含氟丙基笼状倍半硅氧烷(POSS)的两亲性嵌段共聚物合成、表征及其自组装行为的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机-无机复合材料结合了有机材料和无机材料各自的优点,具有显著的优异性能,成为研究的热点。近年来,笼状倍半硅氧烷(POSS)这种有着规整立体结构同时具有单纳米尺度的有机-无机杂化分子更是吸引了各国研究人员的目光。POSS的化学结构式为(RSiO3/2)n,n=6~12,R为有机基团,其中一个或多个为反应性官能团。POSS功能化后带有的不同的有机基团决定了POSS在聚合物中不同的杂化方式。例如,单反应性官能团的POSS通过共聚或者反应性共混接枝到聚合物主链上;而两官能团的POSS可以嵌入到高分子主链中;具有三个以上反应性官能团的POSS可以用作交联剂引入体型的聚合物中。POSS的引入往往使聚合物的一种或多种性能得到改善,如热力学性能,结晶性能,而这种性能上的改善取决于POSS在聚合物基体中的聚集形态。
     氟丙基取代的POSS是近年来才发展起来的一类全新的多面倍半硅氧烷。由于兼具了有机硅材料以及有机氟材料两者性能上的优势,将其引入高分子材料,将对材料的本体性能乃至表面性能特别是疏水性能产生巨大的影响。但是由于有机硅材料或者含氟材料在溶度参数上与一般的高分子材料存在较大的差异,直接通过物理共混的方式往往导致宏观相分离的发生,很难得到具有理想相结构的复合材料,而具有微观尺度相分离结构的形成是复合材料获得优异综合性能的关键。因此我们有必要对含氟POSS进行分子设计,将其设计成具有可反应性官能团,或者将其引入到具有两亲性质的嵌段当中,以提高POSS与聚合物基体的相容性。
     在本论文工作中,我们首先成功合成了一系列功能化含氟POSS单体或者含POSS的两亲性嵌段聚合物。然后将其引入到热固性或热塑性的聚合物中,含氟的POSS笼体通过自组装的机理在聚合物基体内形成具有微观尺度的相分离结构,我们利用原子力显微镜、透射电镜以及场发射的扫描电镜直接观察了这一形貌的形成。由于含氟材料本身具有极低的表面能,将其引入到高分子会显著改善材料的疏水性能。我们利用表面接触角测定仪测试了不同液体在材料表面的接触角并由此计算出材料的表面自由能,研究含氟POSS的引入对材料表面性能的影响。本论文工作主要从以下几个方面对含氟POSS在聚合物基体中的自组装行为进行了研究。
     1.含氟POSS及其两亲聚合物在环氧树脂中的自组装行为研究
     环氧树脂是一类常用的热固性树脂,性能良好,用途广泛。POSS改性环氧树脂已经有很多文献报道,但是基于含氟POSS的改性还未见报道。源于含氟POSS与环氧树脂在固化前后的不相容性,将其引入环氧树脂,易出现相分离,若将含氟POSS引入到一种具有两亲性质的嵌段共聚物中,借助与环氧树脂相容的其他链段的增容作用,可以将POSS的相分离限制在微观尺度,即含POSS的嵌段共聚物在环氧树脂基体内发生自组装,环氧树脂经固化反应后,这种由自组装形成的微观相结构被固定下来,可以通过可以通过原子力显微镜(AFM)、透射电镜(TEM)以及扫描电镜(SEM)观察这种微相分离的结构,并借此研究含POSS嵌段共聚物的环氧树脂结构与性能间的关系。
     含氟材料的表面性能一直以来受到研究人员的关注。将含氟POSS引入环氧树脂后,必然对环氧树脂的表面形貌以及疏水性能产生巨大的影响。本论文工作利用原子力显微镜、表面接触角测定仪以及X射线光电子能谱等手段研究了含氟POSS改性环氧树脂的表面性能,并对此作出了解释。
     我们设计并合成了具有单反应官能团的含氟POSS(氨基POSS),含POSS的两亲性嵌段聚合物(POSS单封端的聚氧乙烯、POSS单封端的聚己内酯以及POSS-聚酚氧-POSS)。这些嵌段聚合物的拓扑结构以及链段性质均有所不同,本文就它们与环氧树脂共混后的相行为以及性能进行了研究。
     2.含氟POSS改性的功能性聚合物
     聚异丙基丙烯酰胺(PNIPAM)是一种具有温敏特性的高分子,其水溶液呈现出低临界互溶(LCST)行为。PNIPAM经交联后形成的体型聚合物在水中有明显的体积相转变行为,这些独特的性能使聚异丙基丙烯酰胺在生物医药领域有着很广阔的应用前景。我们设计并合成了单丙烯酸酯基功能化的含氟POSS,通过自由基共聚的方式引入聚异丙基丙烯酰胺的交联体系中,并研究了该杂化凝胶的性能,发现经含氟POSS改性的杂化凝胶相对于纯的PNIPAM水凝胶具有更快的相应速度以及更好的机械强度。
     聚乙烯亚胺(PEI)是一种水溶性高分子,被广泛应用于生物医药领域。对其进行疏水改性能够降低生理毒性、扩展应用范围。PEI主链上有着数目众多的脂肪族氨基,很容易与环氧基团发生反应,基于这个思路我们设计并合成了带有一个环氧基团的含氟POSS,通过氨基与环氧基团间的反应把含氟POSS引入到PEI的分子链中,从而达到对PEI疏水改性的目的。
     3.含POSS的遥爪聚合物的形成及其本体性能的研究
     利用点击化学的方法,合成了具有POSS-PEG-POSS结构的遥爪聚合物。研究了POSS的引入对PEG链段结晶行为的影响。发现在PEG的两端引入POSS使PEG链段的结晶能力下降,这不同于我们之前所研究的POSS-capped PEO两嵌段共聚物。其原因主要是由于分子链的特殊拓扑结构造成的,连接与PEG链段两端的POSS笼体易于聚集而形成物理交联点,从而限制了PEG链段的结晶行为,这种限制作用随PEG分子量的减小,即POSS相对含量的增加而增强。也正是由于POSS聚集所形成的物理交联点的作用,而使得整个聚合物的溶解性能发生了巨大的变化,在共溶剂(如四氢呋喃)中聚合物能很好的溶解,而在选择性溶剂(如水)中,该遥爪聚合物只能被溶胀而不能溶解,即形成了物理凝胶。
     以含氟POSS作为封端分子,结合超分子组装以及点击化学的方法成功合成了基于PEG/α-环糊精的聚轮烷,运用XRD分析了POSS的引入对超分子结晶性能的影响,发现POSS的引入虽然没有改变超分子的晶体构型,但是影响了其结晶能力,随着超分子中PEG链段分子量的减小,即随着POSS质量分数的增大,超分子的结晶能力逐渐下降。热重分析(TGA)表明,POSS的引入有利于超分子高温热稳定性的提高。
     以POSS-PEO-POSS作为改性分子,利用溶剂的扩散作用,成功制备了POSS-PEO-POSS改性的聚异丙基丙烯酰胺(PNIPAM)水凝胶。采用物理共混的方法,将疏水链段(POSS)以及亲水链段(PEO)同时引入PNIPAM交联网络中,并研究了改性凝胶的温度响应性能。溶胀、去溶胀以及再溶胀试验表明,POSS-PEO-POSS的引入明显加快了凝胶的温度响应速度,我们从机理上解释了这一结果。
     结合可逆加成-断裂转移(RAFT)聚合和点击化学的方法,合成了具有POSS-PNIPAM-POSS结构的遥爪聚合物。由于POSS与PNIPAM链段不具有相容性,POSS会在聚合物基体内发生自组装,我们利用原子力显微镜观察了POSS的组装形态。PNIPAM链段在水溶液中有LCST性质,我们以水为溶剂,将该嵌段聚合物配成稀溶液,观察到胶束的形成,利用光子相关光谱(PCS)研究了胶束粒径随温度的变化的变化。
The concept of incorporating inorganic (or organometallic) blocks into organic polymers has been widely accepted to obtain the materials with some new and improved properties. Typical POSS molecules possess the nanosized cage-like structures, derived from hydrolysis and condensation of trifunctional organiosilanes with a formula of (RSiO3/2)n,n=6~12,where R can be various types of organic groups, different approaches can be adopted to incorporate POSS molecules into polymers. For instance, the mono-functional POSS monomers can be grafted onto macromolecular chains by co-polymerization or reactive blending whereas the bi-functional POSS monomers will allow ones to incorporate the silsesquioxane building blocks into macromolecular backbones. The multi-functional POSS monomers can be used as curing agents to prepare POSS-containing thermosetting nanocomposites.
     Fluorinated polyhedral oligomeric silsesquioxanes (FluoroPOSS) are the newest class of POSS compounds. Because they combine both advantages of the fluoro-materials and the organosilicone, it will greatly influence the properties especially the surface hydrophobicity of the target materials when the fluoroPOSS was introduced into them. But because the great difference in chemical structure and composition between the fluoroPOSS and the usual polymer materials, it is difficult to obtain the idea composite by simply physical blending them together. In composites system, getting micro-scaled phase separation act as the key role to obtain a material with outstanding performance. In order to improve the miscibility between the fluoroPOSS and polymer matrix, methods must be done to introduce one or more reactable group into fluoroPOSS molecule, or someamphiphilic copolymers containing fluoroPOSS can be synthesized. All these can make the miscibility between the fluoroPOSS and polymer matrix much better.
     In this thesis, we successfully synthesis varied functionalized fluoroPOSS monomer or amphiphilic copolymers containing fluoroPOSS. Then these monomers or copolymers were addressed into some thermosets or thermoplastic polymers. With self-assembling mechanism, the phase separation in micro-scale will occur in the polymers’matrix. Atomic force microscopy (AFM), transmission electric microscopy (TEM) and field emission scan electric microscopy (FESEM) were employed to observe the morphologyformed. Due to the low surface energy of the fluorinated materials, the introduction of the fluoroPOSS will greatly improved the hydrophobicity of the polymers’surface. The contact angles on the materials’surface were measured and were further used to calculate the surface energy. The following systems were studied in this thesis.
     1. the self-assembling behavior of the fluoroPOSS monomers or copolymers in epoxy resin
     Epoxy resin is a class of thermosets and is widely used for its excellent performance. There have been many report on POSS modified epoxy resin but few on the fluoroPOSS. Because of the difference in the chemical structure between the fluoroPOSS and epoxy resin, macro scale phase separation must be happened when we mix them together. Chemical modification is needed to improve the miscibility between them. Some well defined functionalized fluoroPOSS or amphiphilic copolymers containing fluoroPOSS,for instance, amino-functionalized fluoroPOSS, fluoroPOSS-capped PEO, fluoroPOSS-capped PCL and fluoroPOSS-phenoxy-fluorPOSS, were designed and successfully synthesized.. And these macromonomer or copolymers were further incorporated into the epoxy resin. Due to the amphiphilic characterization of the copolymers, self-assembling would be occurred in epoxy matrix. Adjusting the composition of the copolymers, nanosized phase separation behavior would be obtained. The morphology can be easily fixed via curing reaction and observed by AFM, TEM and SEM. The thermal and mechanical properties can be evaluated by DSC, TGA and DMA.
     The surface properties of the fluorinated materials are always the interesting area because of their great applied value. After fluoroPOSS introduction, the surface morphology and the hydrophobicity would be greatly influenced. AFM, XPS and contact angle measurement were addressed to value the surface properties of the epoxy resin.
     2. Functional polymers modified by fluoroPOSS
     Hepta(3,3,3-trifluoropropyl)propylacrylate polyhedral oligomeric silsesquioxane (POSS) was synthesized and used as a monomer of copolymerization to prepare the organic-inorganic poly(N-isopropylacrylamide) (PNIPAM) nanocomposites with POSS content up to 12.5 wt%. The POSS-containing PNIPAM networks can be prepared with N,N'-Methylenebisacrylamide (BIS) as the crosslinking agent. When the organic-inorganic nanocomposites were swollen in water they exhibited the characteristics of hydrogels. With the moderate contents of POSS, the POSS-containing hybrid hydrogels displayed much faster response rates in swelling, deswelling and re-swelling experimentsthan control PNIPAM hydrogel than the PNIPAM hydrogels prepared via the free radical copolymerization of N-isopropylacrylamide (NIPAM) and N,N’-methylenebisacrylamide (viz. the conventional crosslinker). The improved hydrogel properties have been interpreted on the basis of the formation of the nanosized hydrophobic microdomains around the POSS moieties.
     Polyethyleneimine (PEI) is kind of water-soluble polymer. It is widely used in biomedicine fields for its biocompatibility. Several methods have been employed to improve its hydrophobicity to decrease the physiological toxicity and expend its appliance. There are many amino groups on the PEI chains, and they can react with epoxy group in mild condition. Based on this, fluoroPOSS-capped propyl glycidyl was synthesized. The POSS macromonomer was further applied to modify the PEI. The POSS-PEI compositesshowed the enhanced thermal properties that were proved by the differential scanningcalorimetry (DSC) and thermogravimetric analysis (TGA). The static contact angle measurements indicate that the organic-inorganic nanocomposites displayed a significant enhancement in surface hydrophobicity.
     3. Synthesis of the telechelic polymer containing fluoroPOSS and its properties
     Using click chemistry, we designed and synthesis the POSS-PEG-POSS telechelic polymer. Its crystallization behavior was studied by means of DSC and XRD. The results showed that the POSS cages could greatly influence the crystal ability of the PEG chains. With the decrease of the PEG chain’s length, the crystal ability decreased significantly. It’s the result of the special topology of the telechelic polymer. The POSS rich domain can act as physical crosslink points to limit the crystal behavior the PEG chains. The special topology also influence the solubility of the polymer, in selective solvent such as water, POSS-PEG-POSS can only be swelled but can not be dissolve. Physical gel formed due to the strong interaction between POSS cages.
     A novel polyrotaxane based on polyhedral oligomeric silsesquioxane (POSS),α-cyclodextrin (α-CD) and poly (ethylene glycol) (PEG) was synthesized in this research work. Pesudorotaxanes were prepared based on alkyne terminated PEG andα-cyclodextrin (α-CD) with different PEG chains length. To prevent the dethreading of theα-CD from the PEG chains, azido-POSS was used as block agent to close the both ends of the pesudorotaxanes via“Click Chemistry”, and convert the pesudorotaxanes to the polyrotaxane. X-ray diffraction (XRD) results showed that the channel-type inclusion complexs were formed for all the polyrotaxane, but their crystal structure were slightly different with the corresponding pesudorotaxanes. And the crstalization ability of the polyrotaxanes were decreased with the decreasing of the PEG chains’length, which means that the introduction of the POSS can inflence the crystal behavior of the supramolecules due to its bulky effect. Thermal stability of the polyrotaxane was improved comparing to the pesudorotaxane by introducing the POSS.
     The amphiphilic tri-block copolymer POSS-PEG-POSS was used as the modifier to improve the temperature response rate of poly(N-isopropylacrylamide) (PNIPAM) hydrogels. The modified PNIPAM hydrogels exhibited temperature-responsive behavior as to the control organic hydrogels. It is identified that all the modified PNIPAM hydrogels displayed much faster response rates in terms of swelling, deswelling and re-swelling experiments than the control PNIPAM hydrogel. The improved hydrogel properties could be interpreted on the basis of the synergetic effect between the hydrophobic parts (POSS) and hydrophilic parts (PEG). Hydrophobic POSS cage will self-assemble due to its immiscibility with other components. Hydrophobic micro-domains can be formed and increase the contact area between the water and PNPAM network. Therefore the response rate can be improved. At the same time, the hydrophilic PEG component can act as channel for water in/out and facilitate the diffusion of water in PNIPAM network. From this aspect, the response rate of hydrogels can also be improved.
     Combine the reversible addition fragmentation chain transfer (RAFT) and Click chemistry. POSS-PNIPAM-POSS telechelic polymer was synthesized. POSS and PNIPAM are immiscible, the phase separation behavior was observed by AFM. Based on the temperature sensitive properties of the PNIPAM chains, photon correlation spectroscopy (PCS) was employed to study the micelle behavior of the telechelics in dilute solution.
引文
1. Mascia L., Zhang Z., Shaw S. J., Carbon fibre composites based on polyimide/silica ceramers: Aspects of structure-properties relationship, Composites Part A: Applied Science and Manufacturing, 1996, 27, 1211-1221.
    2. Cornelius C., Hibshman C., Marand E., Hybrid organic-inorganic membranes , Separation and Purification Technology, 2001, 25, 181-193.
    3. Allrock H. R., Advanced materials, 1994, 6, 106-115.
    4. Versloot P., Haasnoo J.G.t, Nieuwenhuizen P. J., Reedijk J., Sulfur vulcanization of simple model olefins, part V: Double bond isomerization during accelerated sulfur vulcanization as studied by model olefins, rubber chemistry and technology, 1997, 10, 106-119.
    5. Jurkowski B., Jurkowska B., Journal of Macromolecular Science - Physics, 1998, B37, 135-142.
    6. Sugiura M., Horii M., Hayashi H., Applied Clay Science, 1996, 11, 89-97.
    7. Lijima S., Nature, Helical microtubules of graphitic carbon, 1991, 354, 56-58.
    8. Dai L., Mau A. W. H., Controlled Synthesis and Modification of Carbon Nanotubes and C60: Carbon Nanostructures for Advanced Polymeric Composite Materials, Advanced Material., 2001, 13, 899-913.
    9. Dai H., Carbon nanotubes: opportunities and challenges, Surface Science, 2002, 500, 218-241.
    10. Popov V. N., Carbon nanotubes: properties and application, Materials Science and Engineering: R: Reports, 2004, 43, 61-102.
    11. Wang Z. L., Gao R. P., Poncharal P., Mechanical and electrostatic properties of carbon nanotubes and nanowires, Materials Science and Engineering: C, 2001, 16, 3-10.
    12. Ouyang M., Huang J. L., Lieber C. M., Fundamental electronic properties and applications of single-walled carbon nanotubes, Accounts of Chemical Research, 2002, 35, 1018-1025.
    13. Zhou O., Shimoda H., Gao B., Oh S., Fleming L., Yue G., Materials science of carbon nanotubes: Fabrication, integration, and properties of macroscopic structures of carbon nanotubes, Accounts of Chemical Research, 2002, 35, 1045-1053.
    14. Avouris P., Molecular electronics with carbon nanotubes, Accounts of Chemical Research, 2002, 35, 1026-1034.
    15. Andrews R., Jacques D., Qian D., Rantell T., Multiwall carbon nanotubes: Synthesis and application , Accounts of Chemical Research, 2002, 35, 1008.
    16. A. F. Blanchard, Elasticity theory and crosslinking of reinforced rubber , Journal of AppliedPolymer Science., 1998, 67, 119-129.
    17. J. P. berry, P. Int. Rubb C., 1959, 396.
    18. A. F. Blanchard, Appl. Sci. Rubber., 1961, 430.
    19. Klein L. L., West J. K., The sol-gel process , Chemical Reviews, 1990, 90, 33-72.
    20. Novak B. M., Hybrid Nanocomposite Materials - between inorganic glasses and organic polymers, Advanced Materials, 1993, 5, 422-433.
    21. Wang B., Wilkes G. L., Novel hybrid inorganic-organic abrasion-resistant coatings prepared by a sol-gel process , Journal of Macromolecular Science - Pure and Applied Chemistry, 1994, 31, 249-260.
    22. S. Dire, L. Bois, Babonneau F., Poly. Prepr., 1991, 32, 501.
    23. Cornelius C., Hibshman C., Marand E.. Hybrid organic-inorganic membranes, Separation and Purification Technology, 2001, 25, 181-193.
    24. Muramatsu H., Corriu R., Boury B., Solid State Hydrolysis/Polycondensation of Alkoxysilane: Access to Crystal-Like Silicon-Based Hybrid Materials , Journal of the american Chemical Society, 2003, 125, 854-855.
    25. Chujo Y., Thara E., Kure S., Seagusa T., Synthesis of triethoxysilyl-terminated polyoxazolines and their cohydrolysis polymerization with tetraethoxysilane , Macromolecules, 1993, 26, 5681-5686.
    26. Hench, L.L., West, J.K., The Sol-Gel process, Chemical Reviews, 1990, 90, 33-72.
    27. Wen J., Wilkes G. L., Organic/Inorganic Hybrid Network Materials by the Sol-Gel Approach, Chemistry of Materials, 1996, 8, 1667-1681.
    28. Shea K. J., Loy D. A., Webster O., Arylsilsesquioxane gels and related materials. New hybrids of organic and inorganic networks, Journal of the american Chemical Society, 1992, 114, 6700-6710.
    29. Loy D. A., Shea K. J., Bridged Polysilsesquioxanes. Highly Porous Hybrid Organic-Inorganic Materials, Chemical Reviews, 1995, 95, 1431-1442.
    30. Choi D. M., Shea K. J., New materials for synthesis of quantum-sized semiconductors and transition-metal particles. Microporous polysilsesquioxanes as a confinement matrix for particle growth, Chemistry of Materials, 1993, 5, 1067-1069.
    31. Choi K. M., Shea K. J., Amorphous polysilsesquioxanes as a confinement matrix for quantum-sized particle growth. Size analysis and quantum size effect of CdS particles grown in porous polysilsesquioxanes, Journal of Physical Chemistry, 1994, 98, 3207-3214.
    32. Choi K. M., Shea K. J., New procedures for the preparation of CdS and heterogeneous Cr/CdS phases in hybrid xerogel matrices. Pore structure analysis and characterization, Journal of PhysicalChemistry, 1995, 99, 4720-4732.
    33. Scott D. W., Thermal Rearrangement of Branched-Chain Methylpolysiloxanes, Journal of the American Chemical Society, 1946, 68, 356-358.
    34. Barry A. J., Daudt W. H., Domicone J. J., Crystalline Organosilsesquioxanes, Journal of the American Chemical Society, 1955, 77, 4248-4252.
    35. Sprung M. M., Guenther F. O., The Partial Hydrolysis of Methyltriethoxysilane, Journal of the American Chemical Society,1955, 77, 3990-3996.
    36. Brown J. F., Vogt L.H., Preparation and Characterization of the Lower Equilibrated Phenylsilsesquioxanes, Journal of the American Chemical Society, 1964, 86, 1120-1125.
    37. Vogt L. H., Brown J. F., Crystalline Methylsilsesquioxanes, Inorganic Chemistry, 1963, 2, 189-192.
    38. Olsson K., Ark. Kemi., 1958, 13, 367.
    39. Olsson K., Gronwall C., Ark. Kemi., 1961, 17,529.
    40. Olsson K., Gronwall C., Ark. Kemi., 1964, 22,237.
    41. Larsson K., Ark. Kemi., 1960, 16,203.
    42. K. Larsson, Ark. Kemi., 1960, 16,209.
    43. Wiberg E., Simmler W., Anorg Z., Allg. Chem., 1995, 282, 330.
    44. Muller R., Kohne R., Sliwinski S., J. Prakt. Chem., 1959, 9, 71.
    45. Larsson K., Ark. Kemi., 1960, 16, 215.
    46. John F., Brown Jr., The Polycondensation of Phenylsilanetriol, Journal of the American Chemical Society, 1965, 87, 4317-4324.
    47. John F., Brown Jr., The Polycondensation of Cyclohexylsilanetriol, Journal of the American Chemical Society, 1965, 87, 4313-4317.
    48. Frye C. L., Collins W. T., Oligomeric silsesquioxanes, (HSiO3/2)n, Journal of the American Chemical Society, 1970, 92, 5586-5588.
    49. Agaskar P. A., New synthetic route to the hydridospherosiloxanes Oh-H8Si8O12 and D5h-H10Si10O15, Inorganic chemistry, 1991, 30, 2707-2708.
    50. Agaskar P. A., Synth. React. Inorg. Met. Org. Chem., 1990, 4, 483.
    51. Agaskar P. A., Day V. W., Klemperer W. G., A new route to trimethylsilylated spherosilicates. Synthesis and structure of [Si12O18](OSiMe3)12, D3h-[Si14O21](OSiMe3)14, and C2v-[Si14O21](OSiMe3)14, Journal of the American Chemical Society, 1987, 109, 5554-5556.
    52. Agaskar P. A., Klemperer W. G., Synthesis and structure of titanium tetrathiolate and tantalumpentathiolate complexes. Metal-sulfur bonding in early transition metal compounds, Inorganica Chimica Acta, 1995, 229, 335-342.
    53. Agaskar P. A., Facile, high yield synthesis of functionalized spherosilicates: precursors of novel organolithic macromolecular materials, Inorganic chemistry, 1990, 29, 1603.
    54. Hasegawa, I., Co-hydrolysis products of tetraethoxysilane and methyltriethoxysilane in the presence of tetramethylammonium ions, Journal of Sol-Gel Science and Technology, 1993, 1, 57-63.
    55. Hasegawa I., Motojima D., Facile, high yield synthesis of functionalized spherosilicates: precursors of novel organolithic macromolecular materials, Journal of Organometallic Chemistry, 1992, 441, 373-380.
    56. Hasegawa I., Organomet. Chem., 1994, 1, 131.
    57. Hasegawa I., Ishida M., Motojima S., Synth. React. Inorg. Met. Org. Chem., 1994, 24, 1099.
    58. Feher F. J., Phillips S. H., Reactions of an incompletely-condensed silsesquioxane with Ph3PCH2: a new procedure for derivatizing silsesquioxanes with important implications for the chemistry of silica surfaces, Journal of Organometallic Chemistry, 1996, 521, 401-403.
    59. Feher F. J., Budzichowski T. A., Facile syntheses of new incompletely condensed polyhedral oligosilsesquioxanes: [(c-C5H9)7Si7O9(OH)3], [(c-C7H13)7Si7O9(OH)3], and [(c-C7H13)6Si6O7(OH)4], Organometallics, 1991, 10, 2526-2528.
    60. Feher F. J., Schwab J. J., Phosphine-Substituted Silsesquioxanes as Building Blocks for Organometallic Gels, Organometallics, 1995, 14, 4452-4453.
    61. Feher F. J., Blanski R. L., Olefin polymerization by vanadium-containing silsesquioxanes: synthesis of a dialkyl-oxo-vanadium(V) complex that initiates ethylene polymerization, Journal of the American Chemical Society, 1992, 114, 5886-5887.
    62. Feher F. J., Budzichowski T. A., Silasesquioxanes as ligands in inorganic and organometallic chemistry, Polyhedron, 1995, 14, 3239-3253.
    63. Feher F. J., Budazichowski T. A., New polyhedral oligosilsesquioxanes via the catalytic hydrogenation of aryl-containing silsesquioxanes, Journal of Organometallic Chemistry, 1989, 373, 153-163.
    64. Feher F. J., Weller K. J., Synthesis and characterization of labile spherosilicates: [(Me3SnO)8Si8O12] and [(Me4SbO)8Si8O12], Inorganic Chemistry, 1991, 30, 880-882.
    65. Feher F. J., Budzichowski T. A., New polyhedral oligosilsesquioxanes via the catalytic hydrogenation of aryl-containing silsesquioxanes, Journal of Organometallic Chemistry, 1989,373, 153-163.
    66. Feher F. J., Soulivong D., Eklund A. G., Wyndham K. D., Cross-metathesis of alkenes with vinyl-substituted silsesquioxanes and spherosilicates: A new method for synthesizing highly-functionalized Si/O frameworks, Chemical Communications, 1997, 1185-1186.
    67. Feher F. J., Newman D. A., Walzer J. F., Silsesquioxanes as models for silica surfaces, Journal of the American Chemical Society, 1989, 111, 1741-1748.
    68. Feher F. J., Budzichowski T. A., Blanski R. L., Weller K. J., Ziller J. W., Facile syntheses of new incompletely condensed polyhedral oligosilsesquioxanes: [(c-C5H9)7Si7O9(OH)3], [(c-C7H13)7Si7O9(OH)3], and [(c-C7H13)6Si6O7(OH)4], Organometallics., 1991, 10, 2526-2528.
    69. Feher F. J., D. Soulivong, G. T. lewis, Facile Framework Cleavage Reactions of a Completely Condensed Silsesquioxane Framework, Journal of the American Chemical Society, 1997, 119, 11323-11324.
    70. Feher F. J., Newman D. A., Enhanced silylation reactivity of a model for silica surfaces, Journal of the American Chemical Society, 1990.112,1931-1936.
    71. Feher F. J., Phillips S. H., Reactions of an incompletely-condensed silsesquioxane with Ph3PCH2: a new procedure for derivatizing silsesquioxanes with important implications for the chemistry of silica surfaces, Journal of Organometallic Chemistry, 1996, 521, 401-403.
    72. Feher F. J., Budzichowski T. A., Heterosilsesquioxanes: synthesis and characterization of Group 15 containing polyhedral oligosilsesquioxanes Organometallics., 1991, 10, 812-815.
    73. Feher F. J., Budzichowski T. A., Rahimian K., Ziller J. W., Reactions of incompletely-condensed silsesquioxanes with pentamethylantimony: a new synthesis of metallasilsesquioxanes with important implications for the chemistry of silica surfaces, Journal of the American Chemical Society, 1992,114,3859-3866.
    74. Feher F. J., Rahimian K., Budzichowski T. A., Ziller J. W., Thallium-Stabilized Silsesquioxides: Versatile Reagents for the Synthesis of Metallasilsesquioxanes, Including High-Valent Molybdenum-Containing Silsesquioxanes, Organometallics., 1995, 14, 3920-3926.
    75. Feher F. J., Phillips S. H., Ziller J. W., Facile and Remarkably Selective Substitution Reactions Involving Framework Silicon Atoms in Silsesquioxane Frameworks, Journal of the American Chemical Society, 1997, 119, 3397-3398.
    76. Feher F. J., Phillips S. H., Ziller J. W., Chem. Synthesis and structural characterization of a remarkably stable, anionic, incompletely condensed silsesquioxane framework, Commun., 1997, 9,829-830.
    77. Feher F. J., Weller K. J., Ziller J. W., Synthesis and characterization of an aluminosilsesquioxane framework that violates Loewenstein's rule, Journal of the American Chemical Society, 1992, 114, 9686-9688.
    78. Feher F. J., Weller K. J., Polyhedral aluminosilsesquioxanes as models for aluminosilicates: unique synthesis of anionic aluminum/silicon/oxygen frameworks, Organometallics., 1990, 9, 2638-2640.
    79. Feher F. J., Blanski R. L., Makromol. Chem. Makromol. Symp., 1993, 66, 95.
    80. Feher F. J., Blanski R. L., Olefin polymerization by vanadium-containing silsesquioxanes: synthesis of a dialkyl-oxo-vanadium(V) complex that initiates ethylene polymerization, Journal of the American Chemical Society, 1992, 114, 5886-5887.
    81. Feher F. J., Blanski R. L., Polyhedral oligometallasilasesquioxanes as models for silica-supported catalysts: Chromium attached to two vicinal siloxy groups, Journal of the Chemical Society, Chemical Communications, 1990, 1614-1616.
    82. Feher F. J., Hwang T. L., Schwab J. J., Shaka A. J., Ziller J. W., Structural assignment of a molybdenum-containing silsesquioxane which catalyzes the metathesis of olefins: DPFGSE-NOE and x-ray diffraction studies, Magnetic Resonance in Chemistry, 1997, 35, 730-734.
    83. Feher F. J., Tajima T. L., Synthesis of a Molybdenum-Containing Silsesquioxane Which Rapidly Catalyzes the Metathesis of Olefins, Journal of the American Chemical Society, 1994, 116, 2145-2146.
    84. Feher F. J., Budzichowski T. A., Ziller J. W., Synthesis and Characterization of Gallium-Containing Silsesquioxanes, Inorganic Chemistry, 1997, 36, 4082-4086.
    85. Feher F. J., Budzichowski T. A., Weller K. J., Polyhedral aluminosilsesquioxanes: soluble organic analogs of aluminosilicates, Journal of the American Chemical Society, 1989, 111, 7288-7289.
    86. Feher F. J., Walzer J. F., Synthesis and characterization of vanadium-containing silsesquioxanes,Inorganic Chemistry, 1991,30,1689-1694.
    87. Wright M. E., Schorzman D. A., Feher F. J., Synthesis and Thermal Curing of Aryl-Ethynyl-Terminated coPOSS Imide Oligomers: New Inorganic/Organic Hybrid Resins,Chemistry of Materials, 2003, 15, 264-268.
    88. Choi J., Harcup J., Laine R. M., Organic/Inorganic Hybrid Composites from Cubic Silsesquioxanes, Journal of the American Chemical Society, 2001, 123, 11420-11430.
    89. Tamaki R., Tanaka Y., Laine R. M., Octa(aminophenyl)silsesquioxane as a Nanoconstruction Site,Journal of the American Chemical Society, 2001, 123, 12416-12417.
    90. Tamaki R., Choi J., Laine R. M., A Polyimide Nanocomposite from Octa(aminophenyl)silsesquioxane, Chem. Mater., 2003, 15, 793-797.
    91. Laine R. M., Choi J., Organic-Inorganic Nanocomposites with Completely Defined Interfacial Interactions, Advanced Materials, 2001, 13, 800-803.
    92. Sellinger A., Laine R. M., Silsesquioxanes as Synthetic Platforms. Thermally Curable and Photocurable Inorganic/Organic Hybrids, Macromolecules, 1996, 29, 2327-2330.
    93. Zhang C., Laine R. M., Silsesquioxanes as synthetic platforms. II. Epoxy-functionalized inorganic-organic hybrid species, Journal of Organometallic Chemistry, 1996, 521, 199-201.
    94. Sellinger A., Laine R. M., Silsesquioxanes as Synthetic Platforms. 3. Photocurable, Liquid Epoxides as Inorganic/Organic Hybrid Precursors, Chem. Mater., 1996, 8, 1592-1593.
    95. Zhang C., Babonneau F., bonhomme C., Laine R. M., Soles C. L., Hristov H. A., Yee A. F., Highly Porous Polyhedral Silsesquioxane Polymers. Synthesis and Characterization, Journal of the American Chemical Society, 1998, 120, 8380-8391.
    96. Gravel M. C., Zhang C., Laine R. M., Octa(3-chloroammoniumpropyl) octasilsesquioxane, Applied Organometallic Chemistry, 1998, 13, 329-336.
    97. Zhang C., Laine R. M., Polym. Prepr. Div. Polym. Chem., ACS, 1997, 38, 120.
    98. Sellinger A., Lane R. M., Chu C., Palladium- and platinum-catalyzed coupling reactions of allyloxy aromatics with hydridosilanes and hydridosiloxanes: Novel liquid crystalline/organosilane materials, Journal of Polymer Science Part A: Polymer Chemistry, 1994, 32, 3069-3089.
    99. Waddon A. J., Zheng L., Farris R. J., Coughlin E. B., Nanostructured Polyethylene-POSS Copolymers: Control of Crystallization and Aggregation, Nano Letters, 2002, 2, 1149-1155.
    100. Baker E. S., Gidden J., Fee D. P., 3-Dimensional structural characterization of cationized polyhedral oligomeric silsesquioxanes (POSS) with styryl and phenylethyl capping agents,International Journal of Mass Spectrometry, 2003, 227, 205-216.
    101. Gidden J., Kemper P. R., Shammel E., Application of ion mobility to the gas-phase conformational analysis of polyhedral oligomeric silsesquioxanes (POSS), International Journal of Mass Spectrometry, 2003, 222, 63-73.
    102. Jug K., Wichmann D., Growth patterns of chlorosiloxanes, Journal of Molecular Structure: THEOCHEM, 1997, 398-399.
    103. Dilger H., Roduner E., Scheuermann R., Mass and temperature effects on the hyperfine couplingof atomic hydrogen isotopes in cages, Physica B: Condensed Matter, 2000, 289, 482-486.
    104. Tejerina B., Gordon M. S., Insertion Mechanism of N2 and O2 into Tn(n = 8, 10, 12)-Silsesquioxane Framework, The journal of physical chemistry Part B, 2002, 106, 11764-11770.
    105. Wallace W. E., Guttman C. M., Antonucci J. M., Molecular structure of silsesquioxanes determined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, Journal of the American Society for Mass Spectrometry, 1999, 10, 224-230.
    106. Fraile J. M., Garcia J. I., Mayoral J. A., Pires E., On the Nature of the Lewis Acid Sites of Aluminum-Modified Silica. A Theoretical and Experimental Study, The journal of physical chemistry Part B, 1999, 103, 1664-1670.
    107. Davidova I. E., Gribov L. A., Maslov I. V., Theoretical study of silsesquioxane organometallic complex structure and IR spectrum. I. Object of investigation, implemented approaches and construction of molecular models, Journal of Molecular Structure, 1998, 443, 67-88.
    108. Lorenz V., Fischer A., Edelmann F. T., Silsesquioxane chemistry.: Part 10. Silsesquioxane silanolate complexes of samarium and scandium, Journal of Organometallic Chemistry, 2002, 647, 245-249.
    109. Lorenz V., Fischer A., Edelmann F. T., Silsesquioxane chemistry.: Part 10. Silsesquioxane silanolate complexes of samarium and scandium, Journal of Organometallic Chemistry, 2002, 647, 245-245.
    110. Edelmann F. T., Giemann S., Fischer A., Silsesquioxane Chemistry, 4.: Silsesquioxane Complexes of Titanium(III) and Titanium(IV), Journal of Organometallic Chemistry, 2001, 620, 80-89.
    111. Edelmann F. T., Giemann S., Fischer A., Silsesquioxane Chemistry, 5. Retention of the Cu4O4 core upon formation of the first copper(I) silsesquioxane from tetrameric copper(I)-t-butoxide,Inorganic Chemistry Communications, 2000, 3, 658-661.
    112. Lorenz V., Spoida M., Fischer A., Electro- and spectroelectrochemistry of platinum(II) bipyridine complexes and related species, Journal of Organometallic Chemistry, 2001,625,1-8.
    113. Lorenz V., Fischer A., Edelmann F. T., Silsesquioxane chemistry, 6 : The first beryllium silsesquioxane: synthesis and structure of [Cy7Si7O12BeLi]2·2THF, Inorganic Chemistry Communications, 2000, 3, 292-295.
    114. Fu B. X., Hsiao B. S., Nanoscale reinforcement of polyhedral oligomeric silsesquioxane (POSS) in polyurethane elastomer, Polymmer International, 2000, 49, 437-440.
    115. Davidova I. E., Gribov L. A., Maslov I. V., Theoretical study of silsesquioxane organometalliccomplex structure and IR spectrum. I. Object of investigation, implemented approaches and construction of molecular models, Journal of Molecular Structure, 1998, 443, 67-88.
    116. Fasce D. P., Williams R.J. J., Pascault M. F., Synthesis and Characterization of Polyhedral Silsesquioxanes Bearing Bulky Functionalized Substituents, Macromolecules, 1999, 32, 4757-4763.
    117. Earley C. W., A Quantum Mechanical Investigation of Silsesquioxane Cages, The Journal of Physical Chemistry, 1994, 98, 8693-8698.
    118. Pereira J. C. G., Carlow C. R. A., Price G. D., Ab Initio Studies of Silica-Based Clusters. Part I. Energies and Conformations of Simple Clusters, The Journal of Physical Chemistry Part A, 1999, 103, 3252-3267.
    119. Pereira J. C. G., Carlow C. R. A., Price G. D., Ab Initio Studies of Silica-Based Clusters. Part II. Structures and Energies of Complex Clusters, The Journal of Physical Chemistry Part A, 1999, 103, 3268-3284.
    120. Haddad T. S., Lichtenhan J. D., Hybrid Organic-Inorganic Thermoplastics: Styryl-Based Polyhedral Oligomeric Silsesquioxane Polymers, Macromolecules, 1996, 29, 7302-7304.
    121. Mather P. T., Jeon H. G., Mechanical Relaxation and Microstructure of Poly(norbornyl-POSS) Copolymers, Macromolecules, 1999, 32, 1194-1203.
    122. Rom O., Uribe A., Mather P. T., Viscoelastic and morphological behavior of hybrid styryl-based polyhedral oligomeric silsesquioxane (POSS) copolymers, Journal of Polymer Science Part B: Polymer Physics, 1998, 36, 1857-1872.
    123. Fu B. X., Hsiao B. S., Pagola S., Structural development during deformation of polyurethane containing polyhedral oligomeric silsesquioxanes (POSS) molecules, Polymer, 2001, 42, 599-611.
    124. Xu H., Kuo S., Preparations, Thermal Properties, and Tg Increase Mechanism of Inorganic/Organic Hybrid Polymers Based on Polyhedral Oligomeric Silsesquioxanes,Macromolecules, 2002, 35, 8788-8793.
    125. Kim B., Mather P. T., Amphiphilic Telechelics Incorporating Polyhedral Oligosilsesquioxane: 1. Synthesis and Characterization, Macromolecules, 2002, 35, 8378-8384.
    126. Zhang W., Fu B. X.., Mather P. T., Effect of Methyl Methacrylate/Polyhedral Oligomeric Silsesquioxane Random Copolymers in Compatibilization of Polystyrene and Poly(methyl methacrylate) Blends, Macromolecules, 2002, 35, 8029-8038.
    127. Leu C., Chang Y., Wei K., Polyimide-Side-Chain Tethered Polyhedral Oligomeric Silsesquioxane Nanocomposites for Low-Dielectric Film Applications, Chemistry of Material, 2003, 15,3721-3727.
    128. Fesh F. J., Newman D. A., Walzer J. F., Silsesquioxanes as models for silica surfaces, Journal of the American Chemical Society, 1989, 111, 1741-1748.
    129. Koh K., Sugiyama S., Morinaga T., Precision Synthesis of a Fluorinated Polyhedral Oligomeric Silsesquioxane-Terminated Polymer and Surface Characterization of Its Blend Film with Poly(methyl methacrylate), Macromolecules, 2005, 38, 1264-1270.
    130. Ohno K., Sugiyama S., Koh K., Living Radical Polymerization by Polyhedral Oligomeric Silsesquioxane-Holding Initiators: Precision Synthesis of Tadpole-Shaped Organic/Inorganic Hybrid Polymers, Macromolecules, 2004, 37, 8517-8522.
    131. Zhang C., Laine R. M., Hydrosilylation of Allyl Alcohol with [HSiMe2OSiO1.5]8: Octa(3-hydroxypropyldimethylsiloxy)octasilsesquioxane and Its Octamethacrylate Derivative as Potential Precursors to Hybrid Nanocomposites, Journal of the American Chemical Society, 2000, 122, 6979-6988.
    132. Choi J., Kim S. G., Laine R. M., Organic/Inorganic Hybrid Epoxy Nanocomposites from Aminophenylsilsesquioxanes, Macromolecules, 2004, 37, 99-109.
    133. Abad M. J., Barral L., Fasce D.P., Williams R. J. J., Epoxy Networks Containing Large Mass Fractions of a Monofunctional Polyhedral Oligomeric Silsesquioxane (POSS), Macromolecules, 2003, 36, 3128-3135.
    134. Liu H., Zhang W., Zheng S., Montmorillonite intercalated by ammonium of octaaminopropyl polyhedral oligomeric silsesquioxane and its nanocomposites with epoxy resin, Polymer, 2005, 46, 157-165.
    135. Ni Y., Zheng S., Nie K., Morphology and thermal properties of inorganic–organic hybrids involving epoxy resin and polyhedral oligomeric silsesquioxanes, Polymer, 2004, 45, 5557-5568.
    136. Lee Y., Huang J., Kuo S., Synthesis and characterizations of a vinyl-terminated benzoxazine monomer and its blending with polyhedral oligomeric silsesquioxane (POSS), Polymer, 2005, 46, 2320-2330.
    137. Kim K., Keum D., Chujo Y., Organic-Inorganic Polymer Hybrids Using Polyoxazoline Initiated by Functionalized Silsesquioxane, Macromolecules, 2003, 36, 867-875.
    138. Ohno K., Sugiyama S., Koh K., Living Radical Polymerization by Polyhedral Oligomeric Silsesquioxane-Holding Initiators: Precision Synthesis of Tadpole-Shaped Organic/Inorganic Hybrid Polymers, Macromolecules, 2004, 37, 8517-8522.
    139. Costa R. O. R., Vasconcelos W. L., Organic/Inorganic Nanocomposite Star Polymers via AtomTransfer Radical Polymerization of Methyl Methacrylate Using Octafunctional Silsesquioxane Cores, Macromolecules, 2001, 34, 5398-5407.
    140. Tsuchida A., Bolln C., Sernetz F. G., Ethene and Propene Copolymers Containing Silsesquioxane Side Groups, Macromolecules, 1997, 30, 2818-2824.
    141. Turri S., Levi M., Structure, Dynamic Properties, and Surface Behavior of Nanostructured Ionomeric Polyurethanes from Reactive Polyhedral Oligomeric Silsesquioxanes, Macromolecules, 2005, 38, 5569-5574.
    142. Liu H., Zheng S., Polyurethane Networks Nanoreinforced by Polyhedral Oligomeric Silsesquioxane, Macromolecular Rapid communications, 2005, 26, 196-200.
    143. Lichtenhan J. D., Vu N. Q., Carter J. A., Silsesquioxane-siloxane copolymers from polyhedral silsesquioxanes, Macromolecules, 1993, 26, 2141-2142.
    144. Chou C., Hsu S., Dinakaran K., Synthesis and Characterization of Luminescent Polyfluorenes Incorporating Side-Chain-Tethered Polyhedral Oligomeric Silsesquioxane Units, Macromolecules, 2005, 38, 745-751.
    145. Lin W., Chen W., Wu W., Synthesis and Optoelectronic Properties of Starlike Polyfluorenes with a Silsesquioxane Core, Macromolecules, 2004, 37, 2335-2341.
    146. Ni Y., Zheng S., A Novel Photocrosslinkable Polyhedral Oligomeric Silsesquioxane and Its Nanocomposites with Poly(vinyl cinnamate), Chemistry of Material, 2004, 16, 5141-5148.
    147. Liu Y., Meng F., Zheng S., Poly(4-vinylpyridine) Nanocrosslinked by Polyhedral Oligomeric Silsesquioxane, Macromolecular Rapid communications, 2005, 26, 920-925.
    148. Zhu W., Field-effect mobilities of polyhedral oligomeric silsesquioxanes anchored semiconductingpolymers, Applied Surface Science, 2004, 221, 358-363.
    149. Iacono S. T., Vij A., Grabow W., Facile synthesis of hydrophobic fluoroalkyl functionalized silsesquioxane nanostructures, Chemical Communications, 2007, 47, 4992-4994.
    150. Kim B. S., Mather P. T., Morphology, Microstructure, and Rheology of Amphiphilic Telechelics Incorporating Polyhedral Oligosilsesquioxane, Macromolecules, 2006, 39, 9253-9260.
    151. Kim B. S., Mather P. T., Amphiphilic telechelics with polyhedral oligosilsesquioxane (POSS) end-groups: Dilute solution viscometry, Polymer, 2006, 47, 6202-6207.
    152. Kim B. S., Mather P. T., Amphiphilic Telechelics Incorporating Polyhedral Oligosilsesquioxane: 1. Synthesis and Characterization, Macromolecules, 2002, 35, 8378-8384.
    153. Lee Y. J., Huang J. M., Kuo S. W., Chang F. C., Low-dielectric, nanoporous polyimide films prepared from PEO–POSS nanoparticles, Polymer, 2005, 46, 10056-10065.
    154. Miao J. J., Cui L., Lau H. P., Mather P. T., Zhu, L. Self-Assembly and Chain-Folding in Hybrid Coil-Coil-Cube Triblock Oligomers of Polyethylene-b-Poly(ethylene oxide)-b-Polyhedral Oligomeric Silsesquioxane, Macromolecules, 2007, 40, 5460-5470.
    155. Carniato F., Boccaleri E., Marchese L., A versatile route to bifunctionalized silsesquioxane (POSS): Synthesis and characterisation of Ti-containing aminopropylisobutyl-POSS, Dalton Transactions, 2008, 36-39.
    156. Mya K. Y., Li X., Chen L., Li J., He C., Core-Corona Structure of Cubic Silsesquioxane-Poly(Ethylene Oxide) in Aqueous Solution: Fluorescence, Light Scattering, and TEM Studies, Journal of Physical Chemistry Part B, 2005, 109, 9455-9462.
    157. Mya K. Y., Pramoda K. P., He C. B., Crystallization behavior of star-shaped poly(ethylene oxide) with cubic silsesquioxane (CSSQ) core, Polymer, 2006, 47, 5035-5043.
    158. Lee J., Chao H. J., Cho N S., Enhanced efficiency of polyfluorene derivatives: Organic-inorganic hybrid polymer light-emitting diodes, Journal of Polymer Science Part A: Polymer Chemistry, 2006, 44, 2943-2954.
    159. Laine R. M., Choi J., Lee I., Nanobuilding blocks based on the [OSiO1.5]x (x= 6, 8, 10) octasilsesquioxanes, Jouranl of Materials Chemistry, 2005, 35-36, 3725-3744.
    160. Ni Y., Zheng S., Epoxy Resin Containing Octamaleimidophenyl Polyhedral Oligomeric Silsesquioxane, macromolecular chemistry and physics, 2005, 206, 2075-2083.
    161. Hussain H., Mya K. Y., Xiao Y., He C. B., Octafunctional cubic silsesquioxane (CSSQ)/poly(methyl methacrylate) nanocomposites: Synthesis by atom transfer radical polymerization at mild conditions and the influence of CSSQ on nanocomposites, Journal of Polymer Science Part A: Polymer Chemistry, 2008, 46, 766-776.
    162.Strachota A., Whelan P., Kriz J., Formation of nanostructured epoxy networks containing polyhedral oligomeric silsesquioxane (POSS) blocks, Polymer, 2007, 48, 3041-3058
    1. Klein L. L., West J. K., The sol-gel process, Chemical Reviews, 1990, 90, 33-72.
    2. Novak B. M., Hybrid Nanocomposite Materials - between inorganic glasses and organic polymers, Advanced Materials, 1993, 5, 422-433.
    3. Wang B., Wilkes G. L., Novel hybrid inorganic-organic abrasion-resistant coatings prepared by a sol-gel process, Journal of Macromolecular Science - Pure and Applied Chemistry, 1994, 31, 249-260.
    4. Dire S., Bois L., Babonneau F., Poly. Prepr., 1991, 32, 501.
    5. Cornelius C., Hibshman C., Marand E., Hybrid organic-inorganic membranes , Separation and Purification Technology, 2001, 25, 181-193.
    6. Muramatsu H., Corriu R., Boury B., Solid State Hydrolysis/Polycondensation of Alkoxysilane: Access to Crystal-Like Silicon-Based Hybrid Materials, Journal of the American Chemical Society, 2003, 125, 854-855.
    7. Chujo Y., Thara E., Kure S., Seagusa T., Synthesis of triethoxysilyl-terminated polyoxazolines and their cohydrolysis polymerization with tetraethoxysilane, Macromolecules, 1993, 26, 5681-5686.
    8. Klein L. L., West J. K., The sol-gel process, Chemical Reviews, 1990, 90, 33-72.
    9. Wen J., Wilkes, G. L., Organic/Inorganic Hybrid Network Materials by the Sol-Gel Approach,Chemistry of Materials, 1996, 8, 1667-1681.
    10. Blanchard A. F., Elasticity theory and crosslinking of reinforced rubber, Journal of Applied Polymer Science, 1998, 67, 119-129.
    11. Berry J. P., P. Int. Rubb C., 1959, 396.
    12. Blanchard A. F., Appl. Sci. Rubber., 1961, 430.
    13. Wang S., Song C., Chen G., Characteristics and biodegradation properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/organophilic montmorillonite (PHBV/OMMT) nanocomposite, Polymer Degradation and Stability, 87, 69-76.
    14. Mascia L., Zhang Z., Carbon fibre composites based on polyimide/silica ceramers: aspects of structure-properties relationship, Composites, 1996, 27, 1211-1221.
    15. Cornelius C., Hibshman C., Marand E., Hybrid organic-inorganic membranes , Separation and Purification Technology, 2001, 25, 181-193.
    16. Allrock H. R., Inorganic - Organic Polymers, Advanced Materials, 1994, 6, 106-115.
    17. Choi J., Harcup J., Yee A. F., Laine R. M., Organic/Inorganic Hybrid Composites from CubicSilsesquioxanes, Jounal of the American Chemical Society, 2001,123, 11420-11430.
    18. Choi J., Kim S. G., Laine R. M., Organic/Inorganic Hybrid Epoxy Nanocomposites from Aminophenylsilsesquioxanes, Macromolecules, 2004, 37, 99-109.
    19. Ni Y., Zheng S., Morphology and thermal properties of inorganic–organic hybrids involving epoxy resin and polyhedral oligomeric silsesquioxanes, Polymer, 2004, 45, 5557-5568.
    20. Lee A., Lichtenhan J. D., Viscoelastic Responses of Polyhedral Oligosilsesquioxane Reinforced Epoxy Systems, Macromolecules, 1998, 31, 4970-4974.
    21. Fu B. X., Hsiao B. S., White H., Nanoscale reinforcement of polyhedral oligomeric silsesquioxane (POSS) in polyurethane elastomer, polymer international., 2000, 49, 437-440.
    22. Li G. Z., Wang L., Toghiani H., etc., Viscoelastic and Mechanical Properties of Epoxy/Multifunctional Polyhedral Oligomeric Silsesquioxane Nanocomposites and Epoxy/Ladderlike Polyphenylsilsesquioxane Blends, Macromolecules, 2001, 34, 8686-8693.
    23. Abad M. J., Barral L., Fasce D. F., Williams R. J. J., Epoxy Networks Containing Large Mass Fractions of a Monofunctional Polyhedral Oligomeric Silsesquioxane (POSS), Macromolecules, 2003, 36, 3128-3135.
    24. Matejka L., Strachota A., Plestil J., Whelan P., Steinhart M., Slouf M., Epoxy Networks Reinforced with Polyhedral Oligomeric Silsesquioxanes (POSS). Structure and Morphology,Macromolecules, 2004, 37, 9449-9456.
    25. Strachota A., Kroutilova I., Kovarova J. Epoxy networks reinforced with polyhedral oligomeric silsesquioxanes (POSS). Thermomechanical properties, Macromolecules, 2004, 37, 9457-9464.
    26. Liu H., Zheng S., Nie K., Morphology and Thermomechanical Properties of Organic-Inorganic Hybrid Composites Involving Epoxy Resin and an Incompletely Condensed Polyhedral Oligomeric Silsesquioxane, Macromolecules, 2005, 38, 5088-5097.
    27. Laine R. M., Choi J., Lee I., Organic-Inorganic Nanocomposites with Completely Defined Interfacial Interactions, Advanced Materials, 2001, 13, 800-803.
    28. Choi J., Yee A. F., Laine R. M., Organic/Inorganic Hybrid Composites from Cubic Silsesquioxanes. Epoxy Resins of Octa(dimethylsiloxyethylcyclohexylepoxide) Silsesquioxane,Macromolecules, 2003, 36, 5666-5682.
    29. Choi J., Tamaki R., Kim S. G., Organic/Inorganic Imide Nanocomposites from Aminophenylsilsesquioxanes, Chem. Mater., 2003, 15, 3365-3375.
    30. Choi J., Yee A. F., Laine R. M., Toughening of cubic silsesquioxane epoxy nanocomposites using core-shell rubber particles: A three-component hybrid system, Macromolecules, 2004, 37,3267-3276.
    31. Fu B. X., Namani M., Lee A., Influence of phenyl-trisilanol polyhedral silsesquioxane on properties of epoxy network glasses, Polymer, 2003, 44, 7739-7747.
    32. Chen W. Y., Wang Y. Z., Kuo S. W., Thermal and dielectric properties and curing kinetics of nanomaterials formed from poss-epoxy and meta-phenylenediamine, Polymer, 2004, 45, 6897-6908.
    33. Koh, K., Sugiyama, S., Morinaga, T., Precision Synthesis of a Fluorinated Polyhedral Oligomeric Silsesquioxane-Terminated Polymer and Surface Characterization of Its Blend Film with Poly(methyl methacrylate), Macromolecules, 2005, 38, 1264-1270.
    34. Laine R. M., Choi J., Lee I., Nanobuilding blocks based on the [OSiO1.5]x (x= 6, 8, 10) octasilsesquioxanes, Journal of materials chemistry, 2005, 35-36, 3725-3744.
    35. Ni Y., Zheng S., Epoxy Resin Containing Octamaleimidophenyl Polyhedral Oligomeric Silsesquioxane, Macromolecular chemistry and physics, 2005, 206, 2075-2083.
    36. Wheeler P. A., Fu B. X., Lichtenhan J. D., Incorporation of metallic POSS, POSS copolymers, and new functionalized POSS compounds into commercial dental resins, Journal of Applied Polymer Science, 2006, 102, 2856-2862.
    37. Medina F., Salagre P., Sueiras J. E., Structural characteristics and catalytic performance of nickel catalysts for selective hydrogenation of 1,6-hexanedinitrile, Journal of molecular catalysis, 1993, 81, 363-371.
    38. Cordier G., Fouilloux P., Laurain N., etc., US Patent No.5777166, 1998.
    39. Serra M., Salagre P., Cesteros F., Nickel–Magnesia Catalysts: An Alternative for the Hydrogenation of 1,6-Hexanedinitrile, Journal of Catalysis, 2002, 209, 202-209.
    40. Chojecki A. Veprek M., Muller T. E., Tailoring Raney-catalysts for the selective hydrogenation of butyronitrile to n-butylamine, Journal of Catalysis, 2007, 245, 237-248.
    41. Nystrom R. F., Reduction of Organic Compounds by Mixed Hydrides. I. Nitriles, Journal of the American Chemical Society, 1955, 77, 2544-2545.
    42. Pankaskie M. C., Scholtz S. J., The preparation of 3-Aminoxy-1-amino[1,1 -3H2]propane, Journal of Labelled Compounds and Radiopharmaceuticals, 2006, 27, 167-170.
    43. Felix C. P., Khatimi N., Laurent A. J., Reduction of 5-(Trifluoromethyl)isoxazoles with Lithium Aluminum Hydride: Synthesis of (2,2,2-Trifluoroethyl)aziridines, Journal of organic chemistry, 1995, 60, 3907-3909.
    44. Sasaki Y., Murphy W. A., Heiman M. L., etc., J. Med. Chem., 1987, 30, 1162.
    45. Strachota A., Whelan P., Kriz J., Formation of nanostructured epoxy networks containing polyhedral oligomeric silsesquioxane (POSS) blocks, Polymer, 2007, 48, 3041-3058.
    46. Feast W. J., Munro H. S., Richarsa R. W., etc., Polymer Surface and Interface II, John Wiley & Sons: Chichester, 1993.
    47. Affrossman S., Bertrand R., Hartshome M., Surface Segregation in Blends of Polystyrene and Perfluorohexane Double End Capped Polystyrene Studied by Static SIMS, ISS, and XPS, Macromolecules, 1996, 29, 5432-5437.
    48. Youngblood J. P., McCarthy T. J., Ultrahydrophobic Polymer Surfaces Prepared by Simultaneous Ablation of Polypropylene and Sputtering of Poly(tetrafluoroethylene) Using Radio Frequency Plasma, Macromolecules, 1999, 32, 6800-6806.
    49. Li X. F., Chiellini E., Galli G., Semifluorinated Aromatic Side-Group Polystyrene-Based Block Copolymers: Bulk Structure and Surface Orientation Studies, Macromolecules, 2002, 35, 8078-8087.
    50. Hirao A., Koide G., Sugiyama K., Synthesis of Novel Well-Defined Chain-End- and In-Chain-Functionalized Polystyrenes with One, Two, Three, and Four Perfluorooctyl Groups and Their Surface Characterization, Macromolecules, 2002, 35, 7642-7651.
    51. Orourke P. A. C., Jalbert C. A., Yuan C., Measurement and Modeling of End Group Concentration Depth Profiles for -Fluorosilane Polystyrene and Its Blends, Macromolecules, 2003, 36, 2956-2966.
    52. Koberstein J. T., Molecular design of functional polymer surfaces, Journal of Polymer Science Part B: Polymer Physics, 2004, 42, 2942-2956.
    53. Iacono S. T., Vij A., Grabow W., Facile synthesis of hydrophobic fluoroalkyl functionalized silsesquioxane nanostructures, Chemical Communications, 2007, 47, 4992-4994.
    1. Kimura Y., Nango M., Kurokie N., J. Polym. Sci., Polym. Symp., 1984, 71, 167.
    2. Nango M., Klotz L. M., CATALYSIS BY POLYETHYLENIMINE DERIVATIVES WITH TWO FUNCTIONAL GROUPS Polym. Journal of Polymer Science Part A: Polymer Chemistry, 1978, 16, 1265-1273.
    3. Nguyen, H.-K., Lemieux, P., Vinogradov, S.V., Evaluation of polyether-polyethyleneimine graft copolymers as gene transfer agents, Gene Therapy, 2000, 7, 126-138.
    4. Towns, J.K., Regnier, F.E., Journal of Chromatography, 1990, 516 , 69.
    5. Helander, I.M., Alakomi, H.-L., Latva-Kala, K., Polyethyleneimine is an effective permeabilizer of Gram-negative bacteria, Microbiology, 1997, 143, 3193-3199.
    6. Vinogradov, S., Batrakova, E., Kabanov, A., Poly(ethylene glycol)-polyethyleneimine NanoGel(TM) particles: Novel drug delivery systems for antisense oligonucleotides, Colloids and Surfaces B: Biointerfaces, 1999, 16, 291-304.
    7. Andersson, M.M., Hatti-Kaul, R., Protein stabilising effect of polyethyleneimine, Journal of Biotechnology, 1999, 72, 21-31.
    8. Burgess, R.R., Use of polyethyleneimine in purification of DNA-binding proteins, Methods in Enzymology, 1991, 208, 3-10.
    9. Zabner J., Couture L. A., Gregory R. J., Adenovirus-mediated gene transfer transiently corrects the chloride transport defect in nasal epithelia of patients with cystic fibrosis, Cell, 1993, 75, 207-216.
    10. Crystal R. G., Mcelvaney N. G., Rosenfeld M. A., Administration of an adenovirus containing the human CFTR cDNA to the respiratory tract of individuals with cystic fibrosis, Nature Genetics, 1994, 8, 42-50.
    11. Knwles M. R., Hohneker K. W., Zhou Z., A controlled study of adenoviral-vector-mediated gene transfer in the nasal epithelium of patients with cystic fibrosis, New Engl. J. Med., 1995, 333, 823-831.
    12. Caplan N. J., Alton E., Middleton P. G., Liposome-mediated CFTR gene transfer to the nasal epithelium of patients with cystic fibrosis, Nature Medicine, 1995, 1, 39-46.
    13. Porteous D. S., Dorin J. R., Mclachlan G., Evidence for safety and efficacy of DOTAP cationic liposome mediated CFTR gene transfer to the nasal epithelium of patients with cystic fibrosis,Gene Therapy, 1997, 4, 210-218.
    14. Gill D. R., Southern K. W., Mofford K. A., A placebo-controlled study of liposome-mediated gene transfer to the nasal epithelium of patients with cystic fibrosis, Gene Therapy, 1997, 4, 199-209.
    15. Nabel G. J., Nabel E. G., Yang Z. Y., Proc. Natl. Acad. Sci. USA, 1993, 90, 11307.
    16. Rubin J., Galanis E., Pitot H. C., Phase I study of immunotherapy of hepatic metastases of colorectal carcinoma by direct gene transfer of an allogeneic histocompatibility antigen, HLA-B7,Gene Therapy, 1997, 4, 419-425.
    17. Vogelzang N. J., Lestingi T. M., Sudakoff G., Phase I study of immunotherapy of metastatic renal cell carcinoma by direct gene transfer into metastatic lesions, Gene Therapy, 1994, 5, 1357-1370.
    18. Dunlap D. D., Maggi A., Soria M. R., Nanoscopic structure of DNA condensed for gene delivery,Nucleic Acids Research, 1997, 25, 3095-3101.
    19. Godbey W. T., Wu K. K., Mikos A. G., Poly(ethylenimine) and its role in gene delivery, Journal of Controlled Release, 1999, 60, 149-160.
    20. Wightman L., Kircheis R., Ros?sler V., Different behavior of branched and linear polyethylenimine for gene delivery in vitro and in vivo, Journal of Gene Medicine, 2001, 3 ,362-372.
    21. Sungtae Kim, Joon Sig Choi, Hyung Suk Jang, Hearan Suh, and Jongsang Park. Bull. Korean Chem. Soc. 2001, 22, 1069.
    22. Adina H., Hagai C., Ronny N., Alkylated Polyethyleneimine/Polyoxometalate Synzymes as Catalysts for the Oxidation of Hydrophobic Substrates in Water with Hydrogen Peroxide, Journal of American Chemical Society. 2004, 126, 11762-11763.
    23. Ren S., Yang S., Zhao Y., Yu T., Xiao X., Preparation and characterization of an ultrahydrophobic surface based on a stearic acid self-assembled monolayer over polyethyleneimine thin films,Surface Science. 2003, 546, 64-74.
    24. Lorenz V., Fischer A., Edelmann F. T., Silsesquioxane chemistry.: Part 10. Silsesquioxane silanolate complexes of samarium and scandium, Journal of Organometallic chemistry, 2002, 647, 245-249.
    25. Edelmann F. T., Giemann S., Fischer A., Silsesquioxane Chemistry, 4.: Silsesquioxane Complexes of Titanium(III) and Titanium(IV), Inorg. Journal of Organometallic chemistry, 2001, 620, 80-89.
    26. Edelmann F. T., Giemann S., Fischer A., Silsesquioxane Chemistry, 5. Retention of the Cu4O4 core upon formation of the first copper(I) silsesquioxane from tetrameric copper(I)-t-butoxide,Inorganic chemistry communications, 2000, 3, 658-661.
    27. Lorenz V., Spoida M., Fischer A., Silsesquioxane chemistry: Part 5. New silyl-functionalized silsesquioxanes, Journal of Organometallic chemistry., 2001,625,1-6.
    28. Lorenz V., Fischer A., Edelmann F. T., Silsesquioxane chemistry, 6. The first beryllium silsesquioxane: Synthesis and structure of [Cy7Si7O12BeLi]2·2THF, Inorganic Chemistry Communications, 2000, 3, 292-295.
    29. Fu B. X., Hsiao B. S.., Nanoscale reinforcement of polyhedral oligomeric silsesquioxane (POSS) in polyurethane elastomer, polymer international, 2000, 49, 437-440.
    30. Davidova I. E., Gribov L. A., Maslov I. V., Theoretical study of silsesquioxane organometallic complex structure and IR spectrum. I. Object of investigation, implemented approaches and construction of molecular models, Jounal of Molecular Structure, 1998, 443, 67-88.
    31. Koh, K., Sugiyama, S., Morinaga, T., Precision Synthesis of a Fluorinated Polyhedral Oligomeric Silsesquioxane-Terminated Polymer and Surface Characterization of Its Blend Film with Poly(methyl methacrylate), Macromolecules, 2005, 38, 1264-1270.
    32. Iacono S. T., Vij A., Grabow W., Facile synthesis of hydrophobic fluoroalkyl functionalized silsesquioxane nanostructures, Chemical Communications, 2007, 47, 4992-4994.
    1. Wicterler O., Lim D., Nature, 1960, 185, 117.
    2. Drossi D., Kajiwara K., Osada Y., etc., Polymer gels, Plenum, New York, 1991.
    3. Okano T., Biorelated Polymer and Gels, Academic Press, Boston, 1998.
    4. Stile R. A., Healy K. E., Poly(N-isopropylacrylamide)-Based Semi-interpenetrating Polymer Networks for Tissue Engineering Applications. 1. Effects of Linear Poly(acrylic acid) Chains on Phase Behavior,Biomacromolecules, 2002, 3, 591-600.
    5. Holtz, J.H., Asher, S.A., Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials,Nature, 1997, 389, 829-832.
    6. Nowak, A.P., Breedveld, V., Pakstis, L., Rapidly recovering hydrogel scaffolds from self-assembling diblock copolypeptide amphiphiles,Nature, 2002, 417, 424-428.
    7. Hu, Z., Lu, X., Gao, J., Hydrogel opals,Advanced Materials, 2001, 13, 1708-1712.
    8. Metters, A.T., Anseth, K.S., Bowman, C.N., Fundamental studies of a novel, biodegradable PEG-b-PLA hydrogel,Polymer, 2000, 41, 3993-4004.
    9. Alvarez-Lorenzo, C., Concheiro, A., Reversible adsorption by a pH- and temperature-sensitive acrylic hydrogel,Journal of Controlled Release, 2002, 80, 247-257.
    10. Wu, C., Zhou, S., Volume Phase Transition of Swollen Gels: Discontinuous or Continuous?,Macromolecules, 1997, 30, 574-576.
    11. Wu, C., Zhou, S., A comparison between the‘coil-to-globule’transition of linear chains and the“volume phase transition”of spherical microgels,Polymer, 1998, 39, 4609-4619.
    12. Kujawa, P., Winnik F. M., Volumetric Studies of Aqueous Polymer Solutions Using Pressure Perturbation Calorimetry: A New Look at the Temperature-Induced Phase Transition of Poly(N-isopropylacrylamide) in Water and D2O,Macromolecules, 2001, 34, 4130-4135.
    13. Hirokawa, Y., Tanaka, Y., Volume phase transition in a nonionic gel,The Journal of Chemical Physics, 1984, 81, 6379-6380.
    14. Matuo E. S., Tanaka, T., J. Chem. Phys., 1988, 89, 1695.
    15. Suzuki A., Tanaka T., Phase transition in polymer gels induced by visible light,Nature, 1990, 346, 345-347.
    16. Bae, Y. H., Okano, T., Kim, S. W., Temperature dependence of swelling of crosslinked poly(N,N′-alkyl substituted acrylamides) in water, Journal of Polymer Science, Part B: Polymer Physics, 1990, 28, 923-936.
    17. Otake, K., Inemnate, H., Konno, M., Phase Separation Induced Mechanical Transition of Poly(N-isopropylacrylamide)/Water Isochore Gels,Macromolecules, 1994, 27, 5060-5066.
    18. Inomata, H., Goto, S., Ohtake K., Effect of additives on phase transition of N-isopropylacrylamide gels,Langmuir, 1992, 8, 687-690.
    19. Otake, K., Inemnate, H., Konno, M., Phase Separation Induced Mechanical Transition of Poly(N-isopropylacrylamide)/Water Isochore Gels,Macromolecules, 1994, 27, 5060-5066.
    20. Inomata, H., Wada, N., Yagi, Y., Swelling behaviours of N-alkylacrylamide gels in water: effects of copolymerization and crosslinking density,Polymer, 1995, 36, 875-877.
    21. Yin, X., Hoffman, A. S., Stayton P. S., Poly(N-isopropylacrylamide-co-propylacrylic acid) copolymers that respond sharply to temperature and pH, Biomacromolecules, 2006, 7, 1381-1385.
    22. Tac, G. K. B., Temperature modulated protein release from pH/temperature-sensitive hydrogels,Biomaterials, 1999, 20, 517-521.
    23. Dharam, D., Chatterji, P. R., Swelling and deswelling pathways in non-ionic poly(N-isopropylacrylamide) hydrogels in presence of additives, Polymer, 2000, 41, 6133-6143.
    24. Zhu P. W., Nappper D. H., J. Colloid interface Sci., 1996, 117, 343.
    25. Zhu P. W., Nappper D. H., Volume phase transitions of poly(N-isopropylacrylamide) latex particles in mixed water-N,N-dimethylformamide solutions, Chemical physics Letters, 1996, 256, 51-56.
    26. Zhu P. W., Nappper D. H., Light scattering studies of poly(N-isopropylacrylamide) microgel particles in mixed water-acetic acid solvents, Macromolecular Chemistry and Physics, 1999, 299, 1950-1955.
    27. Takigawa, T., Araki, H., Takabashi, K., etc., J. Chem. Phys., 2000, 113, 7640.
    28. Haraguchi, K., Farnworth, R., Ohbayashi, A., Compositional Effects on Mechanical Properties of Nanocomposite Hydrogels Composed of Poly(N,N-dimethylacrylamide) and Clay,Macromolecules, 2003, 36, 5732-5741.
    29. Nakamoto, C., Motonaga, t., Shibayama, M., Preparation Pressure Dependence of Structure Inhomogeneities and Dynamic Fluctuations in Poly(N-isopropylacrylamide) Gels,Macromolecules, 2001, 34, 911-917.
    30. Yoshida, R., Uchida, K., Kanedo, Y., etc., Nature, 1995, 374, 240.
    31. Haraguchi, K., Takehisa, T., Nanocomposite Hydrogels: A Unique Organic-Inorganic Network Structure with Extraordinary Mechanical, Optical, and Swelling/De-swelling Properties,Advanced Materials, 2002, 14, 1120-1124.
    32. Wu X., Hoffman A. S., Yagger P., Synthesis and characterization of thermally reversible macroporous poly(N-isopropylacrylamide) hydrogels, Journal of Polymer Science Part A: Polymer Chemistry, 1992, 30, 2121-2129.
    33. Zhuo R. X., Li W., Preparation and characterization of macroporous poly(N-isopropylacrylamide) hydrogels for the controlled release of proteins, Journal of Polymer Science Part A: Polymer Chemistry, 2003, 41, 152-159.
    34. Norihiro K., Yasuzo S., Shihoko S., Wide-Range Control of Deswelling Time for Thermosensitive Poly(N-isopropylacrylamide) Gel Treated by Freeze-Drying, Macromolecules, 2003, 36, 961-963.
    35. Zhang X. Z., Yang Y. Y., Chung T. S., Effect of mixed solvents on characteristics of poly(N-isopropylacrylamide) gels, Langmuir, 2002, 18, 2538-2542.
    36. Serizawa T., Wakita K., Akasika M., Rapid Deswelling of Porous Poly(N-isopropylacrylamide) Hydrogels Prepared by Incorporation of Silica Particles, Macromolecules, 2002, 35, 10-12.
    37. Zhang X. Z., Yang Y. Y., Chung T. S., Effect of mixed solvents on characteristics of poly(N-isopropylacrylamide) gels, Langmuir, 2002, 18, 2538-2542.
    38. Ma X., Cui Y., Zhao X., Different deswelling behavior of temperature-sensitive microgels of poly(N-isopropylacrylamide) crosslinked by polyethyleneglycol dimethacrylates, Journal of Colloid and Interface Science, 2004, 276, 53-59.
    39. Haraguchi K., Takehisa T., Nanocomposite hydrogels: A unique organic-inorganic network structure with extraordinary mechanical, optical, and swelling/De-swelling properties, Advanced Materials, 2002, 14, 1120-1124.
    40. Liang L., Liu J., Gong X. Y., Thermosensitive Poly(N-isopropylacrylamide)-Clay Nanocomposites with Enhanced Temperature Response, Langmuir, 2000, 16, 9895-9899.
    41. Zhang X. Z., Zhuo R. X., Dynamic Properties of Temperature-Sensitive Poly(N-isopropylacrylamide) Gel Cross-Linked through Siloxane Linkage, Langmuir, 2001, 17, 12-16.
    42. Haraguchi K., Takehisa T., Fan S., Effects of Clay Content on the Properties of Nanocomposite Hydrogels Composed of Poly(N-isopropylacrylamide) and Clay, Macromolecules, 2002, 35, 10162-10171.
    43. Famworth R., Ohbayashi A., Takehisa T., Compositional Effects on Mechanical Properties of Nanocomposite Hydrogels Composed of Poly(N,N-dimethylacrylamide) and Clay,Macromolecules, 2003, 36, 5732-5741.
    44. Schwab J. J., Lichtenhan J. D., Polyhedral oligomeric silsesquioxane(POSS)-based polymers,Applied Organometallic Chemistry, 1998, 12, 707-713.
    45. Li G., Wang L., Ni H., etc., Journal of inorganic and Organometallic polymers, 2001, 1, 123.
    46. Mu, J., Zheng, S., Poly(N-isopropylacrylamide) nanocrosslinked by polyhedral oligomeric silsesquioxane: Temperature-responsive behavior of hydrogels, Journal of Colloid and Interface Science, 2007, 307, 377-385.
    47. Koh, K., Sugiyama, S., Morinaga, T., Precision Synthesis of a Fluorinated Polyhedral Oligomeric Silsesquioxane-Terminated Polymer and Surface Characterization of Its Blend Film with Poly(methyl methacrylate), Macromolecules, 2005, 38, 1264-1270.
    48. Ding X.B., Sun Z.H., Zhang W.C., Peng Y. X., Wan G.X., Adsorption/desorption of protein on magnetic particles coverd by thermosensitive polymers, Journal of applied polymer science, 2000, 77, 2915-2920.
    49. Beltran S., Baker J.P., Hooper H.H., Blanch H.W., Prausnitz J.M., Swelling equilibria for weakly ionizable, temperature-sensiive hydrogels, Macromolecules, 1991, 24, 549-556.
    50. Feil H., Bae Y.H., Feijen J., Kim S> W., Mutual influence of pH and temperature on the swellingof ionizable and thermosensitive hydrogels, Macromolecules, 1992, 25, 5528-5530.
    51. Bokias G., Hourdet D., Ilopoulos I., Positively charged amphiphilic polymers based on poly(N-isopropylacrylamide): Phase behavior and shear-induced thickening in aqueous solution. Macromolecules, 2000, 33, 2929-35.
    52. Bignotti I., Penco M., Sartore I., Peroni I., Mendichi R., Casolaro M., Synthesis, characterizationand solution behaviour of thermo- and pH- responsive polymers bearing L-leucine residues in the side chains. Polymer, 2000, 41, 8247-8256.
    53. Benrenbouh A., Avoce D., Zhu X.X., Thermo- and pH-sensitive polymers containing cholic acid derivatives, Polymer 2001, 42, 4031-4038.
    1. Klein L. L., West J. K., The sol-gel process, Chemical Reviews, 1990, 90, 33-72.
    2. Novak B. M., Hybrid Nanocomposite Materials - between inorganic glasses and organic polymers, Advanced Materials, 1993, 5, 422-433.
    3. Wang B., Wilkes G. L., Novel hybrid inorganic-organic abrasion-resistant coatings prepared by a sol-gel process, Journal of Macromolecular Science - Pure and Applied Chemistry, 1994, 31, 249-260.
    4. Dire S., Bois L., Babonneau F., Poly. Prepr., 1991, 32, 501.
    5. Cornelius C., Hibshman C., Marand E., Hybrid organic-inorganic membranes , Separation and Purification Technology, 2001, 25, 181-193.
    6. Muramatsu H., Corriu R., Boury B., Solid State Hydrolysis/Polycondensation of Alkoxysilane: Access to Crystal-Like Silicon-Based Hybrid Materials, Journal of the American Chemical Society, 2003, 125, 854-855.
    7. Chujo Y., Thara E., Kure S., Seagusa T., Synthesis of triethoxysilyl-terminated polyoxazolines and their cohydrolysis polymerization with tetraethoxysilane, Macromolecules, 1993, 26, 5681-5686.
    8. Klein L. L., West J. K., The sol-gel process, Chemical Reviews, 1990, 90, 33-72.
    9. Wen J., Wilkes, G. L., Organic/Inorganic Hybrid Network Materials by the Sol-Gel Approach,Chemistry of Materials, 1996, 8, 1667-1681.
    10. Blanchard A. F., Elasticity theory and crosslinking of reinforced rubber, Journal of Applied Polymer Science, 1998, 67, 119-129.
    11. Berry J. P., P. Int. Rubb C., 1959, 396.
    12. Blanchard A. F., Appl. Sci. Rubber., 1961, 430.
    13. Wang S., Song C., Chen G., Characteristics and biodegradation properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/organophilic montmorillonite (PHBV/OMMT) nanocomposite, Polymer Degradation and Stability, 87, 69-76.
    14. Mascia L., Zhang Z., Carbon fibre composites based on polyimide/silica ceramers: aspects of structure-properties relationship, Composites, 1996, 27, 1211-1221.
    15. Cornelius C., Hibshman C., Marand E., Hybrid organic-inorganic membranes , Separation and Purification Technology, 2001, 25, 181-193.
    16. Allrock H. R., Inorganic - Organic Polymers, Advanced Materials, 1994, 6, 106-115.
    17. Choi J., Harcup J., Yee A. F., Laine R. M., Organic/Inorganic Hybrid Composites from CubicSilsesquioxanes, Jounal of the American Chemical Society, 2001,123, 11420-11430.
    18. Choi J., Kim S. G., Laine R. M., Organic/Inorganic Hybrid Epoxy Nanocomposites from Aminophenylsilsesquioxanes, Macromolecules, 2004, 37, 99-109.
    19. Ni Y., Zheng S., Morphology and thermal properties of inorganic–organic hybrids involving epoxy resin and polyhedral oligomeric silsesquioxanes, Polymer, 2004, 45, 5557-5568.
    20. Lee A., Lichtenhan J. D., Viscoelastic Responses of Polyhedral Oligosilsesquioxane Reinforced Epoxy Systems, Macromolecules, 1998, 31, 4970-4974.
    21. Fu B. X., Hsiao B. S., White H., Nanoscale reinforcement of polyhedral oligomeric silsesquioxane (POSS) in polyurethane elastomer, polymer international., 2000, 49, 437-440.
    22. Li G. Z., Wang L., Toghiani H., etc., Viscoelastic and Mechanical Properties of Epoxy/Multifunctional Polyhedral Oligomeric Silsesquioxane Nanocomposites and Epoxy/Ladderlike Polyphenylsilsesquioxane Blends, Macromolecules, 2001, 34, 8686-8693.
    23. Abad M. J., Barral L., Fasce D. F., Williams R. J. J., Epoxy Networks Containing Large Mass Fractions of a Monofunctional Polyhedral Oligomeric Silsesquioxane (POSS), Macromolecules, 2003, 36, 3128-3135.
    24. Matejka L., Strachota A., Plestil J., Whelan P., Steinhart M., Slouf M., Epoxy Networks Reinforced with Polyhedral Oligomeric Silsesquioxanes (POSS). Structure and Morphology,Macromolecules, 2004, 37, 9449-9456.
    25. Strachota A., Kroutilova I., Kovarova J. Epoxy networks reinforced with polyhedral oligomeric silsesquioxanes (POSS). Thermomechanical properties, Macromolecules, 2004, 37, 9457-9464.
    26. Liu H., Zheng S., Nie K., Morphology and Thermomechanical Properties of Organic-Inorganic Hybrid Composites Involving Epoxy Resin and an Incompletely Condensed Polyhedral Oligomeric Silsesquioxane, Macromolecules, 2005, 38, 5088-5097.
    27. Laine R. M., Choi J., Lee I., Organic-Inorganic Nanocomposites with Completely Defined Interfacial Interactions, Advanced Materials, 2001, 13, 800-803.
    28. Choi J., Yee A. F., Laine R. M., Organic/Inorganic Hybrid Composites from Cubic Silsesquioxanes. Epoxy Resins of Octa(dimethylsiloxyethylcyclohexylepoxide) Silsesquioxane,Macromolecules, 2003, 36, 5666-5682.
    29. Choi J., Tamaki R., Kim S. G., Organic/Inorganic Imide Nanocomposites from Aminophenylsilsesquioxanes, Chem. Mater., 2003, 15, 3365-3375.
    30. Choi J., Yee A. F., Laine R. M., Toughening of cubic silsesquioxane epoxy nanocomposites using core-shell rubber particles: A three-component hybrid system, Macromolecules, 2004, 37,3267-3276.
    31. Fu B. X., Namani M., Lee A., Influence of phenyl-trisilanol polyhedral silsesquioxane on properties of epoxy network glasses, Polymer, 2003, 44, 7739-7747.
    32. Chen W. Y., Wang Y. Z., Kuo S. W., Thermal and dielectric properties and curing kinetics of nanomaterials formed from poss-epoxy and meta-phenylenediamine, Polymer, 2004, 45, 6897-6908.
    33. Yin M., Zheng S., Ternary Thermosetting Blends of Epoxy Resin, Poly(ethylene oxide) and Poly( -caprolactone), Macromolecular chemistry and physics, 2005, 206, 929-937.
    34. Luo X., Zheng S., Zhang N., Ma D., Miscibility of epoxy resins/poly(ethylene oxide) blends cured with phthalic anhydride, Polymer, 1994, 35, 2619-2623.
    35. Zheng S., Zhang N., Luo X. Ma D., Epoxy resin/poly(ethylene oxide) blends cured with aromatic amine, Polymer, 1995, 36, 3609-3613.
    36. Hu L., Lu H., Zheng S., Effect of crosslinking on intermolecular interactions in thermosetting blends of epoxy resin with poly(ethylene oxide), Journal of Polymer Science Part B: Polymer Physics, 2004, 42, 2567-2575.
    37. Seffanut P., Osborn J. A., Decian A, Fisher J., Chem. Eur. J., 1998, 10, 2008.
    38. Koh, K., Sugiyama, S., Morinaga, T., Precision Synthesis of a Fluorinated Polyhedral Oligomeric Silsesquioxane-Terminated Polymer and Surface Characterization of Its Blend Film with Poly(methyl methacrylate), Macromolecules, 2005, 38, 1264-1270.
    39. Maniruzzaman M., Kawaguchi S., Ito K., Micellar Copolymerization of Styrene with Poly(ethylene oxide) Macromonomer in Water: Approach to Unimolecular Nanoparticles via Pseudo-Living Radical Polymerization, Macromolecules, 2000, 33, 1583-1592.
    40. Steffanut P., Osborn J. A., Decian A., etc., J. Chem. Eur. J., 1998, 4, 2008.
    41. Hillmyer M. A., Lipic P. M., Hajduk D. A., Self-Assembly and Polymerization of Epoxy Resin-Amphiphilic Block Copolymer Nanocomposites, Journal of the American Chemical Society, 1997, 119, 2749-2750.
    42. Lipic P. M., Bates F. S., Hillmyer M. A., Nanostructured Thermosets from Self-Assembled Amphiphilic Block Copolymer/Epoxy Resin Mixtures, Journal of the American Chemical Society, 1998, 120, 8963-8970.
    43. Mijovic J., Shen M., Sy J. W., Dynamics and Morphology in Nanostructured Thermoset Network/Block Copolymer Blends during Network Formation, Macromolecules, 2000, 33, 5235-5244.
    44. Grubbs R. B., Dean J. M., Broz M. Z., Reactive Block Copolymers for Modification of Thermosetting Epoxy, Macromolecules, 2000, 33, 9522-9534.
    45. Kosonen H., Ruokolainen J., Nyholm P., Self-Organized Thermosets: Blends of Hexamethyltetramine Cured Novolac with Poly(2-vinylpyridine)-block-poly(isoprene),Macromolecules, 2001, 34, 3046-3049.
    46. Guo Q., Thomann R., Gronski W., Phase Behavior, Crystallization, and Hierarchical Nanostructures in Self-Organized Thermoset Blends of Epoxy Resin and Amphiphilic Poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) Triblock Copolymers, Macromolecules, 2002, 35, 3133-3144.
    47. Ritzenthaler S., Court F., Girard-Reydet E., ABC Triblock Copolymers/Epoxy-Diamine Blends. 1. Keys To Achieve Nanostructured Thermosets, Macromolecules, 2002, 35, 6245-6254.
    48. Ritzenthaler S., Court F., Girard-Reydet E., ABC Triblock Copolymers/Epoxy-Diamine Blends. 2. Parameters Controlling the Morphologies and Properties, Macromolecules, 2003, 36, 118-126.
    49. Guo Q., Thomann R., Gronski W., Nanostructures, Semicrytalline Morphology, and Nanoscale Confinement Effect on the Crystallization Kinetics in Self-Organized Block Copolymer/Thermoset Blends, Macromolecules, 2003, 36, 3635-3645.
    50. Dean J. M., Verghese N. E., Pham H. Q., Nanostructure toughened epoxy resins, Macromolecules, 2003, 36, 9267-9270.
    51. Rebizant V., Abetz V., Tournihac T., Chemistry and Mechanical Properties of Epoxy-Based Thermosets Reinforced by Reactive and Nonreactive SBMX Block Copolymers, Macromolecules, 2004, 37, 8017-8027.
    52. Larranaga M., Gabilondo N., Kortaberria G., Micro- or nanoseparated phases in thermoset blends of an epoxy resin and PEO–PPO–PEO triblock copolymer, Polymer, 2005, 46, 7082-7093.
    53. Meng F., Zheng S., Zhang W., Nanostructured Thermosetting Blends of Epoxy Resin and Amphiphilic Poly( -caprolactone)-block-polybutadiene-block-poly( -caprolactone) Triblock Copolymer, Macromolecules, 2006, 39, 711-719.
    54. Serrano E., Tercjak A., Kortaberria G., Nanostructured Thermosetting Systems by Modification with Epoxidized Styrene-Butadiene Star Block Copolymers. Effect of Epoxidation Degree,Macromolecules, 2006, 39, 2254-2261.
    55. Meng F., Zheng S., Li H., Formation of Ordered Nanostructures in Epoxy Thermosets: A Mechanism of Reaction-Induced Microphase Separation, Macromolecules, 2006, 39, 5072-5080.
    56. Meng F., Zheng S., Liu T., Epoxy resin containing poly(ethylene oxide)-block-poly(-caprolactone) diblock copolymer: Effect of curing agents on nanostructures, Polymer, 2006, 47, 7590-7600.
    57. Sinturel C., Vayer M., Erre R., Nanostructured Polymers Obtained from Polyethylene-block-poly(ethylene oxide) Block Copolymer in Unsaturated Polyester,Macromolecules, 2007, 40, 2532-2538.
    58. Xu Z., Zheng S., Reaction-Induced Microphase Separation in Epoxy Thermosets Containing Poly( -caprolactone)-block-poly(n-butyl acrylate) Diblock Copolymer, Macromolecules, 2007, 40, 2548-2558.
    59. Feast W. J., Munro H. S., Richarsa R. W., etc., Polymer Surface and Interface II, John Wiley & Sons: Chichester, 1993.
    60. Affrossman S., Bertrand R., Hartshome M., Surface Segregation in Blends of Polystyrene and Perfluorohexane Double End Capped Polystyrene Studied by Static SIMS, ISS, and XPS,Macromolecules, 1996, 29, 5432-5437.
    61. Youngblood J. P., McCarthy T. J., Ultrahydrophobic Polymer Surfaces Prepared by Simultaneous Ablation of Polypropylene and Sputtering of Poly(tetrafluoroethylene) Using Radio Frequency Plasma, Macromolecules, 1999, 32, 6800-6806.
    62. Li X. F., Chiellini E., Galli G., Semifluorinated Aromatic Side-Group Polystyrene-Based Block Copolymers: Bulk Structure and Surface Orientation Studies, Macromolecules, 2002, 35, 8078-8087.
    63. Hirao A., Koide G., Sugiyama K., Synthesis of Novel Well-Defined Chain-End- and In-Chain-Functionalized Polystyrenes with One, Two, Three, and Four Perfluorooctyl Groups and Their Surface Characterization, Macromolecules, 2002, 35, 7642-7651.
    64. Orourke P. A. C., Jalbert C. A., Yuan C., Measurement and Modeling of End Group Concentration Depth Profiles for -Fluorosilane Polystyrene and Its Blends, Macromolecules, 2003, 36, 2956-2966.
    65. Koberstein J. T., Molecular design of functional polymer surfaces, Journal of Polymer Science Part B: Polymer Physics, 2004, 42, 2942-2956.
    1. Klein L. L., West J. K., The sol-gel process, Chemical Reviews, 1990, 90, 33-72.
    2. Novak B. M., Hybrid Nanocomposite Materials - between inorganic glasses and organic polymers, Advanced Materials, 1993, 5, 422-433.
    3. Wang B., Wilkes G. L., Novel hybrid inorganic-organic abrasion-resistant coatings prepared by a sol-gel process, Journal of Macromolecular Science - Pure and Applied Chemistry, 1994, 31, 249-260.
    4. Dire S., Bois L., Babonneau F., Poly. Prepr., 1991, 32, 501.
    5. Cornelius C., Hibshman C., Marand E., Hybrid organic-inorganic membranes , Separation and Purification Technology, 2001, 25, 181-193.
    6. Muramatsu H., Corriu R., Boury B., Solid State Hydrolysis/Polycondensation of Alkoxysilane: Access to Crystal-Like Silicon-Based Hybrid Materials, Journal of the American Chemical Society, 2003, 125, 854-855.
    7. Chujo Y., Thara E., Kure S., Seagusa T., Synthesis of triethoxysilyl-terminated polyoxazolines and their cohydrolysis polymerization with tetraethoxysilane, Macromolecules, 1993, 26, 5681-5686.
    8. Klein L. L., West J. K., The sol-gel process, Chemical Reviews, 1990, 90, 33-72.
    9. Wen J., Wilkes, G. L., Organic/Inorganic Hybrid Network Materials by the Sol-Gel Approach,Chemistry of Materials, 1996, 8, 1667-1681.
    10. Blanchard A. F., Elasticity theory and crosslinking of reinforced rubber, Journal of Applied Polymer Science, 1998, 67, 119-129.
    11. Berry J. P., P. Int. Rubb C., 1959, 396.
    12. Blanchard A. F., Appl. Sci. Rubber., 1961, 430.
    13. Wang S., Song C., Chen G., Characteristics and biodegradation properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/organophilic montmorillonite (PHBV/OMMT) nanocomposite, Polymer Degradation and Stability, 87, 69-76.
    14. Mascia L., Zhang Z., Carbon fibre composites based on polyimide/silica ceramers: aspects of structure-properties relationship, Composites, 1996, 27, 1211-1221.
    15. Cornelius C., Hibshman C., Marand E., Hybrid organic-inorganic membranes , Separation and Purification Technology, 2001, 25, 181-193.
    16. Allrock H. R., Inorganic - Organic Polymers, Advanced Materials, 1994, 6, 106-115.
    17. Choi J., Harcup J., Yee A. F., Laine R. M., Organic/Inorganic Hybrid Composites from CubicSilsesquioxanes, Jounal of the American Chemical Society, 2001,123, 11420-11430.
    18. Choi J., Kim S. G., Laine R. M., Organic/Inorganic Hybrid Epoxy Nanocomposites from Aminophenylsilsesquioxanes, Macromolecules, 2004, 37, 99-109.
    19. Ni Y., Zheng S., Morphology and thermal properties of inorganic–organic hybrids involving epoxy resin and polyhedral oligomeric silsesquioxanes, Polymer, 2004, 45, 5557-5568.
    20. Lee A., Lichtenhan J. D., Viscoelastic Responses of Polyhedral Oligosilsesquioxane Reinforced Epoxy Systems, Macromolecules, 1998, 31, 4970-4974.
    21. Fu B. X., Hsiao B. S., White H., Nanoscale reinforcement of polyhedral oligomeric silsesquioxane (POSS) in polyurethane elastomer, polymer international., 2000, 49, 437-440.
    22. Li G. Z., Wang L., Toghiani H., etc., Viscoelastic and Mechanical Properties of Epoxy/Multifunctional Polyhedral Oligomeric Silsesquioxane Nanocomposites and Epoxy/Ladderlike Polyphenylsilsesquioxane Blends, Macromolecules, 2001, 34, 8686-8693.
    23. Abad M. J., Barral L., Fasce D. F., Williams R. J. J., Epoxy Networks Containing Large Mass Fractions of a Monofunctional Polyhedral Oligomeric Silsesquioxane (POSS), Macromolecules, 2003, 36, 3128-3135.
    24. Matejka L., Strachota A., Plestil J., Whelan P., Steinhart M., Slouf M., Epoxy Networks Reinforced with Polyhedral Oligomeric Silsesquioxanes (POSS). Structure and Morphology,Macromolecules, 2004, 37, 9449-9456.
    25. Strachota A., Kroutilova I., Kovarova J. Epoxy networks reinforced with polyhedral oligomeric silsesquioxanes (POSS). Thermomechanical properties, Macromolecules, 2004, 37, 9457-9464.
    26. Liu H., Zheng S., Nie K., Morphology and Thermomechanical Properties of Organic-Inorganic Hybrid Composites Involving Epoxy Resin and an Incompletely Condensed Polyhedral Oligomeric Silsesquioxane, Macromolecules, 2005, 38, 5088-5097.
    27. Laine R. M., Choi J., Lee I., Organic-Inorganic Nanocomposites with Completely Defined Interfacial Interactions, Advanced Materials, 2001, 13, 800-803.
    28. Choi J., Yee A. F., Laine R. M., Organic/Inorganic Hybrid Composites from Cubic Silsesquioxanes. Epoxy Resins of Octa(dimethylsiloxyethylcyclohexylepoxide) Silsesquioxane,Macromolecules, 2003, 36, 5666-5682.
    29. Choi J., Tamaki R., Kim S. G., Organic/Inorganic Imide Nanocomposites from Aminophenylsilsesquioxanes, Chem. Mater., 2003, 15, 3365-3375.
    30. Choi J., Yee A. F., Laine R. M., Toughening of cubic silsesquioxane epoxy nanocomposites using core-shell rubber particles: A three-component hybrid system, Macromolecules, 2004, 37,3267-3276.
    31. Fu B. X., Namani M., Lee A., Influence of phenyl-trisilanol polyhedral silsesquioxane on properties of epoxy network glasses, Polymer, 2003, 44, 7739-7747.
    32. Chen W. Y., Wang Y. Z., Kuo S. W., Thermal and dielectric properties and curing kinetics of nanomaterials formed from poss-epoxy and meta-phenylenediamine, Polymer, 2004, 45, 6897-6908.
    33. Chen W. Y., Wang Y. Z., Kuo S. W., Thermal and dielectric properties and curing kinetics of nanomaterials formed from poss-epoxy and meta-phenylenediamine, Polymer, 2004, 45, 6897-6908.
    34. Noshay A., Robeson L. M., Epoxy/modifier block copolymers, Journal of Polymer Science Part A: Polymer Chemistry, 1974, 12, 689-705.
    35. Clark J. N., Daly J. H., Garton A. Hydrogen bonding in epoxy resin/poly( -caprolactone) blends,Journal of Applied Polymer Science, 1984, 29, 3381-3390.
    36. Luo X., Zheng S., Zhang N., Ma D., Miscibility of epoxy resins/poly(ethylene oxide) blends cured with phthalic anhydride, Polymer, 1994, 35, 2619-2623.
    37. Zheng S., Zhang N., Luo X., Ma D., Epoxy resin/poly(ethylene oxide) blends cured with aromatic amine, Polymer, 1995, 36, 3609-3613.
    38. Zheng H., Zheng S., Guo Q., Journal of Polymer Science Part A: Polymer Chemistry, 1998, 35, 3161.
    39. Guo Q., Harrats C., Groeninckx G., Koch M. H., Miscibility, crystallization kinetics and real-time small-angle X-ray scattering investigation of the semicrystalline morphology in thermosetting polymer blends of epoxy resin and poly(ethylene oxide), Polymer, 2001, 42, 4127-4140.
    40. Guo Q., Harrats C., GroeninckX G., Miscibility, crystallization and real-time small-angle X-ray scattering investigation of the semicrystalline morphology in thermosetting polymer blends, Polymer, 2001, 42, 6031-6041.
    41. Guo Q., Groeninckx G., Crystallization kinetics of poly( -caprolactone) in miscible thermosetting polymer blends of epoxy resin and poly( -caprolactone), Polymer, 2001, 42, 8647-8655.
    42. Zheng S., Lu H., Chen C., Epoxy resin/poly(ethylene oxide) (PEO) and poly(e-caprolactone) (PCL) blends cured with 1,3,5-trihydroxybenzene: miscibility and intermolecular interactions,Colloid and polymer science, 2003, 281, 1015-1024.
    43. Zheng S., Zheng H., Guo Q., Epoxy resin/poly( -caprolactone) blends cured with 2,2-bis[4-(4-aminophenoxy)phenyl]propane. I. Miscibility and crystallization kinetics, Journal ofPolymer Science Part B: Polymer Physics, 2003, 41, 1085-1098.
    44. Yin M., Zheng S., Ternary Thermosetting Blends of Epoxy Resin, Poly(ethylene oxide) and Poly( -caprolactone), Macromolecular chemistry and physics, 2005, 206, 929-937.
    45. Ni Y., Zheng S., Influence of intramolecular specific interactions on phase behavior of epoxy resin and poly(ε-caprolactone) blends cured with aromatic amines, Polymer, 2005, 46, 5828-5839.
    46. Koh, K., Sugiyama, S., Morinaga, T., Precision Synthesis of a Fluorinated Polyhedral Oligomeric Silsesquioxane-Terminated Polymer and Surface Characterization of Its Blend Film with Poly(methyl methacrylate), Macromolecules, 2005, 38, 1264-1270.
    47. Hillmyer M. A., Lipic P. M., Hajduk D. A., Self-Assembly and Polymerization of Epoxy Resin-Amphiphilic Block Copolymer Nanocomposites, Journal of the American Chemical Society, 1997, 119, 2749-2750.
    48. Lipic P. M., Bates F. S., Hillmyer M. A., Nanostructured Thermosets from Self-Assembled Amphiphilic Block Copolymer/Epoxy Resin Mixtures, Journal of the American Chemical Society, 1998, 120, 8963-8970.
    49. Mijovic J., Shen M., Sy J. W., Dynamics and Morphology in Nanostructured Thermoset Network/Block Copolymer Blends during Network Formation, Macromolecules, 2000, 33, 5235-5244.
    50. Grubbs R. B., Dean J. M., Broz M. Z., Reactive Block Copolymers for Modification of Thermosetting Epoxy, Macromolecules, 2000, 33, 9522-9534.
    51. Kosonen H., Ruokolainen J., Nyholm P., Self-Organized Thermosets: Blends of Hexamethyltetramine Cured Novolac with Poly(2-vinylpyridine)-block-poly(isoprene),Macromolecules, 2001, 34, 3046-3049.
    52. Guo Q., Thomann R., Gronski W., Phase Behavior, Crystallization, and Hierarchical Nanostructures in Self-Organized Thermoset Blends of Epoxy Resin and Amphiphilic Poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) Triblock Copolymers, Macromolecules, 2002, 35, 3133-3144.
    53. Ritzenthaler S., Court F., Girard-Reydet E., ABC Triblock Copolymers/Epoxy-Diamine Blends. 1. Keys To Achieve Nanostructured Thermosets, Macromolecules, 2002, 35, 6245-6254.
    54. Ritzenthaler S., Court F., Girard-Reydet E., ABC Triblock Copolymers/Epoxy-Diamine Blends. 2. Parameters Controlling the Morphologies and Properties, Macromolecules, 2003, 36, 118-126.
    55. Guo Q., Thomann R., Gronski W., Nanostructures, Semicrytalline Morphology, and Nanoscale Confinement Effect on the Crystallization Kinetics in Self-Organized BlockCopolymer/Thermoset Blends, Macromolecules, 2003, 36, 3635-3645.
    56. Dean J. M., Verghese N. E., Pham H. Q., Nanostructure toughened epoxy resins, Macromolecules, 2003, 36, 9267-9270.
    57. Rebizant V., Abetz V., Tournihac T., Chemistry and Mechanical Properties of Epoxy-Based Thermosets Reinforced by Reactive and Nonreactive SBMX Block Copolymers, Macromolecules, 2004, 37, 8017-8027.
    58. Larranaga M., Gabilondo N., Kortaberria G., Micro- or nanoseparated phases in thermoset blends of an epoxy resin and PEO–PPO–PEO triblock copolymer, Polymer, 2005, 46, 7082-7093.
    59. Meng F., Zheng S., Zhang W., Nanostructured Thermosetting Blends of Epoxy Resin and Amphiphilic Poly( -caprolactone)-block-polybutadiene-block-poly( -caprolactone) Triblock Copolymer, Macromolecules, 2006, 39, 711-719.
    60. Serrano E., Tercjak A., Kortaberria G., Nanostructured Thermosetting Systems by Modification with Epoxidized Styrene-Butadiene Star Block Copolymers. Effect of Epoxidation Degree,Macromolecules, 2006, 39, 2254-2261.
    61. Meng F., Zheng S., Li H., Formation of Ordered Nanostructures in Epoxy Thermosets: A Mechanism of Reaction-Induced Microphase Separation, Macromolecules, 2006, 39, 5072-5080.
    62. Meng F., Zheng S., Liu T., Epoxy resin containing poly(ethylene oxide)-block-poly(-caprolactone) diblock copolymer: Effect of curing agents on nanostructures, Polymer, 2006, 47, 7590-7600.
    63. Sinturel C., Vayer M., Erre R., Nanostructured Polymers Obtained from Polyethylene-block-poly(ethylene oxide) Block Copolymer in Unsaturated Polyester,Macromolecules, 2007, 40, 2532-2538.
    64. Xu Z., Zheng S., Reaction-Induced Microphase Separation in Epoxy Thermosets Containing Poly( -caprolactone)-block-poly(n-butyl acrylate) Diblock Copolymer, Macromolecules, 2007, 40, 2548-2558.
    65. Ni Y., Zheng S.X., Nanostructured thermosets from epoxy resin and an organic-inorganic amphiphile, Macromolecules, 2007, 40, 7009-7018.
    1. Klein L. L., West J. K., The sol-gel process, Chemical Reviews, 1990, 90, 33-72.
    2. Novak B. M., Hybrid Nanocomposite Materials - between inorganic glasses and organic polymers, Advanced Materials, 1993, 5, 422-433.
    3. Wang B., Wilkes G. L., Novel hybrid inorganic-organic abrasion-resistant coatings prepared by a sol-gel process, Journal of Macromolecular Science - Pure and Applied Chemistry, 1994, 31, 249-260.
    4. Dire S., Bois L., Babonneau F., Poly. Prepr., 1991, 32, 501.
    5. Cornelius C., Hibshman C., Marand E., Hybrid organic-inorganic membranes , Separation and Purification Technology, 2001, 25, 181-193.
    6. Muramatsu H., Corriu R., Boury B., Solid State Hydrolysis/Polycondensation of Alkoxysilane: Access to Crystal-Like Silicon-Based Hybrid Materials, Journal of the American Chemical Society, 2003, 125, 854-855.
    7. Chujo Y., Thara E., Kure S., Seagusa T., Synthesis of triethoxysilyl-terminated polyoxazolines and their cohydrolysis polymerization with tetraethoxysilane, Macromolecules, 1993, 26, 5681-5686.
    8. Klein L. L., West J. K., The sol-gel process, Chemical Reviews, 1990, 90, 33-72.
    9. Wen J., Wilkes, G. L., Organic/Inorganic Hybrid Network Materials by the Sol-Gel Approach,Chemistry of Materials, 1996, 8, 1667-1681.
    10. Blanchard A. F., Elasticity theory and crosslinking of reinforced rubber, Journal of Applied Polymer Science, 1998, 67, 119-129.
    11. Berry J. P., P. Int. Rubb C., 1959, 396.
    12. Blanchard A. F., Appl. Sci. Rubber., 1961, 430.
    13. Wang S., Song C., Chen G., Characteristics and biodegradation properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/organophilic montmorillonite (PHBV/OMMT) nanocomposite, Polymer Degradation and Stability, 87, 69-76.
    14. Mascia L., Zhang Z., Carbon fibre composites based on polyimide/silica ceramers: aspects of structure-properties relationship, Composites, 1996, 27, 1211-1221.
    15. Cornelius C., Hibshman C., Marand E., Hybrid organic-inorganic membranes , Separation and Purification Technology, 2001, 25, 181-193.
    16. Allrock H. R., Inorganic - Organic Polymers, Advanced Materials, 1994, 6, 106-115.
    17. Choi J., Harcup J., Yee A. F., Laine R. M., Organic/Inorganic Hybrid Composites from CubicSilsesquioxanes, Jounal of the American Chemical Society, 2001,123, 11420-11430.
    18. Choi J., Kim S. G., Laine R. M., Organic/Inorganic Hybrid Epoxy Nanocomposites from Aminophenylsilsesquioxanes, Macromolecules, 2004, 37, 99-109.
    19. Ni Y., Zheng S., Morphology and thermal properties of inorganic–organic hybrids involving epoxy resin and polyhedral oligomeric silsesquioxanes, Polymer, 2004, 45, 5557-5568.
    20. Lee A., Lichtenhan J. D., Viscoelastic Responses of Polyhedral Oligosilsesquioxane Reinforced Epoxy Systems, Macromolecules, 1998, 31, 4970-4974.
    21. Fu B. X., Hsiao B. S., White H., Nanoscale reinforcement of polyhedral oligomeric silsesquioxane (POSS) in polyurethane elastomer, polymer international., 2000, 49, 437-440.
    22. Li G. Z., Wang L., Toghiani H., etc., Viscoelastic and Mechanical Properties of Epoxy/Multifunctional Polyhedral Oligomeric Silsesquioxane Nanocomposites and Epoxy/Ladderlike Polyphenylsilsesquioxane Blends, Macromolecules, 2001, 34, 8686-8693.
    23. Abad M. J., Barral L., Fasce D. F., Williams R. J. J., Epoxy Networks Containing Large Mass Fractions of a Monofunctional Polyhedral Oligomeric Silsesquioxane (POSS), Macromolecules, 2003, 36, 3128-3135.
    24. Matejka L., Strachota A., Plestil J., Whelan P., Steinhart M., Slouf M., Epoxy Networks Reinforced with Polyhedral Oligomeric Silsesquioxanes (POSS). Structure and Morphology,Macromolecules, 2004, 37, 9449-9456.
    25. Strachota A., Kroutilova I., Kovarova J. Epoxy networks reinforced with polyhedral oligomeric silsesquioxanes (POSS). Thermomechanical properties, Macromolecules, 2004, 37, 9457-9464.
    26. Liu H., Zheng S., Nie K., Morphology and Thermomechanical Properties of Organic-Inorganic Hybrid Composites Involving Epoxy Resin and an Incompletely Condensed Polyhedral Oligomeric Silsesquioxane, Macromolecules, 2005, 38, 5088-5097.
    27. Laine R. M., Choi J., Lee I., Organic-Inorganic Nanocomposites with Completely Defined Interfacial Interactions, Advanced Materials, 2001, 13, 800-803.
    28. Choi J., Yee A. F., Laine R. M., Organic/Inorganic Hybrid Composites from Cubic Silsesquioxanes. Epoxy Resins of Octa(dimethylsiloxyethylcyclohexylepoxide) Silsesquioxane,Macromolecules, 2003, 36, 5666-5682.
    29. Choi J., Tamaki R., Kim S. G., Organic/Inorganic Imide Nanocomposites from Aminophenylsilsesquioxanes, Chem. Mater., 2003, 15, 3365-3375.
    30. Choi J., Yee A. F., Laine R. M., Toughening of cubic silsesquioxane epoxy nanocomposites using core-shell rubber particles: A three-component hybrid system, Macromolecules, 2004, 37,3267-3276.
    31. Fu B. X., Namani M., Lee A., Influence of phenyl-trisilanol polyhedral silsesquioxane on properties of epoxy network glasses, Polymer, 2003, 44, 7739-7747.
    32. Chen W. Y., Wang Y. Z., Kuo S. W., Thermal and dielectric properties and curing kinetics of nanomaterials formed from poss-epoxy and meta-phenylenediamine, Polymer, 2004, 45, 6897-6908
    33. Holly F. W., Cope A. C., J. A,. Chem. Soc., 1944, 66, 1875.
    34. Liu J., Ishda H., A new classs of phenolic resins with ring-opening polymerization. In: Salamone JC, editor. The polymeric materials encyclopedia, Flroida: CRC Press, 1996, 484-494.
    35. Shen S., Ishida S., Synthesis and characterization of polyfunctional naphthoxazines and related polymers,Journal of Applied Polymer Science, 1996, 61, 1595-1605.
    36. Shen S., Ishida H., Development and characterization of high-performance polybenzoxazine composites,Polymer Composites, 1996, 17, 710-719.
    37. Ishida H., Allen D. J., Physical and mechanical characterization of near-zero shrinkage polybenzoxazines,Journal of Polymer Science, Part B: Polymer Physics, 1996, 34, 1019-1030.
    38. Ghosh N. N., Kishkan B., Yagci Y., Polybenzoxazines—New high performance thermosetting resins: Synthesis and properties,Progress in Polymer Science, 2007, 32, 1344-1391
    39. Ning X, Ishida H., Phenolic materials via ring-opening polymerization of benzoxazines: effect of molecular structure on mechanical and dynamic mechanical properties,Journal of Polymer Science, Part B: Polymer Physics, 1994, 32, 921-927.
    40. Ning X, Ishida H., Phenolic materials via ring-opening polymerization: Synthesis and characterization of bisphenol-A based benzoxazines and their polymers,Journal of Polymer Science, Part A: Polymer Chemistry, 1994, 32, 1121-1129.
    41. Wang Y. X., Ishida H., Development of low-viscosity benzoxazine resins and their polymers,Journal of Applied Polymer Science, 2002, 86, 2953-2966.
    42. Ishida H., Rodriguez Y., Curing kinetics of a new benzoxazine-based phenolic resin by differential scanning calorimetry,Polymer, 1995, 36, 3151-3158.
    43. Shen S. B., Ishida H., Dynamic mechanical and thermal characterization of high-performance polybenzoxazines,Journal of Polymer Science, Part B: Polymer Physics, 1999, 37, 3257-3268.
    44. Ishida H., Sanders D. P., Improved thermal and mechanical properties of polybenzoxazines based on alkyl-substituted aromatic amines,Journal of Polymer Science, Part B: Polymer Physics, 2000, 38, 3289-3301.
    45. Ishida H., Krus C. M., Synthesis and Characterization of Structurally Uniform Model Oligomers of Polybenzoxazine,Macromolecules, 1998, 31, 2409-2418.
    46. Laobuthee A., Chirachanchai S, Ishida H., Asymmetric Mono-oxazine: An Inevitable Product from Mannich Reaction of Benzoxazine Dimers,Journal of the American Chemical Society, 2001, 123, 9947-9955.
    47. Agag T., Takeichi T., Novel Benzoxazine Monomers Containing p-Phenyl Propargyl Ether: Polymerization of Monomers and Properties of Polybenzoxazines,Macromolecules, 2001, 34, 7257-7263.
    48. Agag T., Takeichi T., Synthesis and Characterization of Novel Benzoxazine Monomers Containing Allyl Groups and Their High Performance Thermosets,Macromolecules, 2003, 36, 6010-6017.
    49. Liu Y., Zhang W., Chen Y., Zheng S., Polybenzoxazine containing polysilsesquioxane: Preparation and thermal properties,Journal of applied polymer science, 2006, 99, 927-936.
    50. Guo Q., Effect of curing agent on the phase behaviour of epoxy resin/phenoxy blends,Polymer,1995, 36, 4753-4760.
    51. Teng K.-C., Chang F.-C., Mobility of water and alcohols in a silica reinforced siloxane network,Polymer, 1996, 37, 2385-2391.
    52. Hseih, H.K., Su, C.C., Woo, E.M., Cure kinetics and inter-domain etherification in an amine-cured phenoxy/epoxy system,Polymer, 1998, 39, 2175-2183.
    53. Teng, Kun-Chun, Chang, Feng-Chih, Single-phase and multiple-phase thermoplastic/thermoset polyblends: 1. Kinetics and mechanisms of phenoxy/epoxy blends,Polymer, 1993, 34, 4291-4299.
    54. Hillmyer M. A., Lipic P. M., Hajduk D. A., Self-Assembly and Polymerization of Epoxy Resin-Amphiphilic Block Copolymer Nanocomposites, Journal of the American Chemical Society, 1997, 119, 2749-2750.
    55. Lipic P. M., Bates F. S., Hillmyer M. A., Nanostructured Thermosets from Self-Assembled Amphiphilic Block Copolymer/Epoxy Resin Mixtures, Journal of the American Chemical Society,1998, 120, 8963-8970.
    56. Mijovic J., Shen M., Sy J. W., Dynamics and Morphology in Nanostructured Thermoset Network/Block Copolymer Blends during Network Formation, Macromolecules, 2000, 33, 5235-5244.
    57. Grubbs R. B., Dean J. M., Broz M. Z., Reactive Block Copolymers for Modification of Thermosetting Epoxy, Macromolecules, 2000, 33, 9522-9534.
    58. Kosonen H., Ruokolainen J., Nyholm P., Self-Organized Thermosets: Blends ofHexamethyltetramine Cured Novolac with Poly(2-vinylpyridine)-block-poly(isoprene),Macromolecules, 2001, 34, 3046-3049.
    59. Guo Q., Thomann R., Gronski W., Phase Behavior, Crystallization, and Hierarchical Nanostructures in Self-Organized Thermoset Blends of Epoxy Resin and Amphiphilic Poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) Triblock Copolymers, Macromolecules, 2002, 35, 3133-3144.
    60. Ritzenthaler S., Court F., Girard-Reydet E., ABC Triblock Copolymers/Epoxy-Diamine Blends. 1. Keys To Achieve Nanostructured Thermosets, Macromolecules, 2002, 35, 6245-6254.
    61. Ritzenthaler S., Court F., Girard-Reydet E., ABC Triblock Copolymers/Epoxy-Diamine Blends. 2. Parameters Controlling the Morphologies and Properties, Macromolecules, 2003, 36, 118-126.
    62. Guo Q., Thomann R., Gronski W., Nanostructures, Semicrytalline Morphology, and Nanoscale Confinement Effect on the Crystallization Kinetics in Self-Organized Block Copolymer/Thermoset Blends, Macromolecules, 2003, 36, 3635-3645.
    63. Dean J. M., Verghese N. E., Pham H. Q., Nanostructure toughened epoxy resins, Macromolecules, 2003, 36, 9267-9270.
    64. Rebizant V., Abetz V., Tournihac T., Chemistry and Mechanical Properties of Epoxy-Based Thermosets Reinforced by Reactive and Nonreactive SBMX Block Copolymers, Macromolecules, 2004, 37, 8017-8027.
    65. Larranaga M., Gabilondo N., Kortaberria G., Micro- or nanoseparated phases in thermoset blends of an epoxy resin and PEO–PPO–PEO triblock copolymer, Polymer, 2005, 46, 7082-7093.
    66. Meng F., Zheng S., Zhang W., Nanostructured Thermosetting Blends of Epoxy Resin and Amphiphilic Poly( -caprolactone)-block-polybutadiene-block-poly( -caprolactone) Triblock Copolymer, Macromolecules, 2006, 39, 711-719.
    67. Serrano E., Tercjak A., Kortaberria G., Nanostructured Thermosetting Systems by Modification with Epoxidized Styrene-Butadiene Star Block Copolymers. Effect of Epoxidation Degree,Macromolecules, 2006, 39, 2254-2261.
    68. Meng F., Zheng S., Li H., Formation of Ordered Nanostructures in Epoxy Thermosets: A Mechanism of Reaction-Induced Microphase Separation, Macromolecules, 2006, 39, 5072-5080.
    69. Meng F., Zheng S., Liu T., Epoxy resin containing poly(ethylene oxide)-block-poly(-caprolactone) diblock copolymer: Effect of curing agents on nanostructures, Polymer, 2006, 47, 7590-7600.
    70. Sinturel C., Vayer M., Erre R., Nanostructured Polymers Obtained fromPolyethylene-block-poly(ethylene oxide) Block Copolymer in Unsaturated Polyester,Macromolecules, 2007, 40, 2532-2538.
    71. Xu Z., Zheng S., Reaction-Induced Microphase Separation in Epoxy Thermosets Containing Poly( -caprolactone)-block-poly(n-butyl acrylate) Diblock Copolymer, Macromolecules, 2007, 40, 2548-2558.
    1. Discher, D.E., Eisenberg, A., Polymer vesicles, Science, 2002, 297, 967-973.
    2. Stupp S.I., LeBonheur V., Walker K., Supramolecular materials: Self-organized nanostructures,Science, 1997, 276, 384-389.
    3. Cha J.N., Stucky G.D., Morse D.E., Biomimetic synthesis of ordered silica structures mediated by block copolypeptides, Nature, 2000, 403, 289-292.
    4. Lee M., Cho B.-K., Zin W.-C., Supramolecular structures from rod-coil block copolymers,Chemical Reviews, 2001, 101, 3869-3982.
    5. Deming T.J., Nature, Facile synthesis of block copolypeptides of defined architecture, 1997, 390, 386-389.
    6. Lin Y., Bok?er, A., He, J., etc., Self-directed self-assembly of nanoparticle/copolymer mixtures,Nature, 2005, 434, 55-59.
    7. Webber S.E., Polymer micelles: An example of self-assembling polymers, Journal of Physical Chemistry B, 1998, 102, 2618-2626.
    8. Thompson R.B., Ginzburg V.V., Matsen, M.W., Thermodynamic Behavior of Particle/Diblock Copolymer Mixtures: Simulation and Theory, Macromolecules, 2000, 33, 8085-8096.
    9. Krausch G., Magerle R., Nanostructured thin films via self-assembly of block copolymers,Advanced Materials, 2002, 14, 1579-1583.
    10. Cui H., Chen Z., Zhong, S., Block copolymer assembly via kinetic control, Science, 2007, 317, 647-650.
    11. Reynhout I.C., Cornelissen J.J.L.M., Nolte R.J.M., Self-Assembled Architectures from Biohybrid Triblock Copolymers, Journal of the American Chemical Society, 2007, 129, 2327-2332.
    12. Mao G., Sukumaran S., Beaucage G., PEO-PPO-PEO Block Copolymer Micelles in Aqueous Electrolyte Solutions: Effect of Carbonate Anions and Temperature on the Micellar Structure and Interaction, Macromolecules, 2001, 34, 552-558.
    13. Gyor? M., Kitayama T., Fujimoto N., Comb-like triblock copolymers by Wurtz-Grignard coupling of syndiotactic PMMA anions to poly[(p-bromomethyl)styrene]-b-polyisobutylene-b-poly[(p-bromomethyl)styrene], Polymer Bulletin, 1994, 32, 155-162.
    14. Zune C., Dubois P., Jérom?e R., Anionic synthesis of [1,4-poly(diene)-b-syndiotactic poly(methyl methacrylate)] diblock copolymers: 7Li NMR study of the intermediate reaction of lithiumpoly(diene) anion with 1,1-diphenylethylene, Macromolecular Chemistry and Physics, 1999, 200, 460-467.
    15. Guo, H.-Q., Kajiwara A., Morishima Y., Radical/Cation Transformation Polymerization and Its Application to the Preparation of Block Copolymers of p-Methoxystyrene and Cyclohexene Oxide,Macromolecules, 1996, 29, 2354-2358.
    16. Kakuchi, Toyoji, Aoki, ationic copolymerization of divinyl ethers with vinyl ether. Synthesis and cation-binding property of copolymer with benzo-19-crown-6 units, Polymer Journal, 1993, 25,839-845.
    17. Muh?lebach A., Gaynor S.G., Synthesis of Amphiphilic Block Copolymers by Atom Transfer Radical Polymerization (ATRP), Macromolecules, 1998, 31, 6046-6052.
    18. Min K., Gao H., Matyjaszewski K., Preparation of Homopolymers and Block Copolymers in Miniemulsion by ATRP Using Activators Generated by Electron Transfer (AGET), Journal of the American Chemical Society, 2005, 127, 3825-3830.
    19. Moineau C., Minet M., TeyssiéP., Synthesis and Characterization of Poly(methyl methacrylate)-block-poly(n-butyl acrylate)-block-poly(methyl methacrylate) Copolymers by Two-Step Controlled Radical Polymerization (ATRP) Catalyzed by NiBr2(PPh3)2, Macromolecules, 1999, 32, 8277-8282.
    20. Tao L., Luan B., Pan, C.-Y., Block and star block copolymers by mechanism transformation. VIII synthesis and characterization of triblock poly(LLA-b-St-b-MMA) by combination of ATRP and ROP, Polymer, 2003, 44, 1013-1020.
    21. Chong B.Y.K., Le T.P.T., Moad G., A More Versatile Route to Block Copolymers and Other Polymers of Complex Architecture by Living Radical Polymerization: The RAFT Process,Macromolecules, 1999, 32, 2071-2074.
    22. Mayadunne R.T.A., Rizzardo E., Chiefari J., Living Polymers by the Use of Trithiocarbonates as Reversible Addition-Fragmentation Chain Transfer (RAFT) Agents: ABA Triblock Copolymers by Radical Polymerization in Two Steps, Macromolecules, 2000, 33, 243-245.
    23. Lai J.T., Filla D., Shea R., Functional Polymers from Novel Carboxyl-Terminated Trithiocarbonates as Highly Efficient RAFT Agents, Macromolecules, 2002, 35, 6754-6756.
    24. De Brouwer H., Schellekens M.A.J., Klumperman B., Controlled radical copolymerization of styrene and maleic anhydride and the synthesis of novel polyolefin-based block copolymers by reversible addition-fragmentation chain-transfer (RAFT) polymerization, Journal of PolymerScience, Part A: Polymer Chemistry, 2000, 38, 3596-3603.
    25. Moad G., Mayadunne, R.T.A., Synthesis of novel architectures by radical polymerization with Reversible Addition Fragmentation chain Transfer (RAFT polymerization), Rizzardo E.,Macromolecular Symposia, 2003, 192, 1-12.
    26. Gabaston L.I., Furlong S.A., Jackson R.A., Direct synthesis of novel acidic and zwitterionic block copolymers via TEMPO-mediated living free-radical polymerization, Polymer, 1999, 40, 4505-4514.
    27. Burguière C., Dourges M.-A., Charleux B., Synthesis and Characterization of -Unsaturated Poly(styrene-b-n-butyl methacrylate) Block Copolymers Using TEMPO-Mediated Controlled Radical Polymerization, Macromolecules, 1999, 32, 3883-3890.
    28. Emrick T., Hayes W., Fréchet J.M.J., TEMPO-mediated 'living' free-radical approach to ABA triblock dendritic linear hybrid copolymers, Journal of Polymer Science, Part A: Polymer Chemistry, 1999, 37, 3748-3755.
    29. Alexandridis P., Lindman B.,Amsterdam: Elsevier, 2000, 1-436 .
    30. Lauer J.H., Ashraf A., Smith S.D., Macromolecular self-assembly in dilute sequence-controlled block copolymer/homopolymer blends, Supramol.Sci, 1997, 4, 121-126.
    31. Abetz V., Goldacker T., Formation of superlattices via blending of block copolymers,Macromol.Rapid Commun, 2000, 21, 16-34.
    32. Kolb H. C., Finn M. G., Sharpless K. B., Click Chemistry: Diverse Chemical Function from a Few Good Reactions, Angewandte Chemie - International Edition, 2001, 40, 2004-2021.
    33. Huisgen, Angew. Chem. Int. Ed., 1963, 2, 565.
    34. Demko Z. P., Sharpless K. B., A click chemistry approach to tetrazoles by huisgen 1,3-dipolar cycloaddition: Synthesis of 5-acyltetrazoles from azides and acyl cyanides, Angewandte Chemie -International Edition, 2002, 41, 2110.
    35. Mantovani G., Ladmiral V., Tao L., One-pot tandem living radical polymerisation-Huisgens cycloaddition process ("click") catalysed by N-alkyl-2-pyridylmethanimine/Cu(I)Br complexes, Chemical Communications, 2005, 2089-2091.
    36. Lutz J. F., Borner H. G., Weichenhan K., Combining ATRP and "Click" Chemistry: a Promising Platform toward Functional Biocompatible Polymers and Polymer Bioconjugates,Macromolecules, 2006, 39, 6376-6383.
    37. Gao H., Louche G., Sumerlin B.S., Gradient Polymer Elution Chromatographic Analysis of ,-Dihydroxypolystyrene Synthesized via ATRP and Click Chemistry, Macromolecules, 2005, 38, 8979-8982.
    38. Tsarevsky N. V., Summerlin B. S., Matyjaszewski K., Step-Growth "Click" Coupling of Telechelic Polymers Prepared by Atom Transfer Radical Polymerization, Macromolecules, 2005, 38, 3558-3561.
    39. Opsteen J. A., Heest J. C., Modular synthesis of block copolymers via cycloaddition of terminal azide and alkyne functionalized polymers, Chemical Communications, 2005, 57-59.
    40. Gao H., Matyjazewski, Macromolecules, 2006, 39, 4969.
    41. Laurent B. A., Grayson S. M., An Efficient Route to Well-Defined Macrocyclic Polymers via "Click" Cyclization, Journal of the American Chemical Society, 2006, 128, 4238-4239.
    42. Binder W. H., Kluger C., Combining Ring-Opening Metathesis Polymerization (ROMP) with Sharpless-Type "Click" Reactions: An Easy Method for the Preparation of Side Chain Functionalized Poly(oxynorbornenes), Macromolecules, 2004, 37, 9321-9330.
    43. Binder W. H., Kluger C., Josipovic M., Directing Supramolecular Nanoparticle Binding onto Polymer Films: Film Formation and Influence of Receptor Density on Binding Densities,Macromolecules 2006, 39, 8092-8101.
    44. Murphy J. J., Nomura K., Paton R. M., Synthesis of Isoxazolino Norbornene Derivatives Containing Sugar Residues by 1,3-Dipolar Cycloaddition and Their Application to the Synthesis of Neoglycopolymers by Living Ring-Opening Metathesis Polymerization, Macromolecules, 2006, 39, 3147-3153.
    45. Luxenhofer R., Jordan R., Click Chemistry with Poly(2-oxazoline)s, Macromolecules, 2006, 39, 3509-3516.
    46. Thomsen A. D., Malmstrom E. V.V.A., Hvilsted S., Novel polymers with a high carboxylic acid loading, Journal of Polymer Science, Part A: Polymer Chemistry, 2006, 44, 6360-6377.
    47. Johnson J. A., Lewis D. R., Diaz D. D., Synthesis of Degradable Model Networks via ATRP and Click Chemistry, Journal of the American Chemical Society, 2006, 128, 6564-6565.
    48. Ossipov D. A. Hilborn J., Poly(vinyl alcohol)-Based Hydrogels Formed by "Click Chemistry", Macromolecules, 2006, 39, 1709-1718.
    49. Malkoch M., Vestberg R., Gupta N., Synthesis of well-defined hydrogel networks using Click chemistry, Chemical Communicati, 2006, 2774-2776.
    50. Englert B. C., Bakbak S., Bunz U. H. F., Click Chemistry as a Powerful Tool for the Construction of Functional Poly(p-phenyleneethynylene)s: Comparison of Pre- and Postfunctionalization Schemes, Macromolecules, 2005, 38, 5868-5877.
    51. Zhang H., Piacham T., Drew M., Molecularly Imprinted Nanoreactors for Regioselective Huisgen1,3-Dipolar Cycloaddition Reaction, Journal of the American Chemical Society, 2006, 128, 4178-4179.
    52. Prithwiraj Maitra, Stephanie L., 2004, Electrochemical and Solid-State Letters, 7, A88A.
    53. Zhang H. J., Kulkarni S., Stephanie L., Blends of POSS-PEO(n=4)8 and High Molecular Weight Poly(ethylene oxide) as Solid Polymer Electrolytes for Lithium Batteries, Jouranl of Physical Chemistry Part B, 2007, 111, 3583-3590.
    54. Byoung-Suhk Kim, Patrick T. Mather, Morphology, Microstructure, and Rheology of Amphiphilic Telechelics Incorporating Polyhedral Oligosilsesquioxane, Macromolecules, 2006, 39, 9253-9260.
    55. Lee Y. J., Huang J. M., Kuo S. W., Low-dielectric, nanoporous polyimide films prepared from PEO–POSS nanoparticles, Polymer, 2005, 46, 10056-10065.
    56. Kim B. S., Mather P. T., Amphiphilic telechelics with polyhedral oligosilsesquioxane (POSS) end-groups: Dilute solution viscometry, Polymer, 2006, 47, 6202-6207.
    57. Mu J. F., Liu Y. H., Zheng S., Inorganic–organic interpenetrating polymer networks involving polyhedral oligomeric silsesquioxane and poly(ethylene oxide), Polymer, 2007, 48, 1176-1184.
    58. Miao J. J., Cui L., Lau H. P., Self-Assembly and Chain-Folding in Hybrid Coil-Coil-Cube Triblock Oligomers of Polyethylene-b-Poly(ethylene oxide)-b-Polyhedral Oligomeric Silsesquioxane, Macromolecules, 2007, 40, 5460-5470.
    59. Koh, K., Sugiyama, S., Morinaga, T., Precision Synthesis of a Fluorinated Polyhedral Oligomeric Silsesquioxane-Terminated Polymer and Surface Characterization of Its Blend Film with Poly(methyl methacrylate), Macromolecules, 2005, 38, 1264-1270.
    60. Tunney, J.J., Detellier, C., Aluminosilicate nanocomposite materials. Poly(ethylene glycol)-kaolinite intercalates, Chemistry of Materials, 1996, 8, 927-935.
    1. Venkata T., Rao S., Lawrence D.S., Self-assembly of a threaded molecular loop, Journal of the Amerian Chemical Society, 1990, 112, 3614-3615.
    2. Stryer L., Biochemistry, 3rd ed., W. H. Freeman & Co.: New York, 1988, Chapters 12 and 30.
    3. Wenz G., Cyclodextrins as building blocks for supramolecular structures and functional units, Angewandte Chemie (International Edition in English), 1994, 33, 803-822.
    4. Szejtli J. Cyclodextrins and their Inclusion Complexes, Akademjai Kiado: Budapest, 1982.
    5. Szejtli J., Osa T., Eds. Comprehensive Supramolecular Chemistry, Volume 3 cyclodextrins; Pergamon, Elsevier: Oxford 1996.
    6. M. L. Bender, M. Komiyama, Cyclodextrin Chemistry, Springer, Berlin, 1978.
    7. Harada A., Kamachi M., Complex formation between poly (ethylene glycol) andα-cyclodextrin, Macromolecules, 1990, 23, 2821-2823.
    8. Harada A., Li J., Kamachi M., The molecular necklace: A rotaxane containing many threadedα-cyclodextrins, Nature, 1992, 356, 325-327.
    9. Harada A., Li J., Nakamiitsu T., Kamachi M., Preparation and characterization of polyrotaxanes containing many threaded .alpha.-cyclodextrins, Journal of Organic Chemistry, 1993, 58,7524-7528.
    10. Harada A., Li J., Kamachi M., Preparation and characterization of a polyrotaxane consisting of monodisperse poly(ethylene glycol) andα-cyclodextrins, Journal of the Amerian Chemical Societ, 1994, 116, 3192-3196.
    11. Wenz G., Keller B., Threading cyclodextrin rings on polymer chains, Angewandte Chemie (International Edition in English), 1992, 31, 197-199.
    12. Wenz G., Cyclodextrins as building blocks for supramolecular structures and functional units, Angewandte Chemie (International Edition in English), 1994, 33, 803-822.
    13. Weickenmeier M., Wenz G., Threading of cyclodextrins onto a polyester of octanedicarboxylic acid and polyethylene glycol, Macromolecular Rapid Communications, 1997, 18, 1109-1115.
    14. Harada A., Li J., Kamachi M., Non-ionic [2]rotaxanes containing methylatedα-cyclodextrins, Chemical Communications, 1997, 1413-1414.
    15. Fujita H., Ooya T., Yui N., Thermally Induced Localization of Cyclodextrins in a Polyrotaxane Consisting ofβ-Cyclodextrins and Poly(ethylene glycol)-Poly(propylene glycol) TriblockCopolymer, Macromolecules, 1999, 32, 2534-2541.
    16. Ikeda T., Ooya T., Yui N., Regulation of pseudo-polyrotaxane formation betweenα-cyclodextrins and azobenzene-terminated poly(ethylene glycol), Polymer Journal, 1999, 31, 658-663.
    17. Horvath G., Nepal D., Gecheler K.E., Poly(azomethine) rotaxanes: Novel water soluble supramolecular polymers with high molar mass, Macromolecular Rapid Communications, 2007, 28, 2074-2079.
    18. Schwab, J.J., Lichtenhan, J.D., Polyhedral Oligomeric Silsesquioxane (POSS)-Based Polymers,Applied Organometallic Chemistry, 1998, 12, 707-713.
    19. Li G.., Wang L., Ni H., Pittman C.U., Polyhedral oligomeric silsesquioxane (POSS) polymers and copolymers: A review, Journal of Inorganic and Organometallic Polymers, 2001, 11, 123-154.
    20. Abe Y., Gunji T., Oligo- and polysiloxanes, Progress in Polymer Science (Oxford), 2004, 29,149-182.
    21. Koh, K., Sugiyama, S., Morinaga, T., Precision Synthesis of a Fluorinated Polyhedral Oligomeric Silsesquioxane-Terminated Polymer and Surface Characterization of Its Blend Film with Poly(methyl methacrylate), Macromolecules, 2005, 38, 1264-1270.
    22. Harada A., Li J., Kamachi M., Preparation and properties of inclusion complexes of polyethylene glycol with .alpha.-cyclodextrin, Macromolecules, 1993, 26, 5698-5703.
    23. Kataoka T., Kidowaki M., Zhao C., Minamikawa H., Shimizu T., Ito K., Local and Network Structure of Thermoreversible Polyrotaxane Hydrogels Based on Poly(ethylene glycol) and Methylated -Cyclodextrins, Journal of Physical Chemistry B, 2006, 110, 24377-24383.
    24. Yang C., Wang X., Li H., Goh S.H., Li J., Synthesis and Characterization of Polyrotaxanes Consisting of Cationic -Cyclodextrins Threaded on Poly[(ethylene oxide)-ran-(propylene oxide)] as Gene Carriers, Biomacromolecules, 2007, 8, 3365-3374.
    25. Iacono S.T., Vij A., Grabow W., Smith Jr. D.W., Mabry J.M., Facile synthesis of hydrophobic fluoroalkyl functionalized silsesquioxane nanostructures, Chemical Communications, 2007, 47, 4992-4994.
    26. Szejtli J., Introduction and general overview of cyclodextrin chemistry, Chemical reviews, 1998, 98, 1743-1754.
    27. Lipkowitz K.B., Applications of Computational Chemistry to the study of cyclodextrins, Chemical reviews, 1998, 98, 1829-1974.
    28. Li J., Harada A., Kamachi M., Sol-gel transition during inclusion complex formation betweenα-cyclodextrin and high molecular weight poly(ethylene glycol)s in aqueous solution, PolymerJournal, 1994, 26, 1019-1026.
    29. Zhao T. J., Beckham H. W., Direct synthesis of cyclodextrin-rotaxanated poly (ethylene glycal)s and their self-diffusion behavior in dilute solution, Macromolecules, 2003, 36, 9859-9865.
    30. Sskakihara H., Takahashi Y., Tadokoro H., Oguni N., Tani H.,Structural studies of isotactic poly (tert-butylethylene oxide), Macromolecules, 1973,6, 205-212.
    31. Mcmullan R. K., Saenger W., Fayos J., Mootz D., Topography of cyclodextrin inclusion complexes, Part I, Classification of crystal-lographic data ofα-cyclodextrin inclusion complexes, Carbohydrate Research, 1973, 31, 37.
    32. Takes K., Kuge T., X-ray diffraction ofα-cyclodextrin complexes, Agricultural and Biological Chemistry, 1970, 34, 1787-1794.
    33. Li J., Li X., Toh K.C., Ni X., Zhou Z., Leong K.W., Inclusion Complexation and Formation of Polypseudorotaxanes between Poly[(ethylene oxide)-ran-(propylene oxide)] and Cyclodextrins,Macromolecules, 2001, 34, 8829-8831.
    34. Huh K.M., Ooya T., Sasaki S., Yui N., Polymer Inclusion Complex Consisting of Poly( -lysine) and -Cyclodextrin, Macromolecules, 2001, 34, 2402-2404.
    35. Huang L., Allen E., Tonelli A.E., Inclusion compounds formed between cyclodextrins and nylon 6, Polymer, 1999, 40, 3211-3221.
    1. Tanaka T., Collapse of gels and the critical endpoint, Physical Review Letters, 1978, 40, 820-823.
    2. Tanaka T., Nishio I., Sun S. T., Collapse of gels in an electric field, Science 1982, 218, 467-469.
    3. Eichenbaum G.M., Kiser P.F., Simon S.A., pH and ion-triggered volume response of anionic hydrogel microspheres, Macromolecules, 1998, 31, 5084-5093.
    4. Kozlovskaya V., Kharlampieva E., Mansfield M.L., Poly(methacrylie acid) hydrogel films and capsules: Response to pH and ionic strength, and encapsulation of macromolecules, Chemistry of Materials, 2006, 18, 328-336.
    5. Zhang X.-Z., Wang F.-J., Chu C.-C., Thermoresponsive hydrogel with rapid response dynamics,Journal of Materials Science: Materials in Medicine, 2003, 14, 451-455.
    6. Zhang, X.-Z., Zhuo, R.-X., Synthesis and properties of thermosensitive poly(N-isopropylacrylamide-co-methyl methacrylate) hydrogel with rapid response, Materials Letters, 2002, 52, 5-9.
    7. Snowden M.; Murray M.; Chowdry B. Z., Some like it hot! Thermo-sensitive polymers, Chemistry and Industry (London), 1996, 14,531-534.
    8. Osada, Y.; Kishi, R.; Hasebe, M., ANOMALOUS CHEMOMECHANICAL CHARACTERISTICS OF ELECTRO-ACTIVATED POLYELECTROLYTE GELS, Journal of Polymer Science, Part C: Polymer Letters, 1987, 25, 481-485.
    9. Shinohara, S.; Tajima, N.; Yanagisawa, K., Chemomechanical gels for actuator system controlled by electrochemical reaction, Journal of Intelligent Material Systems and Structures, 1996, 7, 254-259.
    10. Osada, Y.; Ross-Murphy, S. B. Sci. Am. 1993,259,42.
    11. Liu, Z.; Calvert, P., Multilayer hydrogels as muscle-like actuators, Advanced Materials, 2000, 12, 288-291.
    12. Feil, H.; Bae, Y. H.; Jan, F.; Kim, S. W. J.Membr. Sci. 1991, 64,283.
    13. Park, Y. S. S.; Ito, Y.; Imanishi, Y., Permeation Control through Porous Membranes Immobilized with Thermosensitive Polymer, Langmuir 1998, 14, 910-914.
    14. Rao K. V. R.;,Devi K. P. Int. J. Pharm. 1988, 48, 1.
    15. Brazel, C. S.; Peppas, N. A. Polym. Mater. Sci. Eng. 1996, 74, 370.
    16. Stayton, P. S.; Shimoboji, T.; Long, C.; Chilkoti, A.; Chen, G.; Harris, J. M.; Hoffman, A. S. Nature (London) 1995, 378, 472.
    17. Gupta P., Vermani K.; Garg, S., Hydrogels: From controlled release to pH-responsive drug delivery, Drug Discovery Today, 2002, 7, 569-579.
    18. Kikuchi, A.; Okano, T. Macromol. Symp. 2004, 205, 217.
    19. Liang L., Rieke, P. C.; Liu, J.; Fryxell, G. E.; Young, J. S.; Engelhard, M. H.; Alford, K. L.,Surfaces with Reversible Hydrophilic/Hydrophobic Characteristics on Cross-linked Poly(N-isopropylacrylamide) Hydrogels, Lan gmuir 2000,16, 8016-8023.
    20. Kessler, D.; Theato, P., Temperature-responsive surface coatings based on poly(methylsilsesquioxane) -hybrid polymers, Macromolecular Symposia, 2007, 249-250, 424-430.
    21. Akashi, R.; Tsutsui, H.; Komura, R., Polymer gel light-modulation materials imitating pigment cells , Advanced Material,s 2002, 14, 1808-1811.
    22. Asher, S. A.; Weismann, J. M.; Sunkara, H. B. US Patent 6165389,2000.
    23. Winnik, F. M., Fluorescence studies of aqueous solutions of poly(N-isopropylacrylamide) below and above their LCST, Macromolecules 1990, 23, 233-242.
    24. Schild, H. G. Prog. Polym. Sci. 1992, 17, 163.
    25. Tam, K. C.; Wu, X. Y.; Pelton, R. H. J. Polym. Sci., Polym. Chem. Ed. 1993, 31, 963.
    26. Tiktopulo, E. I.; Bychkova, V. E.; Ricka, J.; Ptitsyn, O. B., Cooperativity of the Coil-Globule Transition in a Homopolymer: Microcalorimetric Study of Poly(N-isopropylacrylamide),Macromolecules 1994, 27, 2879-2882.
    27. Wu, C.; Zhou, S., Laser Light Scattering Study of the Phase Transition of Poly(N-isopropylacrylamide) in Water. 1. Single Chain, Macromolecules 1995, 28, 8381-8387.
    28. Wang, X.; Qiu, X.; Wu, C., Comparison of the Coil-to-Globule and the Globule-to-Coil Transitions of a Single Poly(N-isopropylacrylamide) Homopolymer Chain in Water,Macromolecules 1998, 31, 2972-2976.
    29. Pelton, R., Temperature-sensitive aqueous microgels,Advances in Colloid and Interface Science,2000, 85, 1-33.
    30. Maeda, Y.; Higuchi, T.; Ikeda, I., FTIR Spectroscopic and Calorimetric Studies of the Phase Transitions of N-Isopropylacrylamide Copolymers in Water, Langmuir 2001, 17, 7535-7539.
    31. Stieger, M.; Richtering, W., Shear-Induced Phase Separation in Aqueous Polymer Solutions: Temperature-Sensitive Microgels and Linear Polymer Chains, Macromolecules 2003, 36, 8811-8818.
    32. Kita, R.; Wiegand, S., Soret Coefficient of Poly(N-isopropylacrylamide)/Water in the Vicinity ofCoil-Globule Transition Temperature, Macromolecules 2005, 38, 4554-4556.
    33. Lutz, J.-F.; Akfemir, O.; Hoth, A., Journal of the American Chemical Society 2006, 128,130 46.
    34. Wu, C., Zhou, S., Volume Phase Transition of Swollen Gels: Discontinuous or Continuous?, Macromolecules, 1997, 30, 574-576.
    35. Wu, C., Zhou, S., A comparison between the‘coil-to-globule’transition of linear chains and the“volume phase transition”of spherical microgels, Polymer, 1998, 39, 4609-4619.
    36. Kujawa, P., Winnik F. M., Volumetric Studies of Aqueous Polymer Solutions Using Pressure Perturbation Calorimetry: A New Look at the Temperature-Induced Phase Transition of Poly(N-isopropylacrylamide) in Water and D2O, Macromolecules, 2001, 34, 4130-4135.
    37. Huber, D. L.; Manginell, R. P.; Samara, M. A.; Kim, B. I.; Bunker, B. C. Science 2003, 301, 352–354.
    38. Taylor, L. D.; Cerankowsky, L. D. J. Polym. Sci., Polym. Chem. Ed. 1975, 13, 2551.
    39. Kujawa, P., Winnik F. M., Volumetric Studies of Aqueous Polymer Solutions Using Pressure Perturbation Calorimetry: A New Look at the Temperature-Induced Phase Transition of Poly(N-isopropylacrylamide) in Water and D2O, Macromolecules, 2001, 34, 4130-4135.
    40. Furyk, S.; Zhang, Y.; Ortiz-Acosta, D.; Cremer, P. S.; Bergbreiter, D. E., Effects of end group polarity and molecular weight on the lower critical solution temperature of poly(N-isopropylacrylamide), Journal of Polymer Science, Part A: Polymer Chemistry, 2006, 44, 1492-1501.
    41. Teodorescu M., Matyjaszewski K., Atom Transfer Radical Polymerization of (Meth)acrylamides,Macromolecules, 1999, 32, 4826-4831.
    42. Rademacher J. T., Baum M., Pallack M. E., Brittain W. J., Atom Transfer Radical Polymerization of N,N-Dimethylacrylamide, Macromolecules, 2000, 33, 284-288.
    43. Teodorescu M., Matyjaszewski K., Controlled polymerization of (meth)acrylamides by atom transfer radical polymerization, Macromolecular Rapid Communications, 2000, 21, 190-194.
    44. Masci G., Giacomelli L., Crescenzi V., Atom transfer radical polymerization of N-isopropylacrylamide, Macromolecular Rapid Communications, 2004, 25, 559-564.
    45. Ganachaud F., Monteiro M. J., Gilber R. G., Molecular Weight Characterization of Poly(N-isopropylacrylamide) Prepared by Living Free-Radical Polymerization, Macromolecules, 2000, 33, 6738-6745.
    46. Schilli C., Lanzendoerfer M. G., Muller A. H. E., Benzyl and Cumyl Dithiocarbamates as Chain Transfer Agents in the RAFT Polymerization of N-Isopropylacrylamide. In Situ FT-NIR andMALDI-TOF MS Investigation, Macromolecules, 2002, 35, 6819-6827.
    47. Ray B, Isobe Y., Matsumoto K., RAFT Polymerization of N-Isopropylacrylamide in the Absence and Presence of Y(OTf)3: Simultaneous Control of Molecular Weight and Tacticity,Macromolecules, 2004, 37, 1702-1710.
    48. Convertine A. J., Ayres N., Scales C. W., Facile, Controlled, Room-Temperature RAFT Polymerization of N-Isopropylacrylamide, Biomacromolecules, 2004, 5, 1177-1180.
    49. Convertine A. J., Lokitz B. S., Vasileva Y., Direct Synthesis of Thermally Responsive DMA/NIPAM Diblock and DMA/NIPAM/DMA Triblock Copolymers via Aqueous, Room Temperature RAFT Polymerization, Macromolecules, 2006, 39, 1724-1730.
    50. Raula J., Shan J., Nuopponen M., Synthesis of Gold Nanoparticles Grafted with a Thermoresponsive Polymer by Surface-Induced Reversible-Addition-Fragmentation Chain-Transfer Polymerization, Langmuir, 2003, 19, 3499-3504.
    51. Liu Q., Zhang P., Qing A., Poly(N-isopropylacrylamide) hydrogels with improved shrinking kinetics by RAFT polymerization, Polymer, 2006, 47, 2330-2336.
    52. Michelle H., Christopher B. K., Thomas P. D., Shell-Cross-Linked Vesicles Synthesized from Block Copolymers of Poly(D,L-lactide) and Poly(N-isopropyl acrylamide) as Thermoresponsive Nanocontainers, Langmuir, 2004, 20, 10809-10917.
    53. Chiefari J., Chong Y. K., Ercole F., Krstina J., Living Free-Radical Polymerization by Reversible Addition-Fragmentation Chain Transfer: The RAFT Process, Macromolecules, 1998, 31, 5559-5562.
    54. Mayadunne R. T. A., Rizzardo E., Chiefari J., Living Radical Polymerization with Reversible Addition-Fragmentation Chain Transfer (RAFT Polymerization) Using Dithiocarbamates as Chain Transfer Agents, Macromolecules, 1999, 32, 6977-6980.
    55. Hawthorne D. G., Moad G., Rizzardo E., Living Radical Polymerization with Reversible Addition-Fragmentation Chain Transfer (RAFT): Direct ESR Observation of Intermediate Radicals, Macromolecules, 1999, 32, 5457-5459.
    56. Chong Y. K., Le T. P. T., Moad G., A More Versatile Route to Block Copolymers and Other Polymers of Complex Architecture by Living Radical Polymerization: The RAFT Proce,Macromolecules, 1999, 32, 2071-2074.
    57. Lowe A. B., McCormick C. L., Reversible addition-fragmentation chain transfer (RAFT) radical polymerization and the synthesis of water-soluble (co)polymers under homogeneous conditions in organic and aqueous media, Progress in Polymer Science, 2007, 32, 283-351.
    58. Kolb H. C., Finn M. G., Sharpless K. B., Click Chemistry: Diverse Chemical Function from a Few Good Reactions,Angewandte Chemie - International Edition, 2001, 40, 2004-2021.
    59. Huisgen, Angew. Chem. Int. Ed., 1963, 2, 565.
    60. Demko Z. P., Sharpless K. B., Angew. Chem. Int. Ed., 2002, 41, 2110.
    61. Mantovani G., Ladmiral V., Tao L., Chem. Commun., 2005, 2089.
    62. Lutz J. F., Borner H. G., Weichenhan K., Combining ATRP and "Click" Chemistry: a Promising Platform toward Functional Biocompatible Polymers and Polymer Bioconjugates,Macromolecules, 2006, 39, 6376-6383.
    63. Gao H., Louche G., Sumerlin B.S., Gradient Polymer Elution Chromatographic Analysis of,-Dihydroxypolystyrene Synthesized via ATRP and Click Chemistry, Macromolecules, 2005, 38, 8979-8982.
    64. Tsarevsky N. V., Summerlin B. S., Matyjaszewski K., Step-Growth "Click" Coupling of Telechelic Polymers Prepared by Atom Transfer Radical Polymerization, Macromolecules, 2005, 38, 3558-3561.
    65. Opsteen J. A., Heest J. C., Chem. Commun., 2005, 57.
    66. Gao H., Matyjazewski, Macromolecules, 2006, 39, 4969.
    67. Laurent B. A., Grayson S. M., An Efficient Route to Well-Defined Macrocyclic Polymers via "Click" Cyclization, Journal of the American Chemical Society, 2006, 128, 4238-4239.
    68. Binder W. H., Kluger C., Combining Ring-Opening Metathesis Polymerization (ROMP) with Sharpless-Type "Click" Reactions: An Easy Method for the Preparation of Side Chain Functionalized Poly(oxynorbornenes), Macromolecules, 2004, 37, 9321-9330.
    69. Binder W. H., Kluger C., Josipovic M., Directing Supramolecular Nanoparticle Binding onto Polymer Films: Film Formation and Influence of Receptor Density on Binding Densities,Macromolecules 2006, 39, 8092-8101.
    70. Murphy J. J., Nomura K., Paton R. M., Synthesis of Isoxazolino Norbornene Derivatives Containing Sugar Residues by 1,3-Dipolar Cycloaddition and Their Application to the Synthesis of Neoglycopolymers by Living Ring-Opening Metathesis Polymerization, Macromolecules, 2006, 39, 3147-3153.
    71. Luxenhofer R., Jordan R., Click Chemistry with Poly(2-oxazoline)s, Macromolecules, 2006, 39, 3509-3516.
    72. Thomsen D., Malmstrom E., Hvilsted S., J. Polym. Sci. Part A: Polym. Chem., 2006, 44, 6360.
    73. Johnson J. A., Lewis D. R., Diaz D. D., Synthesis of Degradable Model Networks via ATRP andClick Chemistry, Journal of the American Chemical Society, 2006, 128, 6564-6565.
    74. Ossipov D. A. Hilborn J., Poly(vinyl alcohol)-Based Hydrogels Formed by "Click Chemistry",Macromolecules, 2006, 39, 1709-1718.
    75. Malkoch M., Vestberg R., Gupta N., Synthesis of well-defined hydrogel networks using Click chemistry, Chemical Communications, 2006, 2774-2776.
    76. Englert B. C., Bakbak S., Bunz U. H. F., Click Chemistry as a Powerful Tool for the Construction of Functional Poly(p-phenyleneethynylene)s: Comparison of Pre- and Postfunctionalization Schemes, Macromolecules, 2005, 38, 5868-5877.
    77. Zhang H., Piacham T., Drew M., Molecularly Imprinted Nanoreactors for Regioselective Huisgen 1,3-Dipolar Cycloaddition Reaction, Journal of the American Chemical Society, 2006, 128, 4178-4179.
    78. Ranjan R., Brittain W. J., Tandem RAFT polymerization and click chemistry: An efficient approach to surface modification, Macromolecular Rapid Communications, 2007, 28, 2084-2089.
    79. Zhu J., Zhu X. L., Kang E. T., Design and synthesis of star polymers with hetero-arms by the combination of controlled radical polymerizations and click chemistry, Polymer, 2007, 48, 6992-6999.
    80. Quemener D., Davis T. P., Barner-Kowollik C., RAFT and click chemistry: A versatile approach to well-defined block copolymers, Chem. Commun., 2006, 5051-5053.
    81. Quemener D., Hellaye M. L., Bissett C., Graft block copolymers of propargyl methacrylate and vinyl acetate via a combination of RAFT/MADIX and click chemistry: Reaction analysis, Journal of Polymer Science, Part A: Polymer Chemistry, 2008, 46, 155-173.
    82. Sudershan R. G., Andrew P. V., Brent S. S., Versatile Pathway to Functional Telechelics via RAFT Polymerization and Click Chemistry, Macromolecules, 2007, 40, 474-481.
    83. Rizzardo E., Chiefari J., Mayadunne R. T. A., etc., Synthesis of defined polymers by reversible addition-fragmentation chain transfer: the RAFT process. In: Mayajaszewski K. editor. Wahington D. C.: American Chemical Society, 2000, 278-96.
    84. Hales M., Barner-Kowollik C., Davis T. P., Stenzel M., Shell-cross-linked vesicles synthesized from block copolymers of poly(D,L-lactide) and poly(N-isopropyl acrylamide) as thermoresponsive nanocontainers, Langmuir, 2004, 20, 10809-10817.
    85. Wang W., Troll K., Kaune G., Metwalli E., Ruderer M., Skrabania K., Laschewsky A., Roth S. V., Papadakis C. M., M?ller-Buschbaum P., Thin Films of Poly( N-isopropylacrylamide) End-Capped with n-Butyltrithiocarbonate, Macromolecules, 2008, 41, 3209-3218.
    1. Wicterler O., Lim D., Nature, 1960, 185, 117.
    2. Drossi D., Kajiwara K., Osada Y., etc., Polymer gels, Plenum, New York, 1991.
    3. Okano T., Biorelated Polymer and Gels, Academic Press, Boston, 1998.
    4. Stile R. A., Healy K. E., Poly(N-isopropylacrylamide)-Based Semi-interpenetrating Polymer Networks for Tissue Engineering Applications. 1. Effects of Linear Poly(acrylic acid) Chains on Phase Behavior,Biomacromolecules, 2002, 3, 591-600.
    5. Holtz, J.H., Asher, S.A., Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials,Nature, 1997, 389, 829-832.
    6. Nowak, A.P., Breedveld, V., Pakstis, L., Rapidly recovering hydrogel scaffolds from self-assembling diblock copolypeptide amphiphiles,Nature, 2002, 417, 424-428.
    7. Hu, Z., Lu, X., Gao, J., Hydrogel opals,Advanced Materials, 2001, 13, 1708-1712.
    8. Metters, A.T., Anseth, K.S., Bowman, C.N., Fundamental studies of a novel, biodegradable PEG-b-PLA hydrogel,Polymer, 2000, 41, 3993-4004.
    9. Alvarez-Lorenzo, C., Concheiro, A., Reversible adsorption by a pH- and temperature-sensitive acrylic hydrogel,Journal of Controlled Release, 2002, 80, 247-257.
    10. Wu, C., Zhou, S., Volume Phase Transition of Swollen Gels: Discontinuous or Continuous?,Macromolecules, 1997, 30, 574-576.
    11. Wu, C., Zhou, S., A comparison between the‘coil-to-globule’transition of linear chains and the“volume phase transition”of spherical microgels,Polymer, 1998, 39, 4609-4619.
    12. Kujawa, P., Winnik F. M., Volumetric Studies of Aqueous Polymer Solutions Using Pressure Perturbation Calorimetry: A New Look at the Temperature-Induced Phase Transition of Poly(N-isopropylacrylamide) in Water and D2O,Macromolecules, 2001, 34, 4130-4135.
    13. Hirokawa, Y., Tanaka, Y., Volume phase transition in a nonionic gel,The Journal of Chemical Physics, 1984, 81, 6379-6380.
    14. Matuo E. S., Tanaka, T., J. Chem. Phys., 1988, 89, 1695.
    15. Suzuki A., Tanaka T., Phase transition in polymer gels induced by visible light,Nature, 1990, 346, 345-347.
    16. Bae, Y. H., Okano, T., Kim, S. W., Temperature dependence of swelling of crosslinked poly(N,N′-alkyl substituted acrylamides) in water, Journal of Polymer Science, Part B: PolymerPhysics, 1990, 28, 923-936.
    17. Otake, K., Inemnate, H., Konno, M., Phase Separation Induced Mechanical Transition of Poly(N-isopropylacrylamide)/Water Isochore Gels,Macromolecules, 1994, 27, 5060-5066.
    18. Inomata, H., Goto, S., Ohtake K., Effect of additives on phase transition of N-isopropylacrylamide gels,Langmuir, 1992, 8, 687-690.
    19. Otake, K., Inemnate, H., Konno, M., Phase Separation Induced Mechanical Transition of Poly(N-isopropylacrylamide)/Water Isochore Gels,Macromolecules, 1994, 27, 5060-5066.
    20. Inomata, H., Wada, N., Yagi, Y., Swelling behaviours of N-alkylacrylamide gels in water: effects of copolymerization and crosslinking density,Polymer, 1995, 36, 875-877.
    21. Yin, X., Hoffman, A. S., Stayton P. S., Poly(N-isopropylacrylamide-co-propylacrylic acid) copolymers that respond sharply to temperature and pH, Biomacromolecules, 2006, 7, 1381-1385.
    22. Tac, G. K. B., Temperature modulated protein release from pH/temperature-sensitive hydrogels,Biomaterials, 1999, 20, 517-521.
    23. Dharam, D., Chatterji, P. R., Swelling and deswelling pathways in non-ionic poly(N-isopropylacrylamide) hydrogels in presence of additives, Polymer, 2000, 41, 6133-6143.
    24. Zhu P. W., Nappper D. H., J. Colloid interface Sci., 1996, 117, 343.
    25. Zhu P. W., Nappper D. H., Volume phase transitions of poly(N-isopropylacrylamide) latex particles in mixed water-N,N-dimethylformamide solutions, Chemical physics Letters, 1996, 256, 51-56.
    26. Zhu P. W., Nappper D. H., Light scattering studies of poly(N-isopropylacrylamide) microgel particles in mixed water-acetic acid solvents, Macromolecular Chemistry and Physics, 1999, 299, 1950-1955.
    27. Takigawa, T., Araki, H., Takabashi, K., etc., J. Chem. Phys., 2000, 113, 7640.
    28. Haraguchi, K., Farnworth, R., Ohbayashi, A., Compositional Effects on Mechanical Properties of Nanocomposite Hydrogels Composed of Poly(N,N-dimethylacrylamide) and Clay,Macromolecules, 2003, 36, 5732-5741.
    29. Nakamoto, C., Motonaga, t., Shibayama, M., Preparation Pressure Dependence of Structure Inhomogeneities and Dynamic Fluctuations in Poly(N-isopropylacrylamide) Gels,Macromolecules, 2001, 34, 911-917.
    30. Yoshida, R., Uchida, K., Kanedo, Y., etc., Nature, 1995, 374, 240.
    31. Haraguchi, K., Takehisa, T., Nanocomposite Hydrogels: A Unique Organic-Inorganic Network Structure with Extraordinary Mechanical, Optical, and Swelling/De-swelling Properties,Advanced Materials, 2002, 14, 1120-1124.
    32. Wu X., Hoffman A. S., Yagger P., Synthesis and characterization of thermally reversible macroporous poly(N-isopropylacrylamide) hydrogels, Journal of Polymer Science Part A: Polymer Chemistry, 1992, 30, 2121-2129.
    33. Zhuo R. X., Li W., Preparation and characterization of macroporous poly(N-isopropylacrylamide) hydrogels for the controlled release of proteins, Journal of Polymer Science Part A: Polymer Chemistry, 2003, 41, 152-159.
    34. Norihiro K., Yasuzo S., Shihoko S., Wide-Range Control of Deswelling Time for Thermosensitive Poly(N-isopropylacrylamide) Gel Treated by Freeze-Drying, Macromolecules, 2003, 36, 961-963.
    35. Zhang X. Z., Yang Y. Y., Chung T. S., Effect of mixed solvents on characteristics of poly(N-isopropylacrylamide) gels, Langmuir, 2002, 18, 2538-2542.
    36. Serizawa T., Wakita K., Akasika M., Rapid Deswelling of Porous Poly(N-isopropylacrylamide) Hydrogels Prepared by Incorporation of Silica Particles, Macromolecules, 2002, 35, 10-12.
    37. Zhang X. Z., Yang Y. Y., Chung T. S., Effect of mixed solvents on characteristics of poly(N-isopropylacrylamide) gels, Langmuir, 2002, 18, 2538-2542.
    38. Ma X., Cui Y., Zhao X., Different deswelling behavior of temperature-sensitive microgels of poly(N-isopropylacrylamide) crosslinked by polyethyleneglycol dimethacrylates, Journal of Colloid and Interface Science, 2004, 276, 53-59.
    39. Haraguchi K., Takehisa T., Nanocomposite hydrogels: A unique organic-inorganic network structure with extraordinary mechanical, optical, and swelling/De-swelling properties, Advanced Materials, 2002, 14, 1120-1124.
    40. Liang L., Liu J., Gong X. Y., Thermosensitive Poly(N-isopropylacrylamide)-Clay Nanocomposites with Enhanced Temperature Response, Langmuir, 2000, 16, 9895-9899.
    41. Zhang X. Z., Zhuo R. X., Dynamic Properties of Temperature-Sensitive Poly(N-isopropylacrylamide) Gel Cross-Linked through Siloxane Linkage, Langmuir, 2001, 17, 12-16.
    42. Haraguchi K., Takehisa T., Fan S., Effects of Clay Content on the Properties of Nanocomposite Hydrogels Composed of Poly(N-isopropylacrylamide) and Clay, Macromolecules, 2002, 35, 10162-10171.
    43. Famworth R., Ohbayashi A., Takehisa T., Compositional Effects on Mechanical Properties of Nanocomposite Hydrogels Composed of Poly(N,N-dimethylacrylamide) and Clay,Macromolecules, 2003, 36, 5732-5741.
    44. Schwab J. J., Lichtenhan J. D., Polyhedral oligomeric silsesquioxane(POSS)-based polymers,Applied Organometallic Chemistry, 1998, 12, 707-713.
    45. Li G., Wang L., Ni H., etc., Journal of inorganic and Organometallic polymers, 2001, 1, 123.
    46. Mu, J., Zheng, S., Poly(N-isopropylacrylamide) nanocrosslinked by polyhedral oligomeric silsesquioxane: Temperature-responsive behavior of hydrogels, Journal of Colloid and Interface Science, 2007, 307, 377-385.
    47. Kim B. S., Mather P. T., Amphiphilic Telechelics Incorporating Polyhedral Oligosilsesquioxane: 1. Synthesis and Characterization, Macromolecules, 2002, 35, 8378-8384.
    48. Kim B. S., Mather P. T., Morphology, Microstructure, and Rheology of Amphiphilic Telechelics Incorporating Polyhedral Oligosilsesquioxane, Macromolecules, 2006, 39, 9253-9260.
    49. Kim B. S., Mather P. T., Amphiphilic telechelics with polyhedral oligosilsesquioxane (POSS) end-groups: Dilute solution viscometry, Polymer, 2006, 47, 6202-620.
    50. Zeng K., Zheng S. X., Nanostructures and Surface Dewettability of Epoxy Thermosets Containing Hepta(3,3,3-trifluoropropyl) Polyhedral Oligomeric Silsesquioxane-Capped Poly(ethylene Oxide), Journal of Physical Chemistry,Part B, 2007, 111, 13919-13928.
    51. Van Durme K., Van Assche G., Aseyev V., Raula J., Tenhu H., Van Mele B., Influence of Macromolecular Architecture on the Thermal Response Rate of Amphiphilic Copolymers, Based on Poly(N-isopropylacrylamide) and Poly(oxyethylene), in Water, Macromolecules, 2007, 40, 3765-3772.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700