多孔材料中模板剂的催化脱除
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
己内酰胺是一种用途广泛的化工原料,主要用于合成尼龙-6和锦纶纤维。传统生产工艺中肟化和贝克曼重排过程都大量副产廉价的硫酸铵,不符合绿色化学工艺的要求。开发无硫酸铵副产的CPL绿色化学工艺具有非常重要的研究意义。对此路线的改进方式是多相催化氨氧化环己酮工艺与固体酸催化Beckman重排工艺相结合。新开发的一步氨氧化法生产己内酰胺是把氨氧化与Beckmann重排反应过程集成到同一催化剂上进行。该工艺的核心是一种含有酸性位和氨氧化活性中心的纳米多孔磷酸铝分子筛双功能催化剂,如MnMgAPO4-5分子筛催化剂。
     MnMgAPO4-5等磷酸铝分子筛的制备过程中,一个重要的步骤是脱除孔道中的模板剂。本文提出了一种新型的模板剂脱除方法——催化加氢裂化法。该方法不同于传统的高温焙烧过程,它能在温和条件下(<350oC)脱除MnMgAPO4-5孔道中的模板剂。
     这种方法同样适用于介孔材料,如wormhole型介孔硅磷酸铝(WMSA)、二氧化硅材料(HMS,Ti-HMS)等。通过液相氨氧化活性评价实验发现MnMgAPO4-5分子筛对环己酮肟的选择性和活性远不如TS-1分子筛。这与MnMgAPO4-5分子筛的骨架呈亲水性有关。因此它的拓扑孔道结构不能有效吸附环己酮和稳定H2O2,进而选择性催化氨氧化反应。介孔结构的Ti-HMS的氨氧化活性也不如TS-1分子筛。其差异在于Ti-HMS的无定型的骨架结构等。MnMgAPO4-5、WMSA以及Ti-HMS在低温(110~130oC)液相贝克曼重排反应中并不表现出催化活性。
     此外,催化加氢裂化法能活化AFI和MFI型分子筛膜(如SAPO-5,Fe-silicalite-1膜),而且分子筛膜能保持很好的完备性。该方法突破了传统高温焙烧法导致分子筛膜形成热裂缝而缺失完备性的局限。更有意义的是催化加氢裂化法脱除模板剂的成功应用拓展了催化的应用领域。这个新领域可以称为材料催化,即催化在无机材料制备过程中的应用。
Caprolactam is an important chemical product, mainly used as the popular monomer for the versatile nylon-6 polyamide. A large amount of undesired ammonium sulfate is produced during the oximization and beckmann rearrangement process in the traditional route, which does not meet the criterion of green chemistry. The by-product free route is heterogeneous catalytic ammoximation coupled with beckmann rearrangement over solid acids. An advanced route is integrating the ammoximation and beckmann rearrangement reaction over heterogeneous catalysts. The critical role of this route is the availability of nanoporous aluminophosphate molecular sieves functionalized with acid centers and ammoximation active centers, such as MnMgAPO4-5.
     Removal of templates is an important step for preparing the MnMgAPO4-5 as well as other aluminophosphate molecular sieves. This dissertation presents a new method for the removal of templates—catalytic hydrocracking method. The template can be removed by catalytic hydrocracking method at mild temperatures (<350oC), which is different from the calcination at high temperatures.
     This method is also suitable for removing templates from mesoporous materials, such as wormhole mesoporous silicoaluminophosphate (WMSA)/Ti containing silica (Ti-HMS) and so on. It is revealed by ammoximation activity tests that the ammoximation activity and selectivity of MnMgAPO4-5 molecular sieve is much lower than that of TS-1 molecular sieve. These phenomena can be accounted by the hydrophilic framework of MnMgAPO4-5 molecular sieve. Therefore, the porous topological structure can not play a role for adsorping cylcohexanone and stabilizing H2O2. Thus, MnMgAPO4-5 is not active for selectively catalyzing the ammoximation reaction. Similarly, for the ammoximation reaction, mesoporous Ti-HMS is much less active than TS-1. This difference is reasoned from the amorphous framework of Ti-HMS. It is shown that MnMgAPO4-5, WMSA and Ti-HMS possess poor activity for liquid beckmann rearrangement at 110~130oC.
     Moreover, it is demonstrated by the gas permeation that the perfection of AFI- and MFI-type molecular sieve membranes can be kept after activated by the catalytic hydrocracking method. But the perfection cannot be kept for the molecular membranes activated by calcination, due to the thermal cracks. Meaningfully, the successful application of catalytic hydrocracking method for removing templates enlarges the application domain of catalysis. This new domain can be suggested as materials catalysis, i.e., the application of catalysis for preparing inorganic materials.
引文
[1] Pereira C. J., Environmentally friendly processes, Chem. Eng. Sci., 1999, 54(13~14): 1959~1973
    [2] Centi G., Perathoner S., Catalysis and sustainable (green) chemistry, Catal. Today, 2003, 77(4): 287~297
    [3] Horvath I. T., Anastas P. T., Introduction: Green chemistry, Chemical Reviews, 2007, 107(6): 2167~2168
    [4] Hoelderich W. F., Dahlhoff G., The "greening" of nylon, Chem. Innovat., 2001, 31(2): 29~40
    [5]魏文德,有机化工原料大全,第三卷,第二版,北京:化学工业出版社, 1999,1020~1041
    [6] Dahlhoff G., Niederer J. P. M., Hoelderich W. F., epsilon-caprolactam: New by-product free synthesis routes, Catal. Rev.-Sci.&Eng., 2001, 43(4): 381~441
    [7] Ichihashi H., Sato H., The development of new heterogeneous catalytic processes for the production of epsilon-caprolactam, Appl. Cataly. A:General, 2001, 221(1~2): 359~366
    [8] Wu P., Komatsu T., Yashima T., Ammoximation of Ketones over Titanium Mordenite, J. Catal., 1997, 168(2): 400~411
    [9] Cesana A., Mantegazza M. A., Pastori M., A study of the organic by-products in the cyclohexanone ammoximation, J. Mol. Catal. A: Chem., 1997, 117(1~3): 367~373
    [10] Thangaraj A., Sivasanker S., Ratnasamy P., Catalytic properties of crystalline titanium silicalites III. Ammoximation of cyclohexanone, J. Catal., 1991, 131(2): 394~400
    [11] Perego C., Carati A., Ingallina P., et al., Production of titanium containing molecular sieves, and their application in catalysis, Appl. Cataly. A:General, 2001, 221(1~2): 63~72
    [12] Song F., Liu Y., Wu H., et al., A novel titanosilicate with MWW structure: Highly effective liquid-phase ammoximation of cyclohexanone, J. Catal., 2006, 237(2): 359~367
    [13] Reddy J. S., Sivasanker S., Ratnasamy P.,Ammoximation of cyclohexanone over a titanium silicate molecular sieve, TS-2 , J. Mol. Catal., 1991, 69(3): 383~392
    [14] Le Bars J., Dakka J., Sheldon R. A., Ammoximation of cyclohexanone and hydroxyaromatic ketones over titanium molecular sieves, Appl. Cataly. A:General, 1996, 136(1): 69~80
    [15] Mantegazza M. A., Petrini G., Spano G., et al., Selective oxidations with hydrogen peroxide and titanium silicalite catalyst, J. Mol. Catal., 1999, 146(1-2): 223~228
    [16] Mantegazza M. A., Petrini G., Fornasari G., et al., Ammoximation reaction in the gas and liquid phases with silica based catalysts: role of titanium, Catal. Today, 1996, 32(1~4): 297~304
    [17] Zhang X., Wang Y., Xin F., Coke deposition and characterization on titanium silicalite-1 catalyst in cyclohexanone ammoximation, Appl. Cataly. A:General, 2006, 307(2): 222~230
    [18] Li W. C., Lu A. H., Palkovits R., et al., Hierarchically structured monolithic silicalite-1 consisting of crystallized nanoparticles and its performance in the Beckmann rearrangement of cyclohexanone oxime, J. Am. Chem. Soc., 2005, 127(36): 12595~12600
    [19] Ichihashi H., Ishida M., Shiga A., et al., The catalysis of vapor-phase Beckmann rearrangement for the production of epsilon-caprolactam, Cataly. Sur. from Asia, 2003, 7(4): 261~270
    [20] Corma A., Inorganic Solid Acids and Their Use in Acid-Catalyzed Hydrocarbon Reactions, Chem. Rev., 2002, 95(3): 559~614
    [21] Xu B. Q., Cheng S. B., Zhang X., et al., High temperature calcination for a highly efficient and regenerable B2O3/ZrO2 catalyst for the synthesis of epsilon-caprolactam, Chem. Comm., 2000, 13): 1121~1122
    [22] Marthala V. R. R., Jiang Y. J., Huang J., et al., Beckmann rearrangement of N-15-cyclohexanone oxime on zeolites silicalite-1, H-ZSM-5, and H-[B]ZSM-5 studied by solid-state NMR spectroscopy, J. Am. Chem. Soc., 2006, 128(46): 14812~14813
    [23] Conesa T. D., Campelo J. M., Luna D., et al., Development of mesoporous Al,B-MCM-41 materials - Effect of reaction temperature on the catalytic performance of Al,B-MCM-41 materials for the cyclohexanone oxime rearrangement, Appl Catal B-Environ, 2007, 70(1~4): 567~576
    [24] Shinohara Y., Mae S., Shouro D., et al., A quantum chemical study of vapor-phase Beckmann rearrangement mechanisms on oxide catalysts, J Mol Struc-Theochem, 2000, 497:1~9
    [25] Heitmann G. P., Dahlhoff G., Holderich W. F., Catalytically active sites for the Beckmann rearrangement of cyclohexanone oxime to epsilon-caprolactam, J. Catal., 1999, 186(1): 12~19
    [26] O'Sullivan P., Forni L., Hodnett B. K., The role of acid site strength in the Beckmann rearrangement, Ind. Eng. Chem. Res., 2001, 40(6): 1471~1475
    [27] Fernandez A. B., Boronat M., Blasco T., et al., Establishing a molecular mechanism for the Beckmann rearrangement of oximes over microporous molecular sieves, Angew. Chem. Int. Ed., 2005, 44(16): 2370~2373
    [28] Nguyen M. T.; Raspoet G.; Vanquickenborne L. G,A New Look at the Classical Beckmann Rearrangement: A Strong Case of Active Solvent Effect,J. Am. Chem. Soc., 1997, 119(10): 2552~2562
    [29] Shinohara Y., Mae S., Shouro D., et al., A quantum chemical study of vapor-phase Beckmann rearrangement mechanisms on oxide catalysts, J Mol Struc-Theochem, 2000, 497:1~9
    [30] Bucko T., Hafner J., Benco L., Active sites for the vapor phase Beckmann rearrangement over mordenite: An ab initio study, J. Phys. Chem. A, 2004, 108(51): 11388~11397
    [31] Flego C., Dalloro L., Beckmann rearrangement of cyclohexanone oxime over Silicalite-1: an FT-IR spectroscopic study, Micropor. Mesopor. Mater., 2003, 60(1-3): 263~271
    [32] Kath H., Glaser R., Weitkamp J., Beckmann rearrangement of cyclohexanone grime on MFI-type zeolites, Chem. Eng. Technol., 2001, 24(2): 150~153
    [33] Fernandez A. B., Lezcano-Gonzalez I., Boronat M., et al., NMR spectroscopy and theoretical calculations demonstrate the nature and location of active sites for the Beckmann rearrangement reaction in microporous materials, J. Catal., 2007, 249(1): 116~119
    [34] Forni L., Fornasari G., Giordano G., et al., Vapor phase Beckmann rearrangement using high silica zeolite catalyst, Phys. Chem. Chem. Phys., 2004, 6(8): 1842~1847
    [35] Palkovits R., Yang C. M., Olejnik S., et al., Active sites on SBA-15 in the Beckmann rearrangement of cyclohexanone oxime to epsilon-caprolactam, J. Catal., 2006, 243(1): 93~98
    [36] Kim S. J., Jung K. D., Joo O. S., et al., Catalytic performance of metal oxide-loaded Ta-ilerite for vapor phase Beckmann rearrangement of cyclohexanone oxime, Appl. Cataly. A:General, 2004, 266(2): 173~180
    [37] Dai L. X., Koyama K., Miyamoto M., et al., Highly selective vapor phase Beckmann rearrangement over H-USY zeolites, Appl. Cataly. A:General, 1999, 189(2): 237~242
    [38] Takahashi T., Nasution M. N. A., Kai T., Effects of acid strength and micro pore size on epsilon-caprolactam selectivity and catalyst deactivation in vapor phase Beckmann rearrangement over acid solid catalysts, Appl. Cataly. A:General, 2001, 210(1-2): 339~344
    [39] Shouro D., Ohya Y., Mishima S., et al., Characterization of active sites working on FSM-16 during the vapor-phase Beckmann rearrangement of cyclohexanone oxime, Appl. Cataly. A:General, 2001, 214(1): 59~67
    [40] Ngamcharussrivichai C., Wu P., Tatsumi T., Catalytically active and selective centers for production of epsilon-caprolactam through liquid phase Beckmann rearrangement over H-USY catalyst, Appl. Cataly. A:General, 2005, 288(1~2): 158~168
    [41] Ichihashi H., Kitamura M., Some aspects of the vapor phase Beckmann rearrangement for the production of epsilon~caprolactam over high silica MFI zeolites, Catal. Today, 2002, 73(1~2): 23~28
    [42] Forni L., Fornasari G., Trifiro F., et al., Calcination and deboronation of B-MFI applied to the vapour phase Beckmann rearrangement, Micropor. Mesopor. Mater., 2007, 101(1-2): 161~168
    [43] Tsai C. C., Zhong C. Y., Wang I., et al., Vapor phase Beckmann rearrangement of cyclohexanone oxime over MCM-22, Appl. Cataly. A:General, 2004, 267(1-2): 87~94
    [44] Albers P., Seibold K., Haas T., et al., SIMS/XPS study on the deactivation and reactivation of B-MFI catalysts used in the vapour-phase Beckmann rearrangement, J. Catal., 1998, 176(2): 561~568
    [45] Takahashi T., Kai T., Nakao E., Catalyst deactivation in the Beckmann rearrangement of cyclohexanone oxime over HSZM-5 zeolite and silica-alumina catalysts, Appl. Cataly. A:General, 2004, 262(2): 137~142
    [46] Conesa T. D., Mokaya R., Yang Z., et al., Novel mesoporous silicoaluminophosphates as highly active and selective materials in the Beckmann rearrangement of cyclohexanone and cyclododecanone oximes, J. Catal., 2007, 252(1): 1~10
    [47] Camblor M. A., Corma A., Garcia H., et al., Active sites for the liquid-phase Beckmann rearrangement of cyclohexanone, acetophenone and cyclododecanone oximes, catalyzed by beta zeolites, J. Catal., 1998, 177(2): 267~272
    [48] Ngamcharussrivichai C., Wu P., Tatsumi T., Liquid-phase Beckmann rearrangement of cyclohexanone oxime over mesoporous molecular sieve catalysts, J. Catal., 2004, 227(2): 448~458
    [49] Chung Y. M., Rhee H. K., Solvent effects in the liquid-phase Beckmann rearrangement of oxime over H-Beta catalyst II: adsorption and FT-IR studies, J. Mol. Cataly. A-Chem., 2001, 175(1-2): 249~257
    [50] Boero M., Ikeshoji T., Liew C. C., et al., Hydrogen bond driven chemical reactions: Beckmann rearrangement of cyclohexanone oxime into epsilon-caprolactam in supercritical water, J. Am. Chem. Soc., 2004, 126(20): 6280~6286
    [51] Guo S., Du Z. Y., Zhang S. G., et al., Clean Beckmann rearrangement of cyclohexanone oxime in caprolactam-based Bronsted acidic ionic liquids, Green Chem., 2006, 8(3): 296~300
    [52] Meng X. K., Mu X. H., Zong B. N., et al., Purification of caprolactam in magnetically stabilized bed reactor, Catal. Today, 2003, 79(1-4): 21~27
    [53] Liu T. F., Meng X. K., Wang Y. Q., et al., Integrated process of H2O2 generation through anthraquinone hydrogenation-oxidation cycles and the ammoximation of cyclohexanone, Ind. Eng. Chem. Res., 2004, 43(1): 166~172
    [54] Prasad R., Vashisht S., Ammoximation of Cyclohexanone by Nitric Oxide and Ammonia: A One-Step Process for Synthesis of Polycaprolactam, J. Catal., 1996, 161(1): 373~376
    [55] Armor J. N., Ammoximation: direct synthesis of oximes from ammonia, oxygen and ketones, J. Am. Chem. Soc., 2002, 102(4): 1453~1454
    [56] Fornasari G., Trifir F., Oxidation with no-redox oxides: ammoximation of cyclohexanone on amorphous silicas, Catal. Today, 1998, 41(4): 443~455
    [57] Raja R., Sankar G., Thomas J. M., Bifunctional molecular sieve catalysts for the benign ammoximation of cyclohexanone: One-step, solvent-free production of oxime and epsilon-caprolactam with a mixture of air and ammonia, J. Am. Chem. Soc., 2001, 123(33): 8153~8154
    [58] Thomas J. M., Raja R., Lewis D. W., Single-site heterogeneous catalysts, Angew. Chem. Int. Ed., 2005, 44(40): 6456~6482
    [59] Thomas J. M., Raja R., Design of a "green" one-step catalytic production of epsilon-caprolactam (precursor of nylon-6), Proc. Natl. Acad. Sci. U. S. A., 2005, 102(39): 13732~13736
    [60] Cora F., Sankar G., Catlow C. R. A., et al., Electronic state and three-dimensional structure of Mn(III) active sites in manganese-containing aluminophosphate molecular sieve catalysts for the oxyfunctionalisation of alkanes, Chem. Comm., 2002, 7: 734~735
    [61] Moden B., Oliviero L., Dakka J., et al., Structural and functional characterization of redox Mn and Co sites in AlPO materials and their role in alkane oxidation catalysis, J. Phys. Chem. B, 2004, 108(18): 5552~5563
    [62] Muller G., Bodis E., Kornatowski J., et al., IR microspectroscopic investigation of the acid sites in metal substituted AlPO4-5 molecular sieves part 1. Sorption of benzene and strong bases, Phys. Chem. Chem. Phys., 1999, 1(4): 571~578
    [63] Lischke G., Parlitz B., Lohse U., et al., Acidity and catalytic properties of MeAPO-5 molecular sieves, Appl. Cataly. A:General, 1998, 166(2): 351~361
    [64] You K. Y., Mao L. Q., Chen L., et al., One-step synthesis of epsilon-caprolactam from cyclohexane and nitrosyl sulfuric acid catalyzed by VPO supported transition metal composites, Catal. Commun., 2008, 9(11~12): 2136~2139
    [65]程立泉傅送保刘郁东,丁二烯/合成气路线制己内酰胺的技术进展,合成纤维工业,2005,28(4):37~39
    [66] Liu S. S., Sen A., Parton R., Cobalt-catalyzed synthesis of epsilon-caprolactam and nylon-6 from aminopentene and carbon monoxide, J. Mol. Catal. A:Chem, 2004, 210(1~2): 69-77
    [67] Alini S., Bottino A., Capannelli G., et al., The catalytic hydrogenation of adiponitrile to hexamethylenediamine over a rhodium/alumina catalyst in a three phase slurry reactor, J. Mol. Catal. A:Chem, 2003, 206(1~2): 363~370
    [68] Speight, James G,Chemical Process and Design Handbook, McGraw-Hill,2002,138~140
    [69]孙洁华,毛伟,己内酰胺生产工艺及其技术特点,化学工程师,2009,160(1):38~44
    [70] Stankiewicz A.,Moulijn J. A.,Process Intensification,Ind. Eng. Chem. Res. 2002, 41, 1920~1924
    [71] Solinas M. A., Methodologies for economic and financial analysis, Catal. Today, 1997, 34(3~4): 469~481
    [72] Armor J. N., Do you really have a better catalyst?, Appl. Cataly. A:General, 2005, 282(1~2): 1~4
    [73] Davis M. E., Ordered porous materials for emerging applications, Nature, 2002, 417(6891): 813~821
    [74] Baur W. H.,Microporous materials: framework under pressure, Natrue Mater., 2003,2:17~18
    [75] Tsapatsis M., Molecular sieves in the nanotechnology era, AIChE J., 2002, 48(4): 654~660
    [76] Hoderich W. F., Rueler J., Heitmann G., et al., The use of zeolites in the synthesis of fine and intermediate chemicals, Catal. Today, 1997, 37(4): 353~366
    [77] Maugh T. H.,New Family of Molecular Sieves Synthesized,Science,1982, 218: 366
    [78] Wilson S. T., Lok B. M., Messina C. A., et al,Aluminophosphate Molecular Sieves: A New Class of Microporous Crystalline Inorganic Solids,J. Am. Chem. Soc., 1982, 104:1146~1147
    [79] Li Y., Yu J. H., Jiang J. X., et al., Prediction of open-framework aluminophosphate structures using the automated assembly of secondary building units method with Lowenstein's constraints, Chem. Mater., 2005, 17(24): 6086~6093
    [80] Pastore H. O., Coluccia S., Marchese L., Porous aluminophosphates: From molecular sieves to designed acid catalysts, Annu. Rev. Mater. Res., 2005, 35:351~395
    [81] Yu J. H., Xu R. R., Rich structure chemistry in the aluminophosphate family, Acc. Chem. Res., 2003, 36(7): 481~490
    [82] Klap G. J., van Koningsveld H., Graafsma H., et al., Absolute configuration and domain structure of AlPO4-5 studied by single crystal X-ray diffraction, Micropor. Mesopor. Mater., 2000, 38(2~3): 403~412
    [83] Weckhuysen B. M., Rao R. R., Martens J. A., et al., Transition metal ions in microporous crystalline aluminophosphates: Isomorphous substitution, Eur. J. Inorg. Chem., 1999, 4: 565~577
    [84] Hartmann M., Kevan L., Transition-metal ions in aluminophosphate and silicoaluminophosphate molecular sieves: Location, interaction with adsorbates and catalytic properties, Chem. Rev., 1999, 99(3): 635~663
    [85] Arias D., Colmenares A., Cubeiro M.L., et al,The transformation of ethanol over AlPO4 and SAPO molecular sieves with AEL and AFI topology.Kinetic and thermodynamic approach,Cataly. Lett., 1997,45:51~58
    [86] Roldan R., Sanchez-Sanchez M., Sankar G., et al., Influence of pH and Si content on Si incorporation in SAPO-5 and their catalytic activity for isomerisation of n-heptane over Pt loaded catalysts, Micropor. Mesopor. Mater., 2007, 99(3): 288~298
    [87] S Waghmode S. B., Saha S. K., Kubota Y., et al., Isopropylation of benzene with 2-propanol over AFI aluminophosphate molecular sieves substituted with alkaline earth metal, J. Catal., 2004, 228(1): 192~205
    [88] Elangovan S. P., Hartmann M., Evaluation of Pt/MCM-41//MgAPO-n composite catalysts for isomerization and hydrocracking of n-decane, J. Catal., 2003, 217(2): 388~395
    [89] Mathisen K., Nicholson D. G., Beale A. M., et al., Comparing CuAPO-5 with Cu : ZSM-5 in the selective catalytic reduction of NOx: An in situ study, J. Phys. Chem. C, 2007, 111(7): 3130~3138
    [90] Wu J. Y., Chien S. H., Wan B. Z., Characterization of MnAPO-5 for ethane oxydehydrogenation, Ind. Eng. Chem. Res., 2001, 40(1): 94~100
    [91] Moden B., Zhan B. Z., Dakka J., et al., Reactant selectivity and regiospecificity in the catalytic oxidation of alkanes on metal-substituted aluminophosphates, J. Phys. Chem. C, 2007, 111(3): 1402~1411
    [92] Lee S. O., Raja R., Harris K. D. M., et al., Mechanistic insights into the conversion of cyclohexene to adipic acid by H2O2 in the presence of a TAPO-5 catalyst, Angew. Chem. Int. Ed., 2003, 42(13): 1520~1523
    [93] Kapoor M. P., Raj A., Synthesis of mesoporous hexagonal titanium aluminophosphate molecular sieves and their catalytic applications, Appl. Cataly. A:General, 2000, 203(2): 311~319
    [94] Selvam P., Mohapatra S. K., Thermally stable trivalent iron-substituted hexagonal mesoporous aluminophosphate (FeHMA) molecular sieves: Synthesis, characterization, and catalytic properties, J. Catal., 2006, 238(1): 88~99
    [95] Pauly T. R., Liu Y., Pinnavaia T. J., et al., Textural mesoporosity and the catalytic activity of mesoporous molecular sieves with wormhole framework structures, J. Am. Chem. Soc., 1999, 121(38): 8835~8842
    [96]金长子,李钢,王祥生,等,Ti-HMS和TS-1分子筛结构和催化性能的对比研究,催化学报,2007,28(2):170~174
    [97] Jin C. Z., Li G., Wang X. S., et al., Synthesis, characterization and catalytic performance of Ti-containing mesoporous molecular sieves assembled from titanosilicate precursors, Chem. Mater., 2007, 19(7): 1664~1670
    [98]张瑞珍,杂原子磷铝分子筛及应用,北京化学工业出版社,2009:32~54
    [99] Lechert H., The pH value and its importance for crystallization of zeolite, In:H Robson, ed, verified synthesis of zeolitic materials, Elsevier Science, 2001,
    [100] Concepcih P., Nieto J.M., Mifsud A., et al, Preparation and characterization of Mg-containing AFI and chabazite-type materials, Zeolites 1996,16:56~64,
    [101] Brouet G., Chen X., Chul, Lee W., et al, Evaluation of Mn( 11) Framework Substitution in MnAPO-11 and Mn-Impregnated AlPO4-11 Molecular Sieves by Electron Spin Resonance and Electron Spin-Echo Modulation Spectroscopy, J. Am. Chem. Soc., 1992,114, 3720~3126
    [102] Ahn S., Chon H., The influence of metal ions on the synthesis of MeAPO-5 (Me = Co, Mg) in the presence of acetate ions, Micripor. Mater., 1997, 8(3~4): 113~121
    [103] Jhung S. H., Chang J. S., Hwang Y. K., et al., Crystal morphology control of AFI type molecular sieves with microwave irradiation, J. Mater. Chem., 2004, 14(2): 280~285
    [104]李激扬,于吉红,徐如人,微孔化合物生成中的结构导向与模板作用,无机化学学报,2004,20(1):1~16
    [105] O'Brien M. G., Beale A. M., Catlow C. R. A., et al., Unique organic-inorganic interactions leading to a structure-directed microporous aluminophosphate crystallization as observed with in situ Raman spectroscopy, J. Am. Chem. Soc., 2006, 128(36): 11744~11745
    [106] Oliver S., Kuperman A., Ozin G. A., A new model for aluminophosphate formation: Transformation of a linear chain aluminophosphate to chain, layer, and framework structures, Angew. Chem. Int. Ed., 1998, 37(1~2): 47~62
    [107] Fan F. T., Feng Z. C., Sun K. J., et al., In Situ UV Raman Spectroscopic Study on the Synthesis Mechanism of AlPO-5, Angew. Chem. Int. Ed., 2009, 48(46): 8743~8747
    [108] Patarin J., Mild methods for removing organic templates from inorganic host materials, Angew. Chem. Int. Ed., 2004, 43(30): 3878~3880
    [109] Katzmarzyk A., Ernst S., Weitkamp J., et al, The reduction/oxidation behaviour of MnAPO-5 as studied by ESR spectroscopy, Cataly. Lett.,1991,9:85~90
    [110] Lohse U., Brukner A., Schreier E., et al., Microwave synthesis of MnAPO/MnAPSO-44 and MnAPO-5-stability of Mn2+ ions on framework positions, Micripor. Mater., 1996, 7(2~3): 139~149
    [111] Boettcher S. W., Fan J., Tsung C. K., et al., Harnessing the sol~gel process for the assembly of non-silicate mesostructured oxide materials, Acc. Chem. Res., 2007, 40(9): 784~792
    [112] Wan Y., Zhao D. Y., On the controllable soft-templating approach to mesoporous silicates, Chem. Rev., 2007, 107(7): 2821~2860
    [113] Kimura T., Surfactant-templated mesoporous aluminophosphate-based materials and the recent progress, Micropor. Mesopor. Mater., 2005, 77(2~3): 97~107
    [114] Liu G., Wang Z. L., Jia M. J., et al., Thermally stable amorphous mesoporous aluminophosphates with controllable P/Al ratio: Synthesis, characterization, and catalytic performance for selective O-methylation of catechol, J. Phys. Chem. B, 2006, 110(34): 16953~16960
    [115] Belen-Cordero D. S., Mendez-Gonzalez S., Hernandez-Maldonado A. J., SBE type cobalt aluminophosphate nanoporous materials: Degradation of the structure-directing agent, Micropor. Mesopor. Mater., 2008, 109(1~3): 287~297
    [116]徐如人,庞文琴,分子筛与多孔材料化学,北京:科学出版社,2004:416~419
    [117] Elanany M., Su B. L., Vercauteren D. P., Strong templating effect of TEAOH in the hydrothermal genesis of the AlPO4-5 molecular sieve: Experimental and computational investigations, J. Mol. Catal. A:Chem, 2007, 270(1~2): 295~301
    [118] Gao X. T., Yeh C. Y., Angevine P., Mechanistic study of organic template removal from ZSM-5 precursors, Micropor. Mesopor. Mater., 2004, 70(1~3): 27~35
    [119] He J., Yang X. B., Evans D. G., et al., New methods to remove organic templates from porous materials, Mater. Chem. Phys., 2003, 77(1): 270~275
    [120] Berlier G., Pourny M., Bordiga S., et al., Coordination and oxidation changes undergone by iron species in Fe-MCM-22 upon template removal, activation and red-ox treatments: an in situ IR, and XANES study, J. Catal., 2005, 229(1): 45~54
    [121] Bordiga S., Buzzoni R., Geobaldo F., et al., Structure and Reactivity of Framework and Extraframework Iron in Fe-Silicalite as Investigated by Spectroscopic and Physicochemical Methods, J. Catal., 1996, 158(2): 486~501
    [122] Perez-Ramirez J., Groen J. C., Bruckner A., et al., Evolution of isomorphously substituted iron zeolites during activation: comparison of Fe-beta and Fe-ZSM-5, J. Catal., 2005, 232(2): 318-334
    [123] Perez-Ramirez J., Mul G., Kapteijn F., et al., Physicochemical characterization of isomorphously substituted FeZSM-5 during activation, J. Catal., 2002, 207(1): 113~126
    [124] Kleitz F., Schmidt W., Schuth F., Calcination behavior of different surfactant-templated mesostructured silica materials, Micropor. Mesopor. Mater., 2003, 65(1): 1~29
    [125] Gilbert K. H., Baldwin R. M., Way J. D., The effect of heating rate and gas atmosphere on template decomposition in silicalite-1, Ind. Eng. Chem. Res., 2001, 40(22): 4844~4849
    [126] Pachtova O., Kocirik M., Zikanova A., et al., A comparative study of template removal from silicalite-1 crystals in prolytic and oxidizing regimes, Micropor. Mesopor. Mater., 2002, 55(3): 285~296
    [127] Kanazirev V., Price G. L., The Effect of O2 on the Thermal Activation of Zeolite Beta, J. Catal., 1996, 161(1): 156~163
    [128] Cai H. Q., Zhao D. Y., A mild method to remove organic templates in periodic mesoporous organosilicas by the oxidation of perchlorates, Micropor. Mesopor. Mater., 2009, 118(1~3): 513~517
    [129] Keene M. T. J., Denoyel R., Llewellyn P. L., Ozone treatment for the removal of surfactant to form MCM-41 type materials, Chem. Comm., 1998, 20: 2203~2204
    [130] Xiao L. P., Li J. Y., Jin H. X., et al., Removal of organic templates from mesoporous SBA-15 at room temperature using UV/dilute H2O2, Micropor. Mesopor. Mater., 2006, 96(1~3): 413~418
    [131] Lu A. H., Li W. C., Schmidt W., et al., Low temperature oxidative template removal from SBA-15 using MnO4 solution and carbon replication of the mesoporous silica product, J. Mater. Chem., 2006, 16(33): 3396~3401
    [132] Li Q. H., Amweg M. L., Yee C. K., et al., Photochemical template removal and spatial patterning of zeolite MFI thin films using UV/ozone treatment, Micropor. Mesopor. Mater., 2005, 87(1): 45~51
    [133] Tian B. Z., Liu X. Y., Yu C. Z., et al., Microwave assisted template removal of siliceous porous materials, Chem. Comm., 2002, 11: 1186~1187
    [134] Krawiec P., Kockrick E., Simon P., et al., Platinum-catalyzed template removal for the in situ synthesis of MCM-41 supported catalysts, Chem. Mater., 2006, 18(11): 2663~2669
    [135] Montes A., Cosenza E., Giannetto G., et al,Thermal decomposition of surfactant occluded in mesoporous MCM-41 type solids, Stud. Surf. Sci. & Cataly., 1998, 117:237~242
    [136] Kresnawahjuesa O., Olson D. H., Gorte R. J., et al., Removal of tetramethylammonium cations from zeolites, Micropor. Mesopor. Mater., 2002, 51(3): 175~188
    [137] Lee H., Zones S. I., Davis M. E., A combustion-free methodology for synthesizing zeolites and zeolite-like materials, Nature, 2003, 425(6956): 385~388
    [138] Goworek J., Kierys A., Kusak R., Isothermal template removal from MCM-41 in hydrogen flow, Micropor. Mesopor. Mater., 2007, 98(1~3): 242~248
    [139] Hitz S., Prins R., Influence of Template Extraction on Structure, Activity, and Stability of MCM-41 Catalysts, J. Catal., 1997, 168(2): 194~206
    [140] Chatterjee M., Hayashi H., Saito N., Role and effect of supercritical fluid extraction of template on the Ti(IV) active sites of Ti-MCM-41, Micropor. Mesopor. Mater., 2003, 57(2): 143~155
    [141] Jansen J. C., Koegler J. H., van Bekkum H., et al., Zeolitic coatings and their potential use in catalysis, Micropor. Mesopor. Mater., 1998, 21(4-6): 213~226
    [142] Tavolaro A., Drioli E., Zeolite membranes, Advanced Materials, 1999, 11(12): 975~996
    [143] Barrer R. M., Porous Crystal Membranes, J. Chem. Soc. Faraday Trans., 1990, 86:1123~1130.
    [144] Caro J., Noack M., Kolsch P., et al., Zeolite membranes-state of their development and perspective, Micropor. Mesopor. Mater., 2000, 38(1): 3~24
    [145] Drioli E., Curcio E., Membrane engineering for process intensification: a perspective, J. Chem. Technol. Biotechnol., 2007, 82(3): 223~227
    [146] Dixon A. G.,Innovations in Catalytic Inorganic Membrane Reactors,Catalysis,1999,14:40~92
    [147] McLeary E. E., Jansen J. C., Kapteijn F., Zeolite based films, membranes and membrane reactors: Progress and prospects, Micropor. Mesopor. Mater., 2006, 90(1~3): 198~220
    [148] Miachon S., Dalmon J. A., Catalysis in membrane reactors: what about the catalyst?, Top. Catal., 2004, 29(1~2): 59~65
    [149] Saracco G., Neomagus H. W. J. P., Versteeg G. F., et al., High-temperature membrane reactors: potential and problems, Chem. Eng. Sci., 1999, 54(13~14): 1997~2017
    [150] Julbe A., Zeolite membranes-a short overview, in:J,Cejka, H.van Bekkum, Stud. Surf. Sci. & Cataly., 2005,157:135~150
    [151] Dong J. H., Lin Y. S., Hu M. Z. C., et al., Template-removal-associated microstructural development of porous-ceramic-supported MFI zeolite membranes, Micropor. Mesopor. Mater., 2000, 34(3): 241-253
    [152] Xomeritakis G., Gouzinis A., Nair S., et al., Growth, microstructure, and permeation properties of supported zeolite (MFI) films and membranes prepared by secondary growth, Chem. Eng. Sci., 1999, 54(15~16): 3521~3531
    [153] den Exter M. J., van Bekkum H., Rijn C. J. M., et al., Stability of Oriented Silicalite-1 Films in View of Zeolite Membrane Preparation, Zeolites, 1997, 19(1): 13~20
    [154] Jansen J. C., Kashchiev D., Erdem-Senatalar A., et al., Preparation of Coatings of Molecular Sieve Crystals for Catalysis and Separation, Stud. Surf. Sci. Catal., 1994, 85:215~250
    [155] Geus E. R., van Bekkum H., Calcination of large MFI-type single crystals, Part 2: Crack formation and thermomechanical properties in view of the preparation of zeolite membranes, Zeolites, 1995, 15(4): 333~341
    [156] Gualtieri M. L., Anderson C., Jareman F., et al., Crack formation in alpha-alumina supported MFI zeolite membranes studied by in situ high temperature synchrotron powder diffraction, J. Membr. Sci., 2007, 290(1~2): 95~104
    [157] Jareman F., Andersson C., Hedlund J., The influence of the calcination rate on silicalite-1 membranes, Micropor. Mesopor. Mater., 2005, 79(1~3): 1~5
    [158] Poshusta J. C., Noble R. D., Falconer J. L., Temperature and pressure effects on CO2 and CH4 permeation through MFI zeolite membranes, J. Membr. Sci., 1999, 160(1): 115~125
    [159] Noack M., Kolsch P., Schafer R., et al., Preparation of MFI membranes of enlarged area with high reproducibility, Micropor. Mesopor. Mater., 2001, 49(1~3): 25~37
    [160] Sato K., Nakane T., A high reproducible fabrication method for industrial production of high flux NaA zeolite membrane, J. Membr. Sci., 2007, 301(1~2): 151~161
    [161] Kita H., Okamoto K., Yamamura T., et al., Zeolite membranes for fuel ethanol production, Abstracts of Papers of the American Chemical Society, 2003, 225:875-875
    [162] Sato K., Aoki K., Sugimoto K., et al., Dehydrating performance of commercial LTA zeolite membranes and application to fuel grade bio-ethanol production by hybrid distillation/vapor permeation process, Micropor. Mesopor. Mater., 2008, 115(1-2): 184-188
    [163] Wang X. D., Zhang B. Q., Liu X. F., et al., Synthesis of b-oriented TS-1 films on chitosan-modiried alpha-Al2O3 substrates, Adv. Mater., 2006, 18(24): 3261~3265
    [164] Heng S., Lau P. P. S., Yeung K. L., et al., Low-temperature ozone treatment for organic template removal from zeolite membrane, J. Membr. Sci., 2004, 243(1~2): 69~78
    [165] Kuhn J., Sutanto S., Gascon J., et al., Performance and stability of multi-channel MFI zeolite membranes detemplated by calcination and ozonication in ethanol/water pervaporation, J. Membr. Sci., 2009, 339(1~2): 261~274
    [166] Yang W., Liu X., Zhang L., et al., In Situ Synthesis and Microstructure Manipulation of SAPO-5 Films over Porous alpha-Al2O3 Substrates, Langmuir, 2009, 25(4): 2271~2277
    [167] Seelan S., Sinha A. K., Crystallization and characterization of high silica silicoaluminophosphate SAPO-5, J. Mol. Catal. A:Chem, 2004, 215(1~2): 149~152
    [168] Selvam P., Mohapatra S. K., Thermally stable trivalent iron-substituted hexagonal mesoporous aluminophosphate (FeHMA) molecular sieves: Synthesis, characterization, and catalytic properties, J. Catal., 2006, 238(1): 88~99
    [169] Tiemann M., Froba M., Mesoporous aluminophosphates from a single-source precursor, Chem. Comm., 2002, 5: 406~407
    [170] Keil F. J., Diffusion and reaction in porous networks, Catal. Today, 1999, 53(2): 245~258
    [171] Sing K.S. W., Everett D.H., Haul R.A.W., et al, Reporting physisorption data for gas/solid systems with Special Reference to the Determination of Surface Area and Porosity, Pure & Appl. Chem., 1985, 57(4):603~19,
    [172] Demuth D., Unger K.K., Schuth F., et al, Improvement of Raman Spectra of SAPO-5 by Chromium(II1)-Induced Luminescence Quenching, J. Phys. Chem., 1995,99:479~482
    [173] Popescu S. C., Thomson S., Howe R. F., Microspectroscopic studies of template interactions in AlPO4-5 and SAPO-5 crystals, Phys. Chem. Chem. Phys., 2001, 3(1): 111~118
    [174] Wang N., Tang Z. K., Li G. D., et al., Materials science - Single-walled 4 angstrom carbon nanotube arrays, Nature, 2000, 408(6808): 50~51
    [175] Ye J. T., Zhai J. P., Tang Z. K., Raman characterization of 0.4 nm single-walled carbon nanotubes formed in the channels of AlPO4-5 zeolite single crystals, J. Phys. Condens. Matter, 2007, 19(44):1~18
    [176] Prakash A. M., Hartmann M., Zhu Z. D., et al., Incorporation of transition metal ions into MeAPO/MeAPSO molecular sieves, J. Phys. Chem. B, 2000, 104(7): 1610-1616
    [177] Arieli D., Delabie A., Vaughan D. E. W., et al., Isomorphous substitution of Mn(II) into aluminophosphate zeotypes: A combined high-field ENDOR and DFT study, J. Phys. Chem. B, 2002, 106(30): 7509~7519
    [178] Panyaburapa W., Nanok T., Limtrakul J., Epoxidation reaction of unsaturated hydrocarbons with H2O2 over defect TS-1 investigated by ONIOM method: Formation of active sites and reaction mechanisms, J. Phys. Chem. C, 2007, 111(8): 3433~3441
    [179] Corma A., From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis, Chem. Rev., 1997, 97(6): 2373~2420
    [180] Schuth F., Schmidt W., Microporous and mesoporous materials, Adv. Mater., 2002, 14(9): 629-638
    [181] Kimura T., Sugahara Y., Kuroda K., Synthesis and characterization of lamellar and hexagonal mesostructured aluminophosphates using alkyltrimethylammonium cations as structure-directing agents, Chem. Mater., 1999, 11(2): 508~518
    [182] Zhao D., Luan Z., Kevan L., Synthesis of thermally stable mesoporous hexagonal aluminophosphate molecular sieves, Chem. Commun., 1997, 1009 ~1010
    [183] Zhang W., Froba M., Wang J., et al., Mesoporous Titanosilicate Molecular Sieves Prepared at Ambient Temperature by Electrostatic (S+I-, S+X-I+) and Neutral (SoIo) Assembly Pathways: A Comparison of Physical Properties and Catalytic Activity for Peroxide Oxidations, J. Am. Chem. Soc., 1996, 118(38): 9164~9171
    [184] Shen W. L., Yang J., Li S. H., et al., Multinuclear solid-state NMR studies on phase transition of mesostructured aluminophosphate, Micropor. Mesopor. Mater., 2010, 127(1~2): 73~81
    [185] Subrahmanyam C., Viswanathan B., Varadarajan T. K., Synthesis, characterization and catalytic activity of mesoporous trivalent iron substituted aluminophosphates, J. Mol. Catal. A:Chem, 2004, 223(1~2): 149~153
    [186] Logar N. Z., Tusar N. N., Mali G., et al., Manganese-modified hexagonal mesoporous aluminophosphate MnHMA: Synthesis and characterization, Micropor. Mesopor. Mater., 2006, 96(1~3): 386~395
    [187] Liu G., Jia M. J., Zhou Z., et al., Synthesis of amorphous mesoporous aluminophosphate materials with high thermal stability using a citric acid route, Chem. Comm., 2004, 14: 1660~1661
    [188] Cabrera S., El Haskouri J., Guillem C., et al., Tuning the pore size from micro- to meso-porous in thermally stable aluminophosphates, Chem. Comm., 1999, 4: 333~334
    [189] Lin K. F., Wang L., Sun Z. H., et al., A stable hexagonal mesoporous aluminophosphate assembled from preformed aluminophosphate precursors, Chem. Lett., 2005, 34(4): 516~517
    [190] Notari B. Microporous Crystalline Titanium Silicates, Adv. Cataly., 1996, 41:253~334
    [191] Chaudhari K., Bal R., Srinivas D., et al., Redox behavior and selective oxidation properties of mesoporous titano- and zirconosilicate MCM-41 molecular sieves, Micropor. Mesopor. Mater., 2001, 50(2~3): 209~218
    [192] Armaroli T., Milella F., Notari B., et al., A spectroscopic study of amorphous and crystalline Ti-containing silicas and their surface acidity, Top. Catal., 2001, 15(1): 63~71
    [193] Hwang Y. K., Chang J. S., Park S. E., et al., Microwave fabrication of MFI zeolite crystals with a fibrous morphology and their applications, Angew. Chem. Int. Ed., 2005, 44(4): 556~560
    [194] Caro J., Noack M., Zeolite membranes - Recent developments and progress, Micropor. Mesopor. Mater., 2008, 115(3): 215~233
    [195] Koros W. J., Evotving beyond the thermat age of separation processes: Membranes can lead the way, AIChE J., 2004, 50(10): 2326~2334
    [196] Morigami Y., Kondo M., Abe J., et al., The first large-scale pervaporation plant using tubular-type module with zeolite NaA membrane, Sep. Purif. Technol., 2001, 25(1~3): 251~260
    [197] Krajewska B., Membrane-based processes performed with use of chitin/chitosan materials, Sep. Purif. Technol., 2005, 41(3): 305~312
    [198] Kumar M. N. V. R., Muzzarelli R. A. A., Muzzarelli C., et al., Chitosan chemistry and pharmaceutical perspectives, Chem. Rev., 2004, 104(12): 6017-6084
    [199] Kumar M. N. V. R., A review of chitin and chitosan applications, React. Funct. Polym., 2000, 46(1): 1~27
    [200] Kanezashi M., O'Brien J., Lin Y. S., Template-free synthesis of MFI-type zeolite membranes: Permeation characteristics and thermal stability improvement of membrane structure, J. Membr. Sci., 2006, 286(1~2): 213~222
    [201] Lang L., Liu X. F., Zhang B. Q., Synthesis and characterization of (h0h)-oriented silicalite-1 films on alpha-Al2O3 substrates, Appl. Surf. Sci., 2008, 254(8): 2353~2358
    [202] Lassinantti Gualtieri M., Gualtieri A. F., Hedlund J., The influence of heating rate on template removal in silicalite-1: An in situ HT-XRPD study, Micropor. Mesopor. Mater., 2006, 89(1~3): 1~8
    [203] Carreon M. A., Li S. G., Falconer J. L., et al., SAPO-34 seeds and membranes prepared using multiple structure directing agents, Advanced Materials, 2008, 20(4): 729~732
    [204] Lamouroux E., Serp P., Kalck P., Catalytic routes towards single wall carbon nanotubes, Catal. Rev.-Sci.&Eng., 2007, 49(3): 341~405
    [205] Huang M. H., Wu Y. Y., Feick H., et al., Catalytic growth of zinc oxide nanowires by vapor transport, Advanced Materials, 2001, 13(2): 113~116
    [206] Woo R. L., Gao L., Goel N., et al., Kinetic Control of Self-Catalyzed Indium Phosphide Nanowires, Nanocones, and Nanopillars, Nano Lett., 2009, 9(6): 2207~2211
    [207] Chen C. C., Yeh C. C., Large-scale catalytic synthesis of crystalline gallium nitride nanowires, Advanced Materials, 2000, 12(10): 738~741
    [208] Rees E. J., Brady C. D. A., Burstein G. T., Solid-state synthesis of tungsten carbide from tungsten oxide and carbon, and its catalysis by nickel, Mater. Lett., 2008, 62(1): 1~3

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700