验研究了IADMAB与α-CD、β-CD、γ-CD的包合作用。结果表明:IADMAB都可以和α-CD、β-CD、γ-CD三种环糊精发生包合作用。IADMAB与α-CD、β-CD在水溶液里可行成2:1的主-客体包合物,与γ-CD在所研究的浓度范围内可能生成了2:2型主-客体的包合物,随γ-CD浓度的增大,没有观察到IADMAB的TICT荧光。这说明了环糊精空腔尺寸的大小是影响IADMAB与α-CD、β-CD、γ-CD包合作用的主要因素。
     第四章:本章用分子光谱法研究了α-CD与4-(N,N-二甲氨基)苯甲酸(DMABA)、4-(N,N-二甲氨基)苯甲酸乙酯(EDMAB)、4-(N,N-二甲氨基)苯甲酸-3甲基丁酯(IADMAB)和4-(N,N-二甲氨基)苯甲酸-2’-乙基己酯(EHDMAB)分子间的包合作用,比较了α-CD与DMABA、EDMAB、IADMAB和EHDMAB所形成包合物的组成和结合位点,根据主-客体分子的大小和结构探讨了相应的包合机理,具有较短碳链的EDMAB和IADMAB分子是4-(N,N-二甲氨基)端优先进入α-CD空腔,而对带有疏水性长碳链的EHDMAB分子是柔性的异辛基端优先进入α-CD空腔。因此,α-CD与EDMAB、IADMAB和EHDMAB形成了不同类型的1:1型主-客体包合物,随着溶液中α-CD浓度的增大,4-(N,N-二甲氨基)苯甲酸酯分子未被包合部分可再结合一个α-CD形成2:1型的主-客体包合物。
Chapter 1: The recent advances in supramolecular inclusion complexes of cyclodextrins have been reviewed. The structure, property and the appliction of Isoamyl-4-(N, N-dimethylamino)-benzoate (IADMAB) in sun-screening products and its molecular recongnition and fluorescent sensing based on the TICT mechanism were briefly described.
     Chapter 2: Ultraviolet-visible absorption spectral properties and fluorescence spectral properties of IADMAB in different solvents were studied at room temperature. The results indicate that the main absorption peaks are located in 290-320nm and the absorption maximum shifts to the red with increasing solvent polarity,This kind of change is the same as the IADMAB in alcohol/water mixed solvents. Dipole moment in excited state was larger than that in ground state, which is due to twisted intramolecular charge transfer. It was found that with increasing solvent polarity the dual fluorescence occurred and the TICT emssion shifted to long wavelength at the same time. And the flourescence intendity decreased. This found would provide a theroretic gist based on intramolecular charge transfer for flourescent sensing.
     Chapter 3: Fluorescence of isoamyl 4-dimethylaminobenzoate (IADMAB) has been examined to characterize complexation geometry of rod-shaped isoamyl 4-dimethylaminobenzoate with inα-cyclodextrin (α-CD),β-cyclodextrin (β-CD) andγ-cyclodextrin (γ-CD). NMR measurements reveal that IADMAB forms 1:2 complexes withα-CD andβ-CD and 2:2 complexes withγ-CD in an aqueous solution, respectively. Both the amyl chain and the aromatic moiety were included inside the cavity of cyclodextrins. A comparison of molecular structures and sizes was made to elucidate the complexation geometry of rod-shaped IADMAB with different cyclodextrins. The 4-dimethylaminobenzoate moiety of IADMAB in inclusion complexes probably projects out of the cavity to a greater extent because of the small cavity ofα-CD and exhibits distinct dual fluorescence. As compared with that ofα-CD, the cavity ofβ-CD is large enough to completely accommodate the dimethylaminobenzoate moiety. The dimethylamino group in the complex would experience non-polar environment and exclusively show very strong LE emission. In the presence ofγ-CD, it was assumed that two dimethylamino groups of IADMAB molecules are included in the same cavity ofγ-CD with their amyl chains penetrating into anotherγ-CD at the primary hydroxyl end and secondary hydroxyl end, respectively. The cavity size effect on the TICT emission of IADMAB is very important.
     Chapter 4: The inclusion of DMABA, EDMAB, IADMAB and EHDMAB in the cavity ofα-CD was examined by means of molecular spectra. The stoichiometry and binding sites ofα-CD to DMABA, EDMAB, IADMAB and EHDMAB were compared. The mechanism of inclusion was discussed on the basis of molecular structures and sizes. The 4-(N, N-dimethylamino) group is preferentially included inside the cavity ofα-CD in the case of EDMAB and IADMAB with a shorter hydrocarbon chain. On the contrary, the flexible hydrophobic isooctyl chain of EHDMAB preferentially penetrates into the cavity ofα-CD and the 4-(N,N-dimethylamino) group protrudes outside the cavity. Thusα-CD forms different types of 1:1 host-guest inclusion complexes with EDMAB, IADMAB and EHDMAB. With increasing concentration ofα-CD, anotherα-CD is capable of incorporating the other part of EDMAB, IADMAB and EHDMAB whose opposite end is already located inside the cavity ofα-CD. The 2:1 host-guest inclusion complexes are formed in aqueous solution.
引文
[1] Szejtli J., Comprehensive Supramolecular Chemistry, J. L. Atwood, J. -M. Lehn. Eds., Cyclodextrins,Chapter 1,Pergamon: Oxford,U. K. 1996,3: l-15.
    [2] Villers A.. Compt. Rend. Acad. Sci., Paris, 1891, 112, 534- 536.
    [3] Szejtli J., J. L. Atwood, J. -M. Lehn. Eds.. Comprehensive Supramolecular Chemistry. Vol. 3, Cyclodextrins, Chapter 2, Pergamon: Oxford, U. K., 1996, 6-36.
    [4] Szejtli J.. The cyclodextrins and their applications in biotechnology, Carbohydrate Polymers, 1990, 12(4): 375-392.
    [5] Szejtli J.. Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 1998, 98: 1743-1754.
    [6] Manor P. C., Saenger W.. Topography of cyclodextrin inclusion complexes. III. Crystal and molecular structure of cyclohexaamylose hexahydrate, the water dimer inclusion complex, J. Am. Chem. Soc., 1974, 96: 3630-3639.
    [7] Betzel C., Saenger W., Hingerty B. E., Brown G. M.. Topography of cyclodextrin inclusion complexes, part20. Circular and flip-flop hydrogen bonding in .beta.cyclodextrin undecahydrate: a neutron diffraction study, J. Am. Chem. Soc., 1984, 106: 7545-7557.
    [8] Rees D. A.. Correlation of optical activity with polysaccharide conformation, J. Chem. Soc. (B)., 1970, 877-884.
    [9] Casu B., Gallo G. G.., Reggiani M. and Vigevani A.. Conformation of O-methylated amylose and cyclodextrins, J. Chem. Soc., Spec. Publ., 1968, 23: 217.
    [10] Kobayashi S.. Fundamental Study and Application of Cyclodextrins, Depun Kagaku, 1993, 40(2): 103-108.
    [11] Boger R. J., Corcoran R. J., Lehn. Helv J-M.. Cyclodextrin chemistry, Selective modification of all primary hydroxyl groups ofα- andβ-cyclodextrins Helvetica, Chim. Acta., 1978, 61: 2190-2218.
    [12] Saenager W.. Cyclodextrin Inclusion Compounds in Research and Industry,Angew, Chem. Int. Ed. Engl., 1980, 19: 344-362.
    [13] Szejti J.. Cyclodextrin and their Inclusion Complexes, Akademiai Kiado, Budapest., 1982, 74-78.
    [14] Croft A. P., Bartsch R. A.. Synthesis of chemically modified cyclodextrins, Tetrahedron., 1983, 39(9): 1417-1422.
    [15] Szejtli J.. Cyclodextrin Technology. Kluwer, Douirecht. 1988, 48-65.
    [16]郝爱友、童林荟、金道森.环糊精的第二面选择性修饰方法新进展,合成化学, 1995, 3(3): 205-209.
    [17] Wenz G.. Cyclodetrins as building for supermolecular strutures and functional units, Angew. Chem. Int. Ed. Engl., 1994, 33: 803-822.
    [18] Breslow R., Halfon S., Zhang B.. Molecular recognition by cyclodextrin dimers, Tetrahedron,1995, 31(2): 377-431.
    [19] Ashton P. R., Boyd S. E., Gattuso G.., Hartwell E. Y., Koeniger Y., l Spencer N., and Stoddart J. F.. A Novel Approach to the Synthesis of Some Chemically-Modified Cyclodextrins, J. Org. Chem., 1995, 60(12): 3889-3898.
    [20]孟郊金,戴安邦.配位化学的创始于现代化.北京:高等教育出版社. 1998, 135-136.
    [21] Lehn J. M.. Supramolecular chemistry-scope and perspectives molecules, supermolecules and molecular devices. Angew, Chem., Int. Ed. Engl., 1988, (27): 89-112.
    [22] Lehn J. M.. Perspectives in supramolecular chemistry-from molecular recognition towards molecular information processing and self-organization, Angew. Chem., Int .Ed. Engl., 1990, (29): 1304-1319.
    [23] Lehn J. M., Atwood J. L., Davies L. E. D., MacNicol D. D., Vogtle F. Comprehensive supramolecular chemistry. Ed Vol. 1-11. Pergamon, 1996.
    [24] Saenager W.. Cyclodextrin Inclusion Compounds in Research and Industry, Angew. Chem. Int. Ed. Engl., 1980, 19: 344-362.
    [25] Uekama K., Hirayama F., Irie T.. Cyclodextrin drug carrier systems, Chem. Rev., 1998, 98: 2045-2076.
    [26] Li S., Purdy W. C.. Cyclodextrins and their applications in analytical chemistry, Chem. Rev., 1992, 92: 1457-1470.
    [27] Breslow R., Dong A. D.. Biomimetic reactions catalyzed by cyclodextrins and their derivatives, Chem. Rev., 1998, 98: 1997-2012.
    [28] Ye H., Tong W., D’Souza V. T.. Efficient catalysis of a redox reaction by an artificial enzyme, J. Am. Chem. Soc., 1992, 114: 5470-5472.
    [29] Mcalpine S. R., Garcia-Garibay M. A.. Studies of naphthyl-substitutedβ-cyclodextrins, Self-aggregation and inclusion of external guests, J. Am. Chem. Soc., 1998, 120: 4269.
    [30] Lahav M., Ranjit K. T., Katz E., Willner I.. Aβ-amino-cyclodextrin monolayer-modified Au electrode: a command surface for the amperometric and microgra-vimetric transduction of optical signals recorded by a photoisomerizable bipyridinium-azobenzene diad, Chem. Commun., 1997, 259-260.
    [31]董川,李俊芬,双少敏,杨频.环糊精包结物的形成及光谱表征,光谱实验室, 2000, 17(3) : 247-256.
    [32]戚文彬.环糊精衍生物在荧光分析中的应用进展(上),分析科学学报, 1997, 13 (3): 334-340.
    [33]戚文彬,环糊精衍生物在荧光分析中的应用进展(下),分析科学学报, 1997, 13 (3): 247-252.
    [34]宋乐新,孟庆金,游效曾.环糊精和环糊精包合物,无机化学学报, 1997,13 (4): 368-374.
    [35] Rekharsky M. V., Inoue Y.. Complexation Thermodynamics of Cyclodextrins, Chem. Rev., 1998, 98(5): 1875-1917.
    [36] Kobayashi N., Osa T. Complexation of aromatic carboxylic acids with heptakis (2,6-di-O-methyl) cyclomaltoheptaose in chloroform and water, Carbohydr. Res., 1989, 192: 147-157.
    [37] Van Etten R. L., Clowes G. A., Sebastian J. F., Bender M. L.. The mechanism of the cycloamylose-accelerated cleavage of phenyl esters, J. Am. Chem. Soc., 1967, 89: 3253-3262.
    [38] Okubo T., Kitano H., Ise N.. Conductometric studies on association of cyclodextrin with colloidal electrolytes, J. Phys. Chem., 1976, 80: 2661-2664.
    [39] Schuette, J. M., Ndou, T. T., Munoz de la Pena, A., Mukundan,S., Warner, I. M.Influence of alcohols on the beta-cyclodextrin/acridine complex, J. Am. Chem. Soc., 1993, (115): 292.
    [40] Liao, Y., Bohne, C. Alcohol effect on equilibrium constants and dissociation dynamics of Xanthone-cyclodextrin complexes, J. Phys. Chem., 1996, (100): 734-743.
    [41]张煊,马丽花,孙向英,王朝杰,黎朝,吴芳英,江云宝.环己烷中苯甲酰苯胺的双重荧光,高等学校化学学报, 2002, 23(9): 1701-1703.
    [42] Yannis L. Loukas,Vassiliki Vraka and Gregory Gregoriadis. Flouorimetic studies of the formation of Ribofiavin-β-cyclodextrin incondition complex: Determination of the stability constant by use of a non-linear least-squares model,J. Pharm . Pharmarcel, 1997, (19): 127-130.
    [43] Yannis L. Loukas, Pramukh Jayasekera, and Gregory Gregoriadis. Characterization and photoprotection studies of a modelγ-cyclodextrin–included photolabile drug entrapped in liposomes incorporating light absorbers, J. Phys. Chem., 1995, (99): 11035-11040.
    [44]双少敏,郭祀远,潘景浩,李琳,蔡妙颜.相溶解度法测定β-环糊精-芦丁包合物的形成常数,分析化学研究简报, 1998, 26(5): 564-567.
    [45]刘雪,曹克玺,路定法,孙得志.环糊精作为超分子结构的构筑单元,化学世界, 2001, (6): 321.
    [46] Cramer F. D., Saenger W., Spatz, H. C. Inclusion compounds. XIX. The formation of inclusion compounds ofα-cyclodextrin in aqueous solutions. Thermodynamics and kinetics, J. Am. Chem. Soc., 1967, (89): 14-20.
    [47] Okubo T., Maeda Y., Kitano H.. Inclusion process of ionic detergents with cyclodextrins as studied by the conductance stopped-flow method, J. Phys. Chem., 1989, (93): 3721-3723.
    [48] Yoshida N. Dynamic aspects in host-guest interactions Part 4. Kinetic and 1H NMR evidence for multi-step directional binding in the molecular recognition of some 2-naphylazophenol guests witα-cyclodextrin, J. Chem. Soc., Perkin Trans,1995, (2): 2249.
    [49] Taguchi K. Transient binding of phenolphthalein-beta-cyclodextrin complex: an example of induced geometrical distortion, J. Am. Chem. Soc., 1986,(108):2705-2709.
    [50] Kobayashi N., Saito R., Hino H., Hino Y., Ueno A., Os T. Fluorescence and induced circular dichroism studies on host-guest complexation betweenγ-cyclodextrin and pyrene, J. Chem. Soc., Perkin Trans., 1983, (2): 1031-1037.
    [51]阮文娟,张玉玲,赵小菁,江冬青,朱志昂. Salen Zn对氨基酸甲酪体系的手性分子识别研究,高等化学学报, 24(9): 1657-1661.
    [52] Liu Y., Qi A. D., Han B. H.,etal. Molecular recognition study in supramolecular system PartⅦchiral recognition of amion acids byβ-cyclodextrin using competitive inclusion method, Chem. Sci. Bull.,1997, 42(14):1189.
    [53] Liu Y., Han B. H., Li B.. Molecular recognition study in supramolecular system 14 sysnthesis of modified cyclodextrins and their inclusion complexation thermodynamics with L-tryptophan and naphthalene derivatives, J. Org. Chem., 1998, 64(5): 1444-1448.
    [54] (a) Busch K. W., Swamidoss I. M., Fakayode S. O., Busch M. A.. Determination of the Enantiomeric Composition of Guest Molecules by Chemometric Analysis of the UV-Visible Spectra of Cyclodextrin Guest-Host Complexes, J. Am. Chem. Soc., 2003, 125(7): 1690-1702. (b) Krois D., Brinker U. H.. Induced Circular Dichroism and UV-Vis Absorption Spectroscopy of Cyclodextrin Inclusion Complexes: Structural Elucidation of Supramolecular Azi-adamantane, (Spiro[adamantane-2,3'-diaz -irine]), J. Am. Chem. Soc., 1998, 120(45): 11627-11631.
    [55] Benesi H. A., Hildebrand J. H.. A Spectrophotometric Investigation of the Interaction of Iodine with Aromatic Hydrocarbons, J. Am. Chem. Soc., 1949, 71(8): 2703-2708.
    [56] Mwalupindi A. G., Rideau A., Agbaria R. A. Influence of organized media on the absorption and fluorescence spectra of Auramine-O dye .Warner I. M., Talanta., 1994, 41(4): 599-605.
    [57] Gray J. E., Maclean S. A., Reinsborough V. C.. Limitations of the. phenolphthalein competition method for estinating cyclodetrins binding constants, Aust. J. Chem., 1995, 48: 551-556.
    [58] Subhasis P., Sankar C.. Dynamics of twisted intramolecular charge transferprocess of 4-N,N-dimethylaminocinnamic acid inα-cyclodextrin environment, Chemical Physics Lett., 2001,336, 57-64.
    [59] Hamai S.. The excimer fluorescence of 2-methylnaphthalene inα- andβ-cyclodextrins aqueous solutions, Bull. Chem. Soc. Jpn., 1982, 55: 2721.
    [60] Hamada F., Kondo Y., Ito R., Suzuki I., Osa T., Ueno A.. Spacer effect of appended moieties for molecular recognition in doubly-sodium anthranilate modifiedγ-cyclodextrin, J. Incl. Phem. Mol. Recognit. Chem., 1993, 15: 273.
    [61] Fong P., Chow A.. Extraction of alkylammonium tetraphenylborates and dipicrylaminates by polyurethane foam, Analytica Chimica Acta., 1992, 260(1): 129-134.
    [62] Xie J. W., Xu J. G., Chen G. Z., Liu C. S.. Sci. China, Ser. B: Chem. 1996, 39(5): 416-423.
    [63] Turro N. J., Okubo T., Chung C. J.. Analysis of static and dynamic host-guest associations of detergents with cyclodextrins via photoluminescence methods, J. Am. Chem. Soc., 1982, 104(7): 1789-1792.
    [64]董川,李俊芬,双少敏,杨频.环糊精包结物的形成及光谱表征,光谱实验室, 2001, 17(3): 247-256.
    [65] Tomatsu I., Hashidzume A., Harada A.. Contrast viscosity changes upon photoirradiation for mixtures of Poly(acrylic acid)-basedα-cyclodextrin and azobenzene polymers, J. Am. Chem. Soc., 2006, 128: 2226-2227.
    [66] Choisnard L., Geze A., Putaux J. L., Wong Y. S., Wouessidjewe D.. Nanoparticles ofβ-cyclodextrin esters obtained by self-assembly of biotransesterifiedβ-cyclodextrins, Biomacromolecules., 2006, (7): 515-520.
    [67] Kajtár M., Horvath-Toro C., Kuthi E., etal. A simple rule for predicting circular dichroisminduced in aromatic guests by cyelodextrin hosts in indusion complexes, Acta Chim Acad Sci Hung, 1983, 110(3): 327-355.
    [68] Jean-Marie Lehn著,沈兴海等译,叶宪曾审校.超分子化学-概念与展望.北京大学出版社: 1-18.
    [69] Lippert E., Luder W.,Boos H.. In: A. Mangini, Ed, Advanees in Molecular Spec-troscopy, Pergamon, Oxford, 1962, 443-446.
    [70] Grabowski Z. R., Rotkiewicz K., Siemiarczuk A., Cowley D. J., Baumann W..Photoindu-ced charge separation via twisted intramolecular charge transfer states, Nouv. J. Chim. ,1978, 19: 443-458.
    [71] Rotkiewicz K., Grellmann K. H., Grabowski Z. R.. Reinterpretation of the anomalous fluorescense of p-n, n-dimethylamino-benzonitrile, Chem. Phys. Lett., 1973, 19(3): 315-318.
    [72] Grabowski Z. R., Rotkiewicz K., Rubaszewska W., Kirkor-Kaminska, E.. Acta Phys. Polon., 1978, 54(A): 767.
    [73] Zachariasse K. A., von der Haaar T., Hebecker A., Leinhos U., Kuhnle W.. Intramolecular charge transfer in the excited state. Kinetics and configurational changes, J. Photochem. Photobi. A: Chem., 1996, 102(10): 59.
    [74] Zachariasse K. A., Grobys M,. II’ichev Y., von der Haaar T., Hebecker A., Jiang Y. B., Morawski O., Kuhnle W.. J. Photochem. Photobi. A: Chem., 1996, 102(10): 60.
    [75] Zachariasse K. A., Grobys M., von der Haar Th., Hebecker A., Il’ichev Yu. V., Morawski O., Ru¨ckert I., Ku¨hnle W.. Photo-induced intramolecular charge transfer and internal conversion in molecules with a small energy gap between S1 and S2. Dynamics and structure, J. Photochem. Photobi. A: Chem., 1997, 105(2-3): 373-379.
    [76] Sobolewski A. L., Domcke W.. Charge transfer in aminobenzonitriles: do they twist? Chem. Phys. Lett., 1996, 250(3-4): 423-428.
    [77] Sobolewski A. L., Domcke W.. Promotion of intramolecular charge transfer in dimethylamino derivatives: twisting versus acceptor-group rehybridization, Chem. Phys. Lett., 1996, 259(1-2): 119-127.
    [78] Mataga N., Yao H., Okada T., Rettig W.. Charge-transfer rates in symmetric and symmetry-disturbed derivatives of 9, 9'-bianthryl, J. Phys. Chem., 1989, 93(9): 3383-3386.
    [79] Kajimoto O., Futakami M., Kobayashi T., Yamasaki K.. Charge-transfer-state formation in supercritical fluid: 4-(N,N-dimethylamino)benzonitrile in trifluoromethane, J. Phys. Chem., 1988, 92(4): 1347-1351.
    [80] Sun Y. P., Fox K. P., Johnston M. A.. Spectroscopic studies of p-(N,N-dimethylamino) benzonitrile and ethyl p-(N,N-dimethylamino)benzoatein supercritical trifluoromethane, carbon dioxide, and ethane, J. Am. Chem. Soc., 1992, 114(4): 1187-1192.
    [81] Cox G. S., Turro N.. Intramolecular exciplex emission from aqueous .beta. cyclodextrin solutions., J. Am. Chem. Soc., 1984, 106(2): 422-426.
    [82] Cox G. S., Hauptman P. J., Turro N., J.. Dialkylaminobenzonitriles as fluorescence polarity probes for aqueous solutions, Photochem. Photobiol., 1984, 39:597-604.
    [83] Nag A., Dutta R., Chattopadhuay N., Bhattacharyya K.. Effect of cyclodextrine cavity size on twisted intramolecular charge transfer emission: Dimethylamino benzonitrile inβ-cyclodextrine, Chem. Phys. Lett., 1989, 157(1-2): 83-87.
    [84] Al-Hassan K. A., Klein U. K., Suwaiyan A.. Normal and twisted intramolecular charge-transfer fluorescence of 4-dimethylaminobenzonitrile inα-cyclodextrine cavities, Chem. Phys .Lett., 1993, 212(6): 581-586.
    [85] Matsushita Y., Suzuki T., Ichimura T., Hikida T.. Cavity size effect on the excited state dynamics of methyl 4-(dimethylamino)benzoate-cyclodextrin complexes, Chem. Phys., 2003, 286: 399-404.
    [86] Matsushita Y., Hikida T.. The effect of cyclodextrin complexation on the fluorescence properties of ethyl-4X-dimethylaminobenzoate, Chem. Phys. Lett., 1999, 313(1-2): 83-87.
    [87] Lu J. Z., Wei S. L., Jiang Y. B., Xu J. G…Study and application of a novel ptobe using twisted intramolecular charge transfer fluorescence, Analytica Chimica Acta., 1997, 349: 17-21.
    [88] Shayira Banu H., Pitchumani K., Srinivasan C.. Dual emission from 4-dimethylaminobenzonitrile in cyclodextrin derivatives, Journal of Photochemistry and Photobiology A: Chemistry., 2001, (131): 101–110.
    [89]阎世翔,化妆品科学(上) [M].北京:科学技术文献出版社, 1995: 1301-1303.
    [90] Panja S., Chakravorti S.. Dynamics of twisted intramolecular charge transfer process of 4-N,N-dimethylaminocinnamic acid inα-cyclodextrin environment, Chem. Phys. Lett., 2001, 336: 57-64.
    [91]林丽榕,江云宝,杜新贞,黄贤智,陈国珍. TICT荧光探针法研究甲基化的β-环糊精空腔微环境.物理化学学报. 1997, 13(1): 83-85.
    [92] Panja S., Chakravorti S.. Photophysics of 4-(N,N-dimethylamino) cinnamaldehyde/α-cyclodextrin inclusion complex, Spectrochimica Acta Part A., 2002, 58: 113-122.
    [1] Zerza G., Sharber M. C., Brabec C. J., Sariciftci N. S., Gómez R., Segura J. L., Martín N., Srdanov V. I.. Photoinduced charge transfer between tetracyano- anthraquino-dimethane. Derivatives and conjugated polymers for photovoltaics, J. Phys. Chem. A., 2000, 104(35): 8315-8322.
    [2] Pina F., Lima J. C., Lodeiro C., de Melo J. S., Díaz P., Albelda M. T. and Garcia Espana E.. Transfer quenching in polyamine chains bearing a terminal naphthalene unit fernando, J. Phys. Chem. A., 2002, 106(35): 8207-8209.
    [3] Armitage B.. Photocleavage of nucleic acids. Chem. Rev. 1998, 98: 1171-1200.
    [4] Jortner J.. Temperature Dependent Activation Energy for Electron transfer between biological molecules, J. Chem. Phys., 1976, 64: 4860-4867.
    [5] Lange de M. C. C. , Thorn Leeson D., Van Kuijk K. A. B., Huizer A. H., Varma C. A. G. O.. On the source of the anomalous fluorescence of ethyl esters of 4-(dialkylamino)benzoic acid in aromatic solvents: the role of exciplexes, J. Chem. Phys., 1993, 177(1): 243-256.
    [6] Amashukeli X., Winkler J. R., Gray H. B., Gruhn N. E., Lichtenberger D. L.. Electron-transfer reorganization energies of isolated organic molecules, J.Phys. Chem. A., 2002, 106(33): 7593-7598..
    [7]叶君,熊犍.溶剂性质对水溶性纤维素醚/(EuⅢ)的荧光性能的影响.华南理工大学学报(自然科学版). 2006, 34(8): 75-81.
    [8] Zhang C., Bu Y. X.. Theoretical Study on the weak-interaction of furan-Na charge transfer complex with density functional theory, Chin. J. Chem. Phys., 2001, 14(1): 75-80.
    [9] Zachariasse K. A., Grobys M., von der Haar T., Hebecker. A., Il'ichev. Y. V., Jiang Y. B.. Intramolecular charge transferin the excited state. Kinetics andconfigurational changes, J Photochem. Photobiol. A: Chem.,1996, 102(1): 59-70.
    [10]郭仁.电子效应,空间效应,溶剂效应对紫外光谱的影响,玉溪师范高等专科学校学报, 2000, 16(3):55-57.
    [11] Tang C. W., VanSlyke S. A., Chen C. H.. Electroluminescence of doped organic thin films, J. Appl. Phys., 1989, 65: 3610-3616.
    [12] Jiang Y. B., Huang X .Z.. Microenvironmental effect ofβ-cyclodextrin on the TICT process of p-N,N-dimethylaminobenzaldehyde, Sci. China (series B)., 1993, 36(9): 1025-1034.
    [13]张洁,曹玲芳,陈丹,连加荣,刘彭义,李树玮,杨国伟,周翔.溶剂效应对DCM发光特性的影响,发光学报, 2005, 26(6): 804-806.
    [14] Lippert E., Lüder W., Boos H.. In advances in molecular spectroscopy, Mangini, A..Ed. Pergamon Press: Oxford, 1962:443-448.
    [15] Rettig W.. Application of a simplified microstructural solvent interaction model to the solvatochromism of twisted intramolecular charge transfer (TICT) states, J. Mol. Struct., 1982, 84(3-4):303-327.
    [16] Suppan P.. The role of the solvent in the dual luminescence of 4-(N,N-dimethyl amino)benzonitrile, Chem. Phys. Lett., 1986, 128(2):160-165.
    [17] Kohler G. J.. Sovlent Effects on the Fluorescence Properties of Anilines, J. Photochem. Photobiol., 1987, 38(2): 217-238.
    [18] Kolthoff I. Z., Chantooni M. K., Bhowmik S.. Dissociation constants of uncharged and monovalent cation acids in dimethylsulfoxide, J. Am. Chem. Soc., 1968, 90(1): 24-28.
    [19] Guo K. R., Kitamura N., Tazuke S.. Anomalous solvent effects on the twisted intramolecular charge transfer fluorescence of ethyl 4-(N,N-dimethylamino)benzoate in chlorinated solvents, J. Phys. Chem., 1990, 94(4): 1404-1408.
    [20] Kupfer M., Abraham W. Some further remarks about the dual fluorescence of photoexcited N,N-dialkylanilines, Chem. Phy. Lett., 1985, 122(3-6): 300-302.
    [21] Kupfer M., Abraham W.. Some further remarks about the dual fluorescence of photoexcited N,N-dialkylanilines. Chem. Phys. Lett. 1985, 122(3): 300-302.
    [22] Birk J. B. Photophysics of aromatic molecular, London: Wiley Interscience Press, 1970.
    [23] Cundall R. B., Jones M. W.. Photochemistry (2): The Royal Societey of Chemistry Press, 1981:124.
    [24]李改仙,李建晴,卫艳丽,董川.芘荧光探针法研究环糊精与有机溶剂的性微环境性质,光谱实验室, 2005, 26(2): 416-421.
    [25]唐波,马骊,初春.β-环糊精/萘丁美酮/直链醇体系的超分子作用机理及分析应用的研究,化学学报, 2002, 60(10): 1834-1840.
    [20] Schuddeboom W., Jonker S. A., Warman J. M., etal. Excited-state dipole moments of dual fluorescent 4’(dialkylamino) benzonitriles. Influence of alkyl chain length and effective solvent polarity, J. Phys. Chem. A., 1992, 96: 10809-10819.
    [21] Rettig W.. Charge separation in excited states of decoupled systems TICT compounds and implications of regarding the development of new lasers dyes and the primary process of vision and photosynthesis, Angew. Chem. Int. Ed. Engl., 1986, 25: 971-988.
    [22] Rotkiewicz K., Grellmann K. H., Grabowski Z. R.. Reinterpretation of the anomalous fluorescence of p-N,N-dimethylaminobenzonitrile, Chem. Phys. Lett., 1973, 19(3): 315-318.
    [1] Rettig W.. Charge separation in excited states of decoupled systems-TICT, compounds and implications regarding the development of new laser dyes and the primary process of vision and photosynthesis, Angew. Chem. Int. Ed. Engl., 1986, 25(11): 971-988.
    [2] Grabowski Z. R., Rotkiewicz R., Rettig W.. Structural changes accompanying intramolecular electron transfer: Focus on twisted intramolecular charge transfer states and structures, Chem. Rev., 2003, 103(10): 3899-4031.
    [3] Cox G. S., Turro N.. Intramolecular exciplex emission from aqueous .beta. cyclodextrin solutions, J. Am. Chem. Soc., 1984, 106(2): 422.
    [4] Cox G. S., Hauptman P. J., Turro N. J.. Dialkylaminobenzonitriles as fluorescence polarity probes for aqueous solutions of cyclodextrins, J. Photochem. Photobiol., 1984, 39, 597-601.
    [5] Jiang Y. B.. Fluorescence spectroscopic investigation of the effect ofα-cyclodextrin on the twisted intramolecular charge transfer of p-dimethylaminobenzoic acid in aqueous media, Appl. Spectrosc., 1994, 48(9): 1169-1173.
    [6] Al-Hassan K. A., Klein U. K., Suwaiyan A.. Normal and twisted intramolecular charge-transfer fluorescence of 4-dimethylaminobenzonitrile inα-cyclodextrine cavities, Chem. Phys .Lett., 1993, 212(6): 581.
    [7] Kundu S., Chattopadhyay N.. Twisted intramolecular charge transfer of dimethylaminobenzaldehyde inα-cyclodextrin cavity, J. Mol. Struct., 1995, 344(1-2): 151-155.
    [8] Santi Kundu, Nitin Chattopadhyay, Twisted intramolecular charge transfer of dimethylaminobenzaldehyde inα-cyclodextrin cavity, J. Mol. Struct., 1995, 344: 151-155.
    [9] Jiang Y. B.. Twisted intramolecular charge transfer of methyl p-dimethylamino benzoate in aqueousβ-CD solution. Spectrochim. Acta., 1995, 51A(2):275-282.
    [10] Jiang Y. B.. Effect of cyclodextrin inclusion complex formation on the twistedintramolecular charge transfer (TICT) of the included compound: the p-dimethylaminobenzoic acid-β-cyclodextrin, J. Photochem. Photobiol. A., 1995, 88(2): 109-116.
    [11] Yong Hee Kim, Dae Won Cho, and Minjoong Yoon, Dongho Kim.Observation of hydrogen-bonding effects on twisted intramolecular charge transfer of p-(N,N-diethylamino)benzoic acid in aqueous cyclodextrin solutions, J. Phys. Chem., 1996, 100: 15670-15676.
    [12] Subhasis Panja, Prakriti Ranjan Bangal, Sankar Chakravorti, Modulation of photophysics due to orientational selectivity of 4-N,N-dimethylamino cinnamaldehydeβ-cyclodextrin inclusion complex in different solvents, Chem. Phys. Lett., 2000, 329(5-6): 377-385.
    [13] Subhasis Panja, Sankar Chakravorti, Photophysics of 4-(N,N-dimethylamino) cinnamaldehyde/α-cyclodextrin inclusion complex, Spectrochimica Acta. Part A., Mol. and Bio. Spec., 2002, 58(1): 114-122.
    [14] Matsushita Y., Suzuki T., Ichimura T., Hikida T.. Cavity size effect on the excited state dynamics of methyl 4-(dimethylamino)benzoate-cyclodextrin complexes, Chem. Phys., 2003, 286(2-3): 399.
    [15] Nag A., Dutta R., Chattopadhuay N., Bhattacharyya K.. Effect of cyclodextrin cavity size on twisted intramolecular charge transfer emission: Dimethylamino benzonitrile inβ-cyclodextrin, Chem. Phys. Lett., 1989, 157(1-2): 83-86.
    [16] Al-Hassan K. A.. The role ofα-cyclodextrin cavity size on the fluorescence of 4-dethylaminobenzonitrile aqueous solution, Chem. Phys. Lett., 1994, 227(4-5): 527-532.
    [17] Matsushita Y., Hikida T.. The effect of cyclodextrin complexation on the fluorescence properties of ethyl-4′-dimethylaminobenzoate, Chem. Phys. Lett., 1999, 313(1-2): 85-90.
    [18] Panja S., Chakravorti S.. Dynamics of twisted intramolecular charge transfer process of 4-N,N-dimethylaminocinnamic acid inα-cyclodextrin environment, Chem. Phys. Lett., 2001, 336(1-2): 57-64.
    [19] Das S. K.. Inclusion complexation of 2-(4′-N,N-dimethylaminophenyl) -1H-naphth [2,3-d] imidazole byβ-cyclodextrin: effect on the twistedintramolecular charge transfer emission, Chem. Phys. Lett., 2002, 361(1-2): 21-28.
    [20] Matsushita Y., Suzuki T., Ichimura T., Hikida T.. The cavity size effect on the fluorescence properties of 4'-dimethylaminoacetophenone complexed with cyclodextrins, Chem. Phys., 2003, 286(2-3): 399-407.
    [21] Matsushita Y., Suzuki T., Ichimura T., Hikida T.. Cavity size effect on the excited state dynamics of methyl 4-(dimethylamino)benzoate-cyclodextrin complexes, J. Phys. Chem. A., 2004, 108(37): 7490-7496.
    [22] Nag A., Bhattacharyya K.. Dual luminescence of dimethylaminobenzonitrile inγ-cyclodextrin. Environmental effects on twisted intramolecular charge-transfer phenomenon, J. Chem. Soc., Faraday Trans. 1990, 86(1): 53-54.
    [23] Wermuth G., Rettig W.. The Interaction of close lying excited states: Solvent Influence on fluorescence rate and polarization in substituted indulines, J. Phys. Chem., 1984, 88(13): 2729.
    [24] Nag A., Chakraborty T., Bhattacharyya K.. Effect ofγ-Cyclodextrin on the intramolecular charge transfer processes in aminocoumarin laser dyes, J. Phys. Chem., 1990, 94(10): 4203-4206.
    [25]陈国珍,黄贤智,郑朱梓,许金钩,王尊本.荧光分析法北京科学出版社,1990, 76-115.
    [26] Hicks M. J., Vandersall M.T., Babarogic Z., Eisenthal K.B.. The dynamics of barrier crossings in solution: The effect of a solvent polarity-dependent barrier, Chem. Phys. Lett., 1985, 116(1): 18-24.
    [27] Hicks M. J., Vandersall M.T., Babarogic Z., Eisenthal K.B.. Polarity-dependent barriers and the photoisomerization dynamics of molecules in solution, Chem. Phys. Lett., 1987, 135(4-5): 413-420.
    [28] Tanford C.. The hydrophobic effect: Formation of micelles and biological membranes, Wiley, New York, 1980, 51-55.
    [29]商志才,俞庆森,林瑞森.分子体积及表面积的Monte Carlo模拟计算,物理化学学报, 1997, 13(12): 1097-1100. [Shang Z.C., Yu Q.S., Lin R.S.. Monte carlo simulation calculation of volume and surface area of molecule, Acta Physico-Chemica Sin., 1997, 13(12): 1097-1100.]
    [30] Szejtli J.. Introduction and general overview of cyclodextrin chemistry, Chem. Rev., 1998, 98(5): 743-1753.
    [31] Rekharsky M. V., Inoue Y.. Complexation thermodynamics of cyclodextrins, Chem. Rev., 1998, 98(5): 1875-1917.
    [1] Lippert E., Lüder W., Boss H. H.. Advances in molecular spectroscopy, In mangini A Ed. European Conference on Molecular Spectroscopy, Oxford: Pergamon Press, 1962, 43.
    [2] Rettig W.. Charge separation in excited states of decoupled systems-TICT compounds and implications regarding the development of new laser dyes and the primary process of vision and photosynthesis, Angew. Chem. Int. Ed. Eng., 1986, 25(11): 971-988.
    [3] Jiang Y. B.. Fluorescence spectroscopic investigation of the effect ofα-cyclodextrin on the twisted intramolecular charge transfer of p-dimethylaminobenzoic acid in aqueous media, Appl. Spectrosc., 1994, 48(9): 1169-1173.
    [4] Kundu S., Chattopadhyay N.. Dual fluorescence of dimethylaminobenzaldehyde in aqueousβ-cyclodextrin: non-polar and TICT emissions, J. Photochem. Photobiol. A., 1995, 88(1):105-108.
    [5] Bangal P. R., Chakravorti S., Mustafa G.. Excited state dynamics of 2(1H-pyrroll-yl) benzoic acid and different environmental effects, J. Photochem. Photobiol. A., 1998, 113(1): 35-43.
    [6] Bangal P. R., Chakravorti S. Photophysics of 4-dimethylamino cinnamic acid in different environments, J. Photochem. Photobio. A., 1998, 116(3): 191-202.
    [7] Panja S., Bangal P. R.n, Chakravorti S.. Modulation of photophysics due to orientational selectivity of 4-N,N-dimethylamino cinnamaldehydeβ-cyclodextrin inclusion complex in different solvents, Chem. Phys. Lett., 2000, 329(5-6): 377-385
    [8] Panja S., Chakravorti S.. Dynamics of twisted intramolecular charge transfer process of 4-N,N-dimethylaminocinnamic acid inα-cyclodextrin environment, Chem. Phys. Lett., 2001, 336(1-2): 57-64.
    [9] Sun Y. P., Fox K. P., Johnston M. A.. Spectroscopic studies of p-(N,N-dimethylamino) benzonitrile and ethyl p-(N,N-dimethylamino)benzoate in supercritical trifluoromethane, carbon dioxide, and ethane, J. Am. Chem. Soc.,1992, 114(4): 1187-1192.
    [10] Cox G. S., Turro N.. Intramolecular exciplex emission from aqueous .beta. cyc -lodextrin solutions, J. Am. Chem. Soc., 1984, 106(2): 422-426.
    [11] Cox G. S., Hauptman P. J., Turro N., J.. Dialkylaminobenzonitriles as fluorescence polarity probes for aqueous solutions, Photochem. Photobiol., 1984, 39:597-561.
    [12] Nag A., Dutta R., Chattopadhuay N., Bhattacharyya K.. Effect of cyclodextrine cavity size on twisted intramolecular charge transfer emission: Dimethylamino benzonitrile inβ-cyclodextrine, Chem. Phys. Lett., 1989, 157(1-2): 83-87.
    [13] Al-Hassan K. A., Klein U. K., Suwaiyan A.. Normal and twisted intramolecular charge transfer fluorescence of 4-dimethylaminobenzonitrile inα-cyclodextrine cavities, Chem. Phys .Lett., 1993, 212(6): 581-586.
    [14] Jiang Y. B. Twisted intramolecular charge transfer of methyl p-dimethylaminobenzoate in aqueousβ-cyclodextrin solution, Spectrochim. Acta Part A., 1995, 51(2): 275-282.
    [15] Matsushita Y., Hikida T.. The effect of cyclodextrin complexation on the fluorescence properties of ethyl-4-dimethylaminobenzoate, Chem. Phys. Lett., 1999, 313(1-2): 85-90.
    [16] Panja S., Charkravorti S.. Photophysics of 4-(N,N-dimethylamino) cinnamaldehyde /α-cyclodextrin inclusion complex, Spectrochim. Acta Part A., 2002, 58(1): 113-122.
    [17] Matsushita Y., Suzuki T., Ichimura T., Hikida T.. Cavity size effect on the excited state dynamics of methyl 4-(dimethylamino)benzoate-cyclodextrin complexes, J. Phys. Chem., 2004, 108(37): 7490-7496.
    [18]杜新贞,周嵘,陶小娟,王芳平,陈慧.修饰β-环糊精/对二甲氨基-苯甲酸异辛酯笼型包结物研究,物理化学学报, 2006, 22(9): 1071-1074.
    [19] Rekharsky M. V., Inoue Y. Complexation thermodynamics of cyclodextrins, Chem. Rev., 1998, 98(5): 1875-1917.
    [20]唐波,马骊,初春.β-环糊精/萘丁美酮/直链醇体系的超分子作用机理及其分析应用的研究,化学学报, 2002, 60(10): 1834-1840.
    [21] Valente A. J. M., Nilsson M., Soderman O. Interactions between n-octyl andn-nonylβ-D-glucosides andα- andβ-cyclodextrins as seen by self-diffusion NMR, J. Colloid Interface Sci., 2005, 281(1): 218-224.
    [22] Szejtli J. Introduction and general overview of cyclodextrin chemistry, Chem. Rev., 1998, 98(5): 743-1753.
    [23] Hicks J. M., Vandersall M. T., Sitzmann E.V., Eisenthal K.B.. Polarity-dependent barriers and the photoisomerization dynamics of molecules in solution, Chem. Phys. Lett., 1987, 135(4-5): 413-420.
    [24] Nag A., Dutta R., Chattopadhyay N., Bhattacharyya K.. Effect of cyclodextrine cavity size on twisted intramolecular charge transfer emission: Dimethylamino benzonitrile inβ-cyclodextrin, Chem. Phys. Lett., 1989, 157(1-2): 83-86.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700