金属氧化物气体传感器响应动力学特性与阵列优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电子鼻是一种模拟生物嗅觉的气体/气味分析仪器,相对于传统的气体分析仪器,其具有分析快速、操作简单、可便携、成本低等优点,可应用于食品质量检测与控制、环境监测、公共安全、医疗卫生、航空航天等一系列国家重大需求领域。电子鼻中最核心的组成部分是气体传感器阵列,其中金属氧化物(MOX)气体传感器是应用最广泛的一类传感器。电子鼻技术应用推广中存在许多科学技术瓶颈。本文分析和探讨了电子鼻技术应用研究中的一些共性问题,其中主要包括MOX气体传感器响应信息提取的研究、MOX气体传感器敏感机理与响应模型的研究,以及气体传感器阵列的选择性优化研究。
     MOX气体传感器响应信息提取的研究中,分别在时域空间和相空间中分析了传感器响应曲线的特性,并建立了一种基于特征信息含量和相关性分析的零散特征快速提取方法,和一种基于相空间中传感器响应模式的全特征参数提取方法。其中所建立的零散特征快速提取方法,基于特征参数信息含量和相关性的分析,以在最短时间内提取对气体类别区分能力大、相关性小的参数作特征参数为原则,可快速提取信息量充足的特征参数。在易燃液体快速检测的一个应用中,基于该方法可在10s内提取积分、差分、微分和二次微分信号为特征参数,与传统的响应幅值特征参数提取方法相比有更优的性能,两者对各类易燃液体和不可燃饮料的正确识别率分别为85.7%和57.1%。所建立的全特征参数提取方法,基于对相空间中传感器响应动力学特性分析所得到的响应模式规律,提取了六个特征参数,同时基于这些参数可以还原出响应曲线,还原出的响应曲线与原始响应曲线的平均还原误差仅为5.4%。为了提高电子鼻的在线检测速度,缩短传感器阵列响应样本后恢复到初始态的时间,同时还分析了传感器恢复曲线的特性,并建立了一套快速提取恢复特征参数的方法与装置,其对样本的检测恢复时间仅为稳态测试条件下的42.7%,可以较大程度上降低检测恢复时间,提高在线检测的速度。最后基于海鲜中甲醛的检测为应用,对特征参数的稳定性进行分析与对比,分析得到恢复曲线特征参数min(dS_t/dt/)/max(S_t/)较传感器空气状态下的电阻R_0以及响应过程中的敏感幅值S更为稳定,三特征参数最小误差分别为2.1%、9.9%和7.2%。
     MOX气体传感器敏感机理与响应模型的研究中,基于氧离子化模型与氧空位模型推导出了一个MOX传感器与气体反应的动力学模型,并利用该模型定量描述了相空间中气体的响应模式,该模型描述数据中响应模式的平均模拟误差仅为3.98%。同时基于该动力学模型建立了一个传感器性能参数数据库,以及一个模式匹配的模式识别方法,利用该方法可以有效的对样本进行正确识别。同时还分析了该动力学模型可能的其它应用,包括研究工作温度、环境湿度、环境氧分压、敏感膜的厚度、敏感层晶粒的大小、敏感层表面形态、掺杂等对响应模式的影响。最后,基于模型假设与实验数据验证,证明传感器对不同类别气体存在不同响应模式的原因是,不同类别气体与气敏材料反应时,不同类别的气体是在与不同的氧空位/离子化的氧反应,或反应的几率不同。
     气体传感器阵列的选择性优化研究中,介绍了四种常见的特征选择阵列优化方法,并利用这些方法优化了MOX传感器阵列的工作温度,将10个初始工作温度为300℃的传感器组成的阵列,优化为一个工作温度为220℃的四传感器阵列。同时建立了一种基于亚阵列的阵列优化方法,利用该方法可以获知优化阵列中各传感器的独特功用,在利用六传感器(TGS813、TGS2600、TGS2602、TGS2610、TGS2611和TGS2620)对11种样本(苯、甲苯、二甲苯、乙醇、甲醇、丙酮、丁酮、甲醛、乙醛、正戊烷以及环己烷)的识别中,采用基于亚阵列的阵列优化方法,可将阵列优化为三传感器阵列(TGS2600、TGS2602、TGS813),且在该优化阵列中,传感器TGS2600独特的功用是识别丁酮和乙醛;传感器TGS2602独特的功用是识别苯和环己烷、甲醇和乙醇;传感器TGS813独特的功用是识别环己烷和正戊烷;传感器组合TGS2600和TGS2602独特的功用是识别丙酮和丁酮、丙酮和乙醛。
Electronic nose is an instrument for gas/odor analysis which simulates the biologic olfaction. Comparing with the traditional gas analyzing instruments, it has the virtues of high speed for analyzing, facility in operation, easiness to carry, low cost etc. Electronic nose could be used in many application fields for important national requirements, such as food quality assessment and control, environment, security, sanitation, avigation etc. Gas sensor array is the most important part in electronic noses. Metal oxide (MOX) gas sensor is the widely used sort of gas sensors. There are several problems in the applications of electronic nose. These problems mainly included three subjects, which were the feature extraction from the response curves of MOX gas sensors, reaction model analysis of MOX gas sensors, and the sensor array optimization. These problems were analyzed in this paper.
     In the research of feature extraction analysis, the characters of response curves in the time domain and in phase space were analyzed. A piecemeal signal feature extraction method based on information and relativity analysis and a entire feature extraction method were established. In the piecemeal signal feature extraction method, features from the 10th second of the integrals, differences curves, and the 5.7th second of the primary derivatives curves, and the 6.2th second of the secondary derivatives curves were extracted. In the entire feature extraction method, six features were extracted. With these features, the response curves could be reconstructed. The mean error of the reconstructed response curves from the original signal response curves was 5.4%. In order to reduce the response-recovery time of electronic nose, the characters of recovery curves were analyzed. And an electronic nose with nine metal oxide gas sensors and a method of feature extraction on sensor recovery curves were established to reduce response-recovery time. With the electronic nose and the feature extraction method, the mean response-recovery time in the measurements was 33.5 s, which was about 42.7% of the response-recovery time in typical traditional gas sample measurements. Finally, the feature stabilities were compared in the measurements of formaldehyde-containing detections in octopus. The minimum relative errors of static features R_0 (resistance in the air) , S (sensor response) , and one dynamic feature DR (desorption rate) were 2.1%, 9.9% and 7.2%.
     In the reaction model analysis of MOX gas sensors, a reaction model of MOX gas sensors is established to simulate the sensor response patterns, where the mean simulation error was 3.98%. A performance database of sensors and a pattern matching method were built for gas sort classification without any usual pattern recognition methods. The other applications of the reaction model were also analyzed, including the researches of the influence of temperature, O_2 concentration, humidity, film thickness, grain size, doping, catalyzer etc. on the sensor response properties. Finally, the reason of different response patterns with different gas sensors was analyze. The results showed that on the surfaces of sensing materials, different gases sorts reacted with different active dots, or with different reacting probabilities.
     In the sensor array optimization analysis, four common feature selection method were used in working temperature selection of MOX sensor array, where a 10 sensor array with working temperature of 300℃was optimized to a 4 sensor array with working temperature of 220℃. In the sensor array optimization analysis, a sensor array optimization method based on sub-array was also established to analyze the unique functions of each sensor in the optimized array. A measurement with a 6 TGS sensors array (TGS2600, TGS2602, TGS2610, TGS2611, TGS2620 and TGS813) to classify 11 gas sorts (benzene, toluene, xylene, acetone, butanone, methanol, ethanol, formaldehyde, acetaldehyde, pentane and cyclohexane) was used in the data validation. The sensor array was optimized to 3 sensors with the method. Each sensor in the optimized array had unique functions to solve different difficult tasks. TGS2600 had the unique functions to discriminate Butanone and Acetaldehyde. TGS2602 had the unique functions to discriminate Benzene and Cyclohexane, Methanol and Ethanol. TGS813 had the unique functions to discriminate Cyclohexane and Pentane. The combination of TGS2600 and TGS2602 had the unique functions to discriminate Acetone and Butanone, Acetone and Acetaldehyde. The proposed method might be a new generation of sensor array optimization methods.
引文
[1] R. Paolesse, A. Alimelli, E. Martinelli, et al. Detection of fungal contamination of cereal grain samples by an electronic nose. Sensors and Actuators B, 2006, 119(2):425-430
    [2] J. H. Sohn, R. J. Smith, E. Yoong. Process studies of odour emissions from effluent ponds using machine-based odour measurement. Atmospheric Environment, 2006,40(7):1230-1241
    [3] Z. Hai, J. Wang. Electronic nose and data analysis for detection of maize oil adulteration in sesame oil. Sensors and Actuators B, 2006,119(2): 449-455
    [4] L. P. Pathange, P. Mallikarjunan, R. P. Marini, et al. Non-destructive evaluation of apple maturity using an electronic nose system. Journal of Food Engineering, 2006,77(4): 1018-1023
    [5] J. S. Vestergaard, J. E. Haugen, D. V. Byrne. Application of an electronic nose for measurements of boar taint in entire male pigs. Meat Science, 2006, 74(3): 564-577
    [6] A. H. Gomez, G. Hu, J. Wang, et al. Evaluation of tomato maturity by electronic nose. Computers and Electronics in Agriculture, 2006, 54(1): 44-52
    [7] E. Scorsone, A. M. Pisanelli, K. C. Persaud. Development of an electronic nose for fire detection. Sensors and Actuators B, 2006, 116(1-2): 55-61
    [8] J. E. Haugen, E. Chanie, F. Westad, et al. Rapid control of smoked Atlantic salmon quality by electronic nose: correlation with classical evaluation methods. Sensors and Actuators, 2006, 116(1-2): 72-77
    [9] A. C. Bastos, N. Magan. Potential of an electronic nose for the early detection and differentiation between Streptomyces in potable water. Sensors and Actuators B,2006, 116(1-2): 151-155
    [10] L. M. Reid, C. P. Donnell, G. Downey. Recent technological advances for the determination of food authenticity. Trends in Food Science & Technology, 2006,17(7): 344-353
    [11] K. Arora, S. Chand, B. D. Malhotra. Recent developments in bio-molecular electronics techniques for food pathogens. Analytica Chimica Acta, 2006,568(1-2):259-274
    [12] A. H. Gomez, J. Wang, G. Hu, et al. Electronic nose technique potential monitoring mandarin maturity. Sensors and Actuators B, 2006,113(1): 347-353
    [13] P. G. Micone, C. Guy. Odour quantification by a sensor array: an application to landfill gas odours from two different municipal waste treatment works. Sensors and Actuators B, 2007,120(2): 628-637
    [14] P. Littarru. Environmental odours assessment from waste treatment plants: dynamic olfactometry in combination with sensorial analysers electronic noses. Waste Management, 2007,27(2): 302-309
    [15] R. Rubio, J. Santander, L. Fonseca, et al. Non-selective NDIR array for gas detection. Sensors and Actuators B, 2007,127(1): 69-73
    [16] A. A. Umar, M. M. Salleh, M. Yahaya. Optical gas sensing selectivity property of ruthenium -metalloporphyrins langmuir-Blodgett films. Current applied Physics,2008, 8(1): 53-56
    [17] W. Cynkar, D. Cozzolino, B. Dambergs, et al. Feasibility study on the use of a head space mass spectrometry electronic nose to monitor red wine spoilage induced by brettanomyces yeast. Sensors and Actuators B, 2007, 124(1): 167-171
    [18] J. Lozano, J. P. Santos, J. Gutierrez, et al. Comparative study of sampling systems combined with gas sensors for wine discrimination. Sensors and Actuators, 2007,126(2):616-623
    [19] M. Casale, C. Armanino, C. Casolino, et al. Combining information from headspace mass spectrometry and visible sprctroscopy in the classification of the Ligurian olive oils. Analytica Chimica Acta, 2007, 589(1): 89-95
    [20] S. Marin, M. Vinaixa, J. Brezmes, et al. use of a MS-electronic nose for prediction of early fungal spoilage of bakery products. International Journal of Food Microbiology, 2007, 114(1): 10-16
    [21] J. W. Gardner, P. N. Bartlett. A brief history of electronic nose. Sensors and Actuators B,1994, 18-19(3-4): 211-220
    [22] W.F. Wilkens, A.D. Hatman. An electronic analog for the olfactory process. Annals of the New York Academy OF Sciences, 1964, 116: 608
    [23] K. Persand, G. Dodd. Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose, Nature, 1982, 299: 352-355
    [24] J.W. Gardner, Pattern recognition in the Warwick Electronic Nose, 8~(th) Int. Congress of European Chemoreception Research Organisation, University of Warwick, UK, July 1987
    [25] 殷勇.嗅觉模拟技术.北京:化学工业出版社,2005
    [26] J. Schnurer, J. Olsson, T. Borjesson. Fungal Volatiles as indicators of food and feeds spoilage. Fungal Genetics and Biology, 1999, 27(2-3): 209-217
    [27] P. Boilot, E. L. Hines, M. A. Gongora, et al. Electronic noses inter-comparison, data fusion and sensor selection in discrimination of standard fruit solutions. Sensors and Actuators B, 2003, 88(1): 80-88
    [28] 杨建华,侯宏,王磊等.基于集成气体传感器阵列的电子鼻系动态响应特性分析.西北工业大学学报,2003,21(4):435-438
    [29] S. Capone, M. Epifani, F. Quaranta, et al. Monitoring of rancidity of milk by means of an electronic nose and a dynamic PCA analysis. Sensors and Actuators B, 2001, 78(1-3): 174-179
    [30] 陈晓明,李景明,李艳霞等.电子鼻在食品工业中的应用研究进展.传感器与微系统,2006,25(4):8-11
    [31] A. Branca, P. Simonian, M. Ferrante, et al. Electronic nose based discrimination of a perfumery compound in a fragrance. Sensors and Actuators B, 2003, 92(1-2): 222-227
    [32] D. Kohl, L. Heinert, J. Bock, et al. Gas sensors for food aroma during baking and roasting processes based on selective odorant measurements by an array (HRGC-SOMMSA). Thin Solid Films, 2001, 391(2): 303-307
    [33] H. Hong, C. Kwon, S. Kim, et al. Portable electronic nose system with gas sensor array and artificial neural network, Sensors and Actuators B, 2000, 66(1-3): 49-52
    [34] R.E. Baby, M. Cabezas, E. N. Walsoe. Electronic nose: a useful tool for monitoring environmental contamination, Sensors and Actuators B, 2000, 69(3): 214-218
    [35] E.J. Wolfrum, R. M. Meglen, D. Peterson, et al. Metal oxide sensor arrays for the detection, differentiation and quantification of volatile organic compounds at sub-part-per-million concentration levels. Sensors and Actuators, 2006, 115(1): 322-329
    [36] T.G.M. Demmers, C. M. Wathes, P. A. Richards, et al. A Facility for Controlled Exposure of Pigs to Airborne Dusts and Gases. Biosystems Engineering, 2003, 84(2): 217-230
    [37] A. Bockreis, J. Jager. Odour monitoring by the combination of sensors and neural networks. Environmental Modelling & Software, 1999,14(5): 421-426
    [38] S. D. Vito, E. Massera, L. Quercia, et al. Analysis of volcanic gases by means of electronic nose. Sensors and Actuators, 2007,127(1): 36-41
    [39] W. Bourgeois, P. Hogben, A. Pike, et al. Development of a sensor array based measurement system for continuous monitoring of water and wastewater, Sensors and Actuators B, 2003, 88(3): 312-319
    [40] A. K. Pavlou, N. Magan, D. Sharp, et al. An intelligent rapid odour recognition model in discrimination of Helicobacter pylori and other gastroesophageal isolates in vitro. Biosensors and Bioelectronics, 2000, 15(7-8): 333-342
    [41] R. J. Harper, J. R. Almirall, K. G. Furton. Identification of dominant odor chemicals emanating from explosives for use in developing optimal training aid combinations and mimics for canine detection. Talanta, 2005, 67(2): 313-327
    [42] W. J. Buttner, M. Findlay, W. Vickers, et al. In situ detection of trinitrotoluene and other nitrated explosives in soils. Analytica Chimica Acta, 1997, 341(1): 63-71
    [43] J. B. Sanchez, F. Berger, M. Fromm, et al. Tin dioxide-based gas sensors for detection of hydrogen fluoride in air. Thin Solid Films, 2003, 436(1): 132-136
    [44] T. P. Vaid, N. S. Lewis. The use of electronic nose sensor responses to predict the indibition activity of alcohols on the cytochrome P-450 catalyzed p-Hydroxyation of aniline. Bioorganic & Medicinal Chemistry, 2000, 8(1): 75-80
    [45] T. Bachinger, U. Riese, R. Eriksson, et al. Montoring celluar state transitions in a production-scale CHO-cell process using an electronic nose. Journal of Biotechnology, 2000, 76(1): 61-71
    [46] J. W. Gardner, H. W. Shin, E. L. Hines. An electronic nose system to diagnose illness. Sensors and Actuators, 2000, 70(1-3): 19-24
    [47] C. D. Natale, A. Macagnano, R. Paolesse, et al. Human skin odor analysis by means of an electronic nose. Sensors and Actuators, 2000, 65(1-3): 216-219
    [48] Y. J. Lin, H. R. Guo, Y. H. Chang, et al. Application of the electronic nose for uremia diagnosis. Sensors and Actuators, 2001, 76(1-3): 177-180
    [49] C.D. Natale, A. Macagnao, E. Martinelli, et al. Lung cancer identification by the analysis of breath by means of an array of non-selective gas sensors. Biosensors and Bioelectronics, 2003,18(10): 1209-1218
    [50] S.O.T. Ogaji, R. Singh. Advanced engine diagnostics using artificial neural networks, Applied Soft Computing, 2003, 3(3): 259-271
    [51] R. C. Young, W. J. Buttner, B. R. Linnell, et al. Electronic nose for space program applications. Sensors and Actuators B, 2003, 93(1-3): 7-16
    [52] K. Zakrzewska. Mixed oxides as gas sensors. Thin Solid Films, 2001, 391(2):229-238
    [53] E. Kanazawa, G. Sakai, K. Shimanoe, et al. Metal oxide semiconductor N_2O sensor for medical use. Sensors and Actuators B, 2001,77(1-2): 72-77
    [54] A. A. Tomchenko, G. P. Harmer, B. T. Marquis, et al. Semiconducting metal oxide sensor array for the selective detection of combustion gases. Sensors and Actuators B, 2003, 93(1-3): 126-134
    [55] A. Ahmad, J. Walsh, T. A. Wheat. Effect of processing on the properties of tin oxide-based thick-film gas sensors. Sensors and Actuators B, 2003, 93(1-3):538-545
    [56] D.E. Williams. Semiconducting oxides as gas-sensitive resistors. Sensors and Actuators B, 1999, 57(1-3): 1-16
    [57] F. Zee, J.W. Judy. Micromachined polymer-based chemical gas sensor array. Sensors and Actuators B, 2001, 72(2): 120-128
    [58] M. D. Wit, E. Vanneste, H. J. Geise, et al. Chemiresistive sensors of electrically conducting poly(2,5-thienylene vinylene)and copolymers their responses to nine organic vapours. Sensors and Actuators B, 1998, 50(2): 164-172
    [59] M. E. Hassan Amrani, R. M. Dowdeswll, P. A. Payne, et al. An intelligent gas sensing system. Sensors and Actuators B, 1997, 44(1-3): 512-516
    [60] M. Cole, N. Ulivieri, J. Garcia-Guzman, et al. Parametric model of a polymeric chemoresistor for use in smart sensor design and simulation. Microelectronics Journal, 2003, 34(9): 865-875
    [61] G. Horner, E.M. Keil. Chemosensory system for rapid automated quality control. Journal of Chromatography A, 1999, 845(1-2): 85-92
    [62] S. Yokozuka, Y. Nakayama, H. Kida. High-speed, accurate gas recognition and concentration estimates by the time-division method. Systems and Computers in Japan, 2000, 31(1): 45-55
    [63] H. Nanto, Y. Yokoi, T. Mukai, et al. Novel gas sensor using polymer-film-coated quartz resonator for environmental monitoring. Materials Science and Engineering C, 2000, 12(1-2): 43-48
    [64] S. Bender, F. L. Dickert, W. Mokwa, et al. Investigations on temperature controlled monolithic integrated surface acoustic wave (SAW)gas sensors. Sensors and Actuators B, 2003, 93(1-3): 164-168
    [65] T. Hofmann, P. Schieberle, C. Krummel, et al. High resolution gas chromatography-selective odorant measurement by multisensor array(HRGC/SOMSA): a useful approach to standardise multisensor arrays for use in the detection of key food odorants. Sensors and Actuators B, 1997, 41(1-3): 81-87
    [66] O. K. Varghese, D. Gong, W. R. Dreschel, et al. Ammonia detection using nanoporous alumina resistive and surface acoustic wave sensors. Sensors and Actuators B, 2003, 94(1): 27-35
    [67] A.W.E. Hodgson, P. Jacquinot, L.R. Jordan, et al. Amperometric Gas Sensors of High Sensitivity. Electroanalysis, 1999, 11(10-11): 782-787
    [68] R.Knake, P. Jacquinot, P. C. Hause, et al. Amperometric Detection of Gaseous Formaldehyde in the ppb Range. Electroanalysis, 2001, 13(1): 8-9
    [69] 张覃轶.电子鼻:传感器阵列、系统及应用研究.[博士学位论文].武汉:华中科技大学,2005,8-9
    [70] 石德珂.材料科学基础.第二版.北京:机械工业出版社,2003,8-9
    [71] D. M. Wilson, S. Garrod, S. Hoyt, et al. Array optimization and preprocessing techniques for chemical sensing Microsystems. Sensors Update, 2002, 10(1): 77-106
    [72] M. Padilla, I. Montoliu, A. Pardo, et al. Feature extraction on three way enose signals. Sensors and Actuators B, 2006, 116(1-2): 145-150
    [73] A. Leone, C. Distants, N. Ancona, et al. A powerful method for feature extraction and compression of electronic nose response. Sensors and Actuators, 2005, 105(2): 378-392
    [74] J. Poprawski, P. Boilot, F. Tetelin. Counterfeiting and quantification using an electronic nose in the perfumed cleaner industry. Sensors and Actuators B, 2006, 116(1-2): 156-160
    [75] J.S. Vestergaard, M. Martens, P. Turkki. Analysis of sensory quality changes during storage of a modified atmosphere packaged meat product (pizza topping)by an electronic nose system. Food Science and Technology, 2007, 40(6): 1083-1094
    [76] A. Branca, P. Simonian, M. Ferrante. et al. Electronic nose based discrimination of a perfumery compound in a fragrance. Sensors and Actuators B, 2003, 92(1-2): 222-227
    [77] J. P. Santos, M. J. Fern(?)dez, J. L. Fontecha, et al. SAW sensor army for wine discrimination. Sensors and Actuators B, 2005, 107(1):291-295
    [78] J. Yang, J. Yang. Why can LDA be performed in PCA transformed space? Pattern Recognition, 2003, 36(2): 563-566
    [79] C.D. Natale, A. Macagnano, F. Davide, et al. An electronic nose for food analysis. Sensors and Actuators B, 1997, 44(1-3): 521-526
    [80] C. D. Natale, A. Macagnano, R. Paolesse, et al. Electronic nose and sensorial analysis: comparison of performances in selected cases. Sensors and Actuators B, 1998, 50(3): 246-252
    [81] J. Abonyi, R. Babuska. FUZZSAM-visualization of fuzzy clustering results by modified sammon mapping. Proceedings of 2001 IEEE International Conference on fuzzy systems, 2004, 1(25-29): 365-370
    [82] 颜学峰,陈德钊,胡上序.复杂化学模式群的非线性映射以及应用.分析化学,2003,31(8):928-931
    [83] T. Ekl(o|¨)v, P. M(?)rtensson, I. Lundstrom. Selection of variables for interpreting multivariate gas sensor data. Analytica Chimica Acta, 1999, 381 (2-3): 221-232
    [84] Q. Zhang, C. Xie, S. Zhang, et al. Identification and pattern recognition analysis of Chinese liquors by doped nano ZnO gas sensor array. Sensors and Actuators B, 2005, 110(2): 370-376
    [85] Q. Zhang, S. Zhang, C. Xie, et al. Characterization of Chinese vinegars by electronic nose. Sensors and Actuators B, 2006, 119(2): 538-546
    [86] E. Llobet, J. Brezmes, X. Vilanova, et al. Qualitative and quantitative sanlysis of volatile organic compounds using trnsient and steady-state responses of a thick-film tin oxide gas sensor array. Sensors and Actuators B, 1997, 41(1): 13-21
    [87] S. Roussel, G. Forsberg, V. Steinmetz, et al. Optimization of electronic nose measurement. Part I: methodology of output feature selection. Journal of Food Engneering, 1998, 37(2): 207-222
    [88] E. Llobet, J. Brezmes, X. Vilanova, et al. Quantitative and quantitative analysis if volatile organic compounds using transient and steady-state reponses of a thick-film tine oxide gas sensor array. Sensors and Actuators B, 1997, 41(1): 13-21
    [89] T. Skov, R. Bro. A new approach for modelling sensor based data. Sensors and Actuators B, 2005, 106(2): 719-729
    [90] E. Martinelli, G. Pennazza, C. D. Natale, et al. Chemical sensors Clustering with Dynamic moments approach. Sensors and Actuators B, 2004,101(2): 346-352
    [91] M. Pardo, G. Sberveglieri. Comparing the performance of different features in sensors arrays. Sensors and Actuators B, 2007, 123(2): 437-443
    [92] A. Vergara, E. Llobet, E. Martinelli, et al. Feature extraction of metal oxide gas sensors using dynamic moments. Sensors and Actuators B, 2007, 122(1): 219-226
    [93] C. Distante, M. Leo, P. Siciliano, et al. On the study of feature extraction methods for an electronic nose. Sensors and Actuators B, 2002, 87(1): 274-288
    [94] T. Ekl(?)v, P. M(?)rtensson, I. Lundstrom. Enhanced selectivity of MOSFET gas sensors by systematical analysis of transient parmeters. Analytica Chimica Acta,1997, 353(2-3): 291-300
    [95] C. Delpha, M. Siadat, M. Lumbreras. An electronic nose usin time reduced modelling parameters for a reliable discrimination of Forane 134a. Sensors and Actuators B, 2001, 77(2): 517-524
    [96] L. Carmel, S. Levy, D. Lancet, et al. A feature extraction method for chemical sensors in electronic noses. Sensors and Actuators B, 2003, 93(1): 67-76
    [97] Y. S. Yang, S.-C. Ha, Y. S. Kim. A matched-profile method for simple and robust vapor recognition in electronic nose (E-nose)system. Sensors and Actuators B, 2005,106(1): 263-270
    [98] A. Leone, C. Distante, N. Ancona, et al. A powerful method for feature extraction and compresion of electronic nose responses. Sensors and Actuators B, 2005, 105(2):378-392
    [99] B. Chwieroth, B. R. Patton, Y. Wang. Conduction and gas-surface reaction modeling in metal oxide gas sensors. Journal of Electroceramics, 2001, 6(1): 27-41
    [100] S. Hahn, N. Barsan, U. Weimar, et al. CO sensing with SnO2 thick film sensors: role of oxygen and water vapour. Thin Solid Film, 2003,436(1): 17-24
    [101] R. Ionescu. Ageing and p-type conduction in SnO2 gas sensors. Sensors and Actuators B, 1999, 58 (1-3): 375-379
    [102] P. Montmeat, R. Lalauze, J. Viricelle, et al. Model of the thickness effect of SnO2 thick film on the detection properties. Sensors and Actuators B, 2004,103 (1): 84-90
    [103] S. Gulati, N. Mehan, D. Goyal, et al. Electrical equivalent model for SnO2 bulk sensors. Sensors and Actuators B, 2002, 87 (2): 309-320
    [104] A. Hetznecker, H. Kohler, U. Guth. Enhanced studies on the mechanism of gas selectivity and electronic interactions of SnO2/Na+-ionic conductors. Sensors and Actuators B, 2007,120 (2): 378-385
    [105] C. Papadopouos, J. Avaritsiotis. A model for gas sensing properties of tin oxide thin films with surface catalysts. Sensors and Actuators B, 1995,28 (3): 201-210
    [106] J. Gardner. A diffusion-reaction model of electrical conduction in tin oxide gas sensors. Semiconductor Science and Technology, 1989,4 (3): 345-350
    [107] N. Matsunaga, G. Sakai, K. Shimanoe, et al. Formulation of gas diffusion dynamics for thin film semiconductor gas sensor based on simple reaction-diffusion equation. Sensors and Actuators B, 2003, 96 (1): 226-233
    [108] N. Barsan, U. Weimar. Conduction model of metal oxide gas sensor. Journal of Electroceramics, 2001, 7 (1): 143-167
    [109] A. Opera, E. Moretton, N. Barsan, et al. Conduction model of SnO2 thin films based on conductance and Hall effect measurements, Journal of Applied Physics, 2006,100, 033716
    [110] N. Barsan, D. Koziej, U. Weimar. Metal oxide-based gas sensor reseach: How to? Sensors and Actuators B, 2007, 121(1): 18-35
    [111] A. Gurlo, R. Riedel. In situ and operando spectroscopy for assessing mechanisms of gas sensing. Angewandte Chemie-International Edition, 2007, 46: 3826-3848
    [112] M. Ramzan, R. Brydson. Characterization of sub-stoichiometric tungsten trioxide (WO3-x)using impedance spectroscopy. Sensors and Actuators A, 2005,118(2): 322-331
    [113] J. R. Stetter, W. R. Penrose. Understanding chemical sensors and chemical sensor arrays (electronic noses): past, present, and future. Sensors Update, 2002, 10(1):189-229
    [114] D. Ballabio, M. S. Cosio, S. Mannino, et al. A chemometric approach based on a novel similarity/diversity measure for charasterisation and selection of electronic nose sensors. Analytica Chimica Acta, 2006, 578(2): 170-177
    [115] M. Pardo, G. Sberveglieri, Comparing the performance of different features in sensor arrays, Sensors and Actuators B, 2007, 123(1): 437-443
    [116] J. W. Gardner, P. Boilot, E. L. Hines. Enhancing electronic nose performance by sensor selection using a new integer-based genetic algorithm approach. Sensors and Actuators B, 2005, 106(1): 114-121
    [117] 陈国良,王煦法,庄镇泉等.遗传算法及其应用.北京:人民邮电出版社,1996
    [118] 康立山,谢云.非数值并行算法(第一册)模拟退火算法.北京:科学出版社,1998
    [119] A. R. Webb. Statistical pattern recognition, second edition. New York: Wiley Press, 2002, 243-245
    [120] F. Takens. Detecting strange attractors in turbolence, in: D. Rand, L. S. Young (Eds.), Dynamical Systems and Turbulence, Warwick, 1980, 366-381
    [121] E. Martinelli, C. Falconi, A. D. Amico, et al. Feature extraction of chemical sensors in phase space. Sensors and Actuators B, 2003, 95(1): 132-139
    [122] N. Barsan, U. Weimar. Conduction model of metal oxide gas sensor. Journal of Electroceramics, 2001,7(1): 143-167
    [123] 占琼.特征选择在电子鼻系统阵列优化中的应用.[硕士学位论文].武汉:华中科技大学,2007,20-34
    [124] A. Fort, M. Gregorkiewitz. Selectivity enhancement of SnO2 sensors by means of operating temperature modulation. Thin Solid Films, 2002, 418(1): 2-8
    [125] J.R. Huang, G.Y. Li, Z.Y. Huanga, et al. Temperature modulation and artificial neural network evaluation for improving the CO selectivity of SnO2 gas sensor. Sensors and Actuators B, 2006, 114(2): 1059-1063
    [126] X. Huang, F. Meng. Gas sensing behavior of a single tin dioxide sensor under dynamic temperature modulation. Sensors and Actuators B, 2004, 99(2-3): 444-450
    [127] J. F. Chang, H. H. Kuo, I. C. Leu, et al. The effects of thickness and operation temperature on ZnO: Al thin film CO gas sensor. Sensors and Actuators B, 2002, 84 (2-3): 258-264

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700