过渡金属配合物催化乙烯齐聚及Suzuki/Heck碳碳偶联反应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文包含两个方面的内容:第一部分设计合成了氮杂环烷烃取代的水杨醛亚胺类配体和膦类配体及其相应的Ni(II),Cr(III)配合物,并考察了配合物在催化乙烯齐聚反应中的催化活性;第二部分设计合成了16种不同类型的水杨醛亚胺配体及其相应的Pd(II)配合物,依次考察了配合物在催化Suzuki和Heck碳碳偶联反应中的催化性能。
     在对乙烯齐聚反应催化剂的研究过程中,我们设计合成了氮杂环烷烃(吗啉,哌啶,四氢吡咯,N-甲基哌嗪)取代的水杨醛亚胺类,P-P、P-O-P、P-S-P、P-N-P、双膦类和P-N-O、P-N-N膦胺类10个配体,分别与Ni(II)和Cr(III)进行络合得到相应的配合物,配体及配合物的组成和结构经由红外光谱,质谱,核磁共振,元素分析及X-射线单晶衍射等方法得到了验证。将所合成的配合物应用于乙烯齐聚的催化反应中,探讨了反应条件(溶剂,反应时间,反应温度,助催化剂的用量)对反应结果的影响以及中心金属、配体结构与催化剂活性的关系。结果表明:在3.0Mpa的乙烯压力下,以甲苯作溶剂,反应温度40℃,助催化剂MAO活化下,水杨醛亚胺类Ni(II)和Cr(III)催化剂普遍具有中等的催化性能,其中5-叔丁基-3-(N-甲基哌嗪-甲基)水杨醛亚胺氯化铬配合物表现出最高的催化活性,达2.97×104 g mol-1 (Cat.) h-1。相同条件下,膦类Ni(II)、Cr(III)系列催化剂则在较少助催化剂MAO的作用下,显示了更高的催化活性和对产物烯烃更好的单一选择性,其中双二苯基膦乙烷氯化镍配合物催化活性为1.48×105 g mol-1 (Cat.) h-1,且产物中己烯含量高达95.4%。
     在Suzuki/Heck碳碳偶联催化反应的研究过程中,我们设计合成了烷基取代的水杨醛苯基亚胺、烷基取代的水杨醛吡啶亚胺以及胺基取代的水杨醛苯基亚胺三大类16种配体并且分别与PdCl2(CH3CN)2络合得到相应的Pd(II)配合物,通过红外光谱,核磁共振,元素分析及X-射线单晶衍射等方法对其依次进行了表征。将此系列配合物应用到碳碳偶联的催化反应中,全面考察了反应条件、配体结构与其催化活性之间的关系。在Suzuki偶联反应中,首先尝试了溶剂,碱类,反应温度和催化剂的用量对反应结果的影响,从而确定了最佳反应条件,然后将水杨醛亚胺类Pd(II)催化剂应用于偶联反应,研究了取代基的电子和空间效应对催化剂催化活性的影响。通过对催化剂的筛选,确定了活性最高的Pd(II)催化剂,并将其应用到各种氯代芳烃与苯硼酸的Suzuki偶联反应中,进而考察不同反应底物对催化体系的适应性。结果表明:110℃溶剂DMF中,在碱K2CO3的作用下,水杨醛亚胺类Pd(II)系列催化剂对缺电子的氯代芳烃显示了非常好的催化效果,而对于富电子的氯代芳烃其催化效果一般。其中胺基取代的水杨醛亚胺氯化钯系列配合物催化缺电子的氯代芳烃偶联,产物产率达95%以上。对Heck偶联反应的研究,我们首先确定了溶剂(DMF),碱(K2CO3),反应温度(110℃)等反应条件,然后将最优水杨醛亚胺Pd(II)催化剂应用到催化溴代芳烃与苯乙烯或丙烯酸正丁酯的偶联反应中,同样发现催化剂对缺电子的芳烃有着很好的催化效果,催化产率达95%以上。此后,我们扩充反应底物,分别对氯苄和溴苄进行了Suzuki和Heck偶联反应的尝试,发现催化体系对C(sp3)﹣C(sp2)类型的偶联反应仍然适用。总结实验结果,我们发现底物卤代芳烃连接的吸电基团可以提高其在偶联反应中的反应活性;同时也发现Heck反应中,烯烃端位取代基的空间位阻会使其反应活性降低。
This thesis is mainly compromised of two parts: First, several Ni(II) and Cr(III) complexes ligated by amino-salicylaldimine or phosphine ligands were designed and synthesized. Their catalytic activities for ethylene oligomerization were explored under various reaction conditions. Second, a series of Pd(II) complexes bearing various salicylaldimine ligands were prepared and characterized, and also the catalytic activities of these salicylaldimine-palladium complexes toward the Suzuki and Heck reactions were investigated.
     In the first part, kinds of 5-tert-butyl-3-(R-1-ylmethyl)-salicylaldimine (R =morpholine, piperidine, pyrrolidine, 4-methylpiperazine), diphosphine (P-P, P-O-P, P-S-P, P-N-P) and aminophosphine (P-N-O, P-N-N) ligands were synthesized and structural analyzed. These ligands reacted with CrCl3(THF)3 or NiCl2·6H2O to form Ni(II) and Cr(III) complexes, which were isolated in high yields and characterized by means of IR and elemental analysis. Then these complexes were applied to catalyze ethylene oligomerization under various reaction conditions. To probe the effects of reaction parameters on the ethylene reactivity, oligomerization behavior was typically investigated via changing the amount of MAO/Cr, reaction temperature and reaction time. Under the optimized condition, the Ni(II) and Cr(III) complexes with amino-salicylaldimine ligands show moderate catalytic activities in the range of 2.43×104-2.97×104 g mol-1(Cat.) h-1, while the phosphine chelated Ni(II) and Cr(III) complexes displayed higher catalytic activity and olefin selectivity using less amount of cocatalyst MAO in the same reaction condition. The Ni(II) complex bearing bis(1,2-diphenylphosphino)ethylene ligands exhibited the highest catalytic activity (1.48×105 g mol-1 (Cat.) h-1) and the highest selevtivity for C6 (95.4%).
     In the second part, a series of salicylaldimine-Pd(II) complexes bearing different amino- , halogeno- or alkyl- substituted salicylaldimine ligands were synthesized and characterized by IR, 1H NMR and elemental analysis. Crystal structure details of two complexes have been confirmed by X-ray structure analysis. The effectiveness of salicylaldimine-Pd(II) complexes were tested in both Suzuki and Heck coupling reactions. In the Suzuki coupling reaction, effects of solvents, bases, reaction temperature and amount of catalysts were first investigated. Under the optimized reaction condition, electronic effect and steric effect of different substituents on the catalytic activities were examined in the model coupling reaction of 4-chlorobenzaldehyde with phenylboronic acid. Then the best catalyst was applied to a representative range of aryl chlorides and was found to be an active catalyst for Suzuki cross-coupling of activated aryl chlorides with phenylboronic acid. In the Heck coupling reaction, the catalytic activity of catalyst was examined in the coupling reaction of aryl bromides with styrene or n-butyl acrylate under the optimized reaction conditions. Catalytic studies showed that the salicylaldimine-Pd(II) complex also exhibited good activities toward activated electron-deficient aryl bromides and exhibited moderate activities toward deactivated electron-rich substrates. Suzuki and Heck reactions were extended to C(sp3)﹣C(sp2) coupling by using halogenated benzyl, which afforded the corresponding coupling product in moderate yields. All these results indicated that electronic effect of substituents on the aryl chlorides had great influence on the reaction and the electron-withdrawing substituents were more favorable for the coupling; also the steric effect of substituents on the olefin could decrease their activities.
引文
[1]何仁,陶晓春,张兆国,金属有机化学,上海:华东理工大学出版社,2007.
    [2]邸鸿,何仁,唐超时,化工科技,2003,11(3): 48~52
    [3] Pignolet H. L., Homogeneous Catalysis Using Metal Phosphine Complexes., New York: Plenum Press, 1983
    [4] Skupinska J., Oligomerization ofα-Olefins to Higher Oligomers, Chem. Rev, 1991, 91: 613~648
    [5] Sechrist P. A., Johnson B. H., Process for linear alpha-olefin production. US Patent: 5962761, 1999-10-5
    [6]李影辉,曾群英,万书宝,等,α-烯烃合成工艺和市场,精细石油化工进展,2004, 5(11): 12~16
    [7]曾群英,褚洪领,李影辉,等.α-烯烃合成工艺及技术进展,浙江化工,2004, 35(10): 8~12
    [8] Ziegler K., Holzkamp E., Broil H., Martin H., Polymerisation von ?thylen und anderen Olefinen, Angew. Chem, 1955, 67(16): 426
    [9] Natta G., Une nouvelle classe de polymersα-olefines ayant une régularitéde structure exceptionnelle, Journal of Polymer Science, 1955, 16(82): 143~154
    [10]王梅,何仁,化学通报,1998,12:5~9
    [11] Long WP, Breslow D. S., Polymerization of Ethylene with Bis-(cyclopentadienyl)-titanium Dichloride and Diethylaluminum Chloride, J. Am. Chem. Soc, 1960, 82: 1953~1957
    [12]黄葆同,沈之荃,烯烃、双烯烃配位聚合进展,第一版,北京:科学出版社,1998年
    [13] Kaminsky W., Highly Active Metallolcene Catalysts for Olefin Polymerization, J. Chem. Soc. Dalton Trans, 1998: 1413~1418
    [14]黄葆同,陈伟,茂金属催化剂及其烯烃聚合物,第一版,北京:化学工业出版社,2002年,第一章
    [15] Small B. L., Brookhart M., Bennett A. M. A., Highly Active Iron and Cobalt Catalysts for the Polymerization of Ethylene, J. Am. Chem. Soc,1998, 120(16): 4049~4050
    [16] Britovsek G. J. P., Gibson V. C., Kimberley B. S., Maddox P. J., McTavish S. J., Solan G. A., White A. J. P., Williams D. L., Novel Olefin Polymerization Catalysts Based on Iron and Cobalt, Chem. Commun., 1998: 849~850
    [17] Britovsek G. J. P., Gibson V. C., Hoarau O. D., eds. Iron and Cobalt Ethylene Polymerization Catalysts: Variations on the Central Donor, Inorg. Chem., 2003, 42(11): 3454~3465
    [18] Bluhm M. E., Folli C., D?ring M., New iron-based bis(imino)pyridine and acetyliminopyridine complexes as single-site catalysts for the oligomerization of ethylene, J. Mol. Cata. A: Chemistry, 2004, 212: 13~18
    [19] Sun W. H., Tang X. B., Gao T. L., eds. Synthesis, Characterization, and Ethylene Oligomerization and Polymerization of Ferrous and Cobaltous 2-(ethylcarboxylato)-6-iminopyridyl Complexes, Organometallics, 2004, 23(21): 5037~5047
    [20] Sun W. H., Jie S. Y., Zhang Sh, eds. Iron Complexes Bearing 2-Imino-1,10-phenanthrolinyl Ligands as Highly Active Catalysts for Ethylene Oligomerization, Organometallics, 2006, 25(3): 666~677
    [21] Wang K. F., Wedeking K., Zuo W. W., Iron(II) and cobalt(II) complexes bearing N-((pyridin-2-yl)methylene)-quinolin-8-amine derivatives: Synthesis and application to ethylene oligomerization, J. Organometal. Chem., 2008, 693: 1073~1080
    [22] Xiao L. W., Gao R., Zhang M, Li Y, Cao X. P., 2-(1H-2-Benzimidazolyl)-6- (1-(arylimino)ethyl)pyridyl Iron(II) and Cobalt(II) Dichlorides: Syntheses, Characterizations, and Catalytic Behaviors toward Ethylene Reactivity, Organometallics, 2009, 28: 2225~2233
    [23] Bianchini C, Mantovani G., Meli A., Selective Oligomerization of Ethylene to Linearα-Olefins by Tetrahedral Cobalt(II) Complexes with 6-(Organyl)-2-(imino)pyridyl Ligands: Influence of the Heteroatom in the Organyl Group on the Catalytic Activity, Organometallics, 2003, 22: 2545~2547
    [24] Sun W. H., Shao C. X., Chen Y., eds. Controllable Supramolecular Assembly byπ?πInteractions: Cobalt(II) and Copper(II) Complexes with Benzimidazole Derivatives, Organomettalics, 2002, 21: 4350~4355
    [25] Wang M., Yu X. M., Shi Zh., Synthesis of cobalt(II) and iron(II) complexes with the ligand bis(2-diphenylphosphinoethyl)methylamine and their catalytic action on ethylene oligomerization. X-ray crystal structure of [CoCl2{CH3N(CH2CH2PPh2)2}], J. Organometal. Chem., 2002, 645: 127~133
    [26] McGuinness D. S., Gibson V. C., Steed J. W., Bis(carbene)pyridine Complexes of the Early to Middle Transition Metals:Survey of Ethylene Oligomerization and Polymerization Capability, Organometallics, 2004,23: 6288~6292
    [27] (a) Xiao L. W., Gao R., Zhang M., eds. 2-(1H-2-Benzimidazolyl)-6- (1-(arylimino)ethyl)pyridyl Iron(II) and Cobalt(II) Dichlorides: Syntheses, Characterizations, and Catalytic Behaviors toward Ethylene Reactivity, Organometallics, 2009, 28: 2225~2233. (b) Gao R., Wang K. F., Li Y., eds. 2-Benzoxazolyl-6-(1-(arylimino)ethyl)pyridyl cobalt (II) chlorides: A temperature switch catalyst in oligomerization and polymerization of ethylene, J. Mol. Cata. A: Chemical, 2009, 309: 166~171. (c) Sun W. H., Hao P., Li G., eds. Synthesis andcharacterization of iron and cobalt dichloride bearing 2-quinoxalinyl-6- iminopyridines and their catalytic behavior toward ethylene reactivity, J. Organometal. Chem., 2007, 692: 4506~4518
    [28] Johnson L. K., Killian C. M., Brookhart M., New Pd(II)- and Ni(II)-Based Catalysts for Polymerization of Ethylene and a-Olefins, J. Am. Chem. Soc. 1995, 117: 6414~6415
    [29] (a) Killian C. M.,Johnson L. K.,Brookhart M., Preparation of Linearα-Olefins Using Cationic Nickel(II)α-Diimine Catalysts, Organometallics, 1997, 16(10):2005~2007. (b)Laine T. V., Klinga M., Leskela M., Synthesis and X-ray Structures of New Mononuclear and Dinuclear Diimine Complexes of Late Transition Metals, Eur. Inorg. Chem., 1999, 959~964. (c)Laine T. V., Lappalainen K., Liimatta J., eds. Polymerization of ethylene with new diimine complexes of late transition metals, Macromol. Rapid. Commun., 1999, 20(9): 487~491. (d) Laine T. V., Piironen U., Lappalainen K., eds. Pyridinylimine-based nickel(II) and palladium(II) complexes: preparation, structural characterization and use as alkene polymerization catalysts, J. Organometal. Chem. 2000, 606(2):112~124. (e) Meneghetti S. E., Lutz P. J., Kress J., Oligomerization of Olefins Catalyzed by New Cationic Palladium(II) Complexes Containing an Unsymmetricalα-Diimine Ligand, Organometallics, 1999, 18(15): 2734~2737. (e) Koppl A., Alt H. J., Substituted 1-(2-pyridyl)-2-azaethene- (N,N)-nickel dibromide complexes as catalyst precursors for homogeneous and heterogeneous ethylene polymerization, J. Mol. Cata. A: Chem., 2000, 154(1-2): 45~53. (g) Schareina T., Hillebrand G., Fuhrmann H., Kempe R., Dipyridylamine Ligands-Synthesis, Coordination Chemistry of the Group 10 Metals and Application of Nickel Complexes in Ethylene Oligomerization, Eur. Inorg. Chem., 2001, 2421~2426.
    [30] Shao Ch. X., Sun W. H., Li Z. L., Ethylene oligomerization promoted by group 8 metal complexes containing 2-(2-pyridyl)quinoxaline ligands, Cat. Commun. 2002, 3: 405~410
    [31] Wang L. Y., Sun W. H., Han L. Q., eds., Late transition metal complexes bearing 2,9-bis(imino)-1,10-phenanthrolinyl ligands: synthesis, characterization and their ethylene activity, J. Organomet. Chem., 2002, 658: 62~70
    [32] Li Z. L., Sun W. H., Ma Zh., eds., Ethylene Oligomerization Promoted by Nickel Complexes with 8-Iminoquinoline Derivatives, Chin. Chem. Lett., 2001, 12(8): 691~692
    [33] Wang Ch. M., Friedrich S., Younkin T. R., eds., Neutral Nickel(II)-Based Catalysts for Ethylene Polymerization, Organometallics, 1998, 17: 3149~3151
    [34] Hicks F. A., Jenkins J. C., Brookhart M., Synthesis and Ethylene Polymerization Activity of a Series of 2-Anilinotropone-Based Neutral Nickel(II) Catalysts,Organometallics, 2003, 22: 3533~3545
    [35] Brasse M., Cámpora J.,Palma P., Nickel 2-Iminopyridine N-Oxide (PymNox) Complexes: Cationic Counterparts of Salicylaldiminate-Based Neutral Ethylene Polymerization Catalysts, Organometallics, 2008, 27: 4711~4723
    [36] Song D. P., Ye W. P., Wang Y. X., Highly Active Neutral Nickel(II) Catalysts for Ethylene Polymerization Bearing Modifiedβ-Ketoiminato Ligands, Organometallics, 2009, 28: 5697~5704
    [37] Chen L. Y., Hou J. X., Sun W. H., Ethylene oligomerization by hydrazone Ni(II) complexes/MAO, Applied Catalysis A: General, 2003, 246: 11~16
    [38] Sun W. H., Zhang W., Gao T. L., Synthesis and characterization of N-(2-pyridyl)benzamide-based nickel complexes and their activity for ethylene oligomerization, J. Organomet. Chem., 2004, 689(5): 917~929
    [39] Wang L. Y., Sun W. H., Han L. Q., Cobalt and nickel complexes bearing 2,6-bis (imino) phenoxy ligands: syntheses, structures and oligomerization studies, J. Organomet. Chem. 2002, 650: 59~64
    [40] Han L. Q., Li T. Sh, Sun W. H., {Di-μ-bromotetra [N,N′-bis(3,5-dimethylanil)-4 -methyl-2,6-bis(imino)phenoxy]-dinickel}bromide, Transition Metal Chemistry, 2002, 27: 844~848
    [41] Krajete A, Steiner G, Kopacka H, Iminohydroxamato Early and Late Transition Metal Halide Complexes-New Precatalysts for Aluminoxane-Cocatalyzed Olefin Insertion Polymerization, Eur. J. Inorg. Chem. 2004: 1740~1752
    [42] Heinicke J., Peulecke N., K?hler M., Tuning of nickel 2-phosphinophenolates– catalysts for oligomerization and polymerization of ethylene, J. Organomet. Chem, 2005, 690(10): 2449~2457
    [43] Lavanant L., Rodrigues A. S., Kirillov E., eds., Synthesis, Structures, Dynamics, and Ethylene Polymerization Activity of Nickel Complexes Containing an ortho-Methoxy-aryl Diphosphine Ligand, Organometallics, 2008, 27: 2107~2117
    [44] Sun W. H., Li Z. L., Hu H. M., Synthesis and characterization of novel nickel(II) complexes bearing N,P ligands and their catalytic activity in ethylene oligomerization, New J. Chem., 2002, 26: 1474~1478
    [45] (a) Speiser F., Braunstein P., Saussine L., eds., Nickel Complexes with Oxazoline-Based P,N-Chelate Ligands: Synthesis, Structures, and Catalytic Ethylene Oligomerization Behavior, Organometallics, 2004, 23 (11): 2613~2624. (b) Speiser F., Braunstein P., Saussine L., New Nickel Ethylene Oligomerization Catalysts Bearing Bidentate P,N-Phosphinopyridine Ligands with Different Substituentsαto Phosphorus, Organometallics, 2004, 23 (11): 2625~2632. (c) Speiser F., Braunstein P., Saussine L., Nickel Complexes Bearing New P,N-Phosphinopyridine Ligands for the Catalytic Oligomerization of Ethylene, Organometallics, 2004, 23 (11): 2633~2640.
    [46] Kotov V. V., Avtomonov E. V., Sundermeyer J., eds., Alkylaminophosphanyl substituted half-sandwich complexes of vanadium(III) and chromium(III): preparation and reactivity in ethylene polymerisation, J. Organomet. Chem, 2001, 640(1-2):21~28
    [47] Enders M., Fernández P., Ludwig G., New Chromium(III) Complexes as Highly Active Catalysts for Olefin Polymerization, Organometallics, 2001, 20(24): 5005~5007
    [48] Fryzuk M. D., Leznoff D. B., Rettig S. J., eds., One-electron oxidation of paramagnetic chromium(II) alkyl complexes with alkyl halides: synthesis and structure of fivecoordinate chromium(III) complexes, J. Chem. Soc., Dalton Trans., 1999: 147~154
    [49] Jones D. J., Gibson V. C., Greenb S. M.,Discovery of a new family of chromium ethylene polymerisation catalysts using high throughput screening methodology, Chem. Commun., 2002: 1038~1039
    [50] K?hn R. D., Haufe M., Mihan S., eds., Triazacyclohexane complexes of chromium as highly active homogeneous model systems for the Phillips catalyst, Chem. Commun., 2000: 1927~1928
    [51] Esteruelas M. A., López A. M., M?ndez L., eds., Preparation, Structure, and Ethylene Polymerization Behavior of Bis(imino)pyridyl Chromium(III) Complexes, Organometallics, 2003, 22: 395~406
    [52] (a) Dixon J. T., Green M. J., Hess F. M., eds., Advances in selective ethylene trimerisation. J. Organomet. Chem., 2004, 689: 3641~3668. (b) Garc?a-Orozco I., Quijada R., Vera K., eds., Tris(pyrazolyl)methane–Chromium(III) complexes as highly active catalysts for ethylene polymerization, J. Mol. Cata. A: Chemical, 2006, 260: 70~76
    [53] McGuinness D. S., Wasserscheid P., Keim W., eds., Novel Cr-PNP complexes as catalysts for the trimerisation of ethylene, Chem. Commun., 2003: 334~335
    [54] McGuinness D. S., Brown D. B., Tooze R. P., eds., Ethylene Trimerization with Cr-PNP and Cr-SNS Complexes: Effect of Ligand Structure, Metal Oxidation State, and Role of Activator on Catalysis, Organometallics, 2006, 25: 3605~3610
    [55] Miyaura N, Yoshinari T, Itoh M, Suzuki A, Reaction of lithium alkynyltrialkylborates with propionic acid. General and convenient syntheses of internal and terminal olefins using organoboranes Tetrahedron Lett., 1974, 15(34): 2961~2964
    [56] (a) Andreu M. G., Zapf A., Beller M., Molecularly defined Palladium(0) monophosphine complexes as catalysts for efficient cross-coupling of aryl chlorides and phenylboronic acid. Chem.Commun. 2000, 24: 2475~2476. (b) Feuerstein M., Laurenti D., Doucet H., eds. Palladium-tetraphosphine complex:an efficient catalyst for allylic substitution and Suzuki cross-coupling, Synthesis, 2001, 15: 2320~2326. (c)Feuerstein M., Doucet H., Santelli M., Tetraphosphine/palladium-catalysed Suzuki cross-coupling with sterically hindered aryl bromideds and arylboronic acids. Tetrahedron Lett. 2001, 42: 6667~6670.
    [57] (a) Old D. W., Wolfe J. P., Buchwald S. L., A highly active catalyst for palladium catalyzed cross-coupling reactions: room-temperature Suzuki couplings and amination of unactivated aryl chlorides, J. Am. Chem. Soc. 1998, 120: 9277~9723. (b) Wolfe J. P., Buchwald S. L., A highly active catalyst for the room-temperature amination and Suzuki coupling of aryl chlorides, Angew. Chem. Int. Ed., 1999, 38: 2413~2416. (c) Wolfe J. P., Singer, R. A., Yang, B. H., eds. Highly active palladium catalysts for Suzuki coupling reactions, J. Am. Chem. Soc. 1999, 121: 9550~9561. (d) Yin J., Buchwald S. L., A catalytic asymmetric Suzuki coupling for the synthesis of axially chiral biaryl compounds, J. Am. Chem. Soc. 2000, 122, 12051~12052. (e) Nguyen H. N., Huang X., Buchwald S. L., The first general palladium catalyst for the Suzuki-Miyaura and carbonyl enolate coupling of aryl arenesulfonates, J. Am. Chem. Soc., 2003, 125: 11818~11819. (f) Walker S. D., Barder T. E., Martinelli J. R., eds. A rationally designed universal catalyst for Suzuki-Miyaura coupling processes, Angew. Chem. Int. Ed., 2004, 43: 1871~1876.
    [58] Burns M. J., Fairlamb I. J. S., Kapdi A. R., eds., Simple Palladium(II) Precatalyst for Suzuki?Miyaura Couplings: Efficient Reactions of Benzylic, Aryl, Heteroaryl, and Vinyl Coupling Partners, Org. Lett., 2007, 9 (26): 5397~5400
    [59] Colacot T. J., Shea H. A., Cp2Fe(PR2)2PdCl2 (R=i-Pr, t-Bu) Complexes as Air-Stable Catalysts for Challenging Suzuki Coupling Reactions, Org. Lett., 2004, 6(21): 3731~3734
    [60] Old D. W., Wolfe J. P., Buchwald S. L., A Highly Active Catalyst for Palladium-Catalyzed Cross-Coupling Reactions: Room-Temperature Suzuki Couplings and Amination of Unactivated Aryl Chlorides, J. Am. Chem. Soc., 1998, 120 (37): 9722~9723
    [61] Yin J. J., Buchwald S. L., A Catalytic Asymmetric Suzuki Coupling for the Synthesis of Axially Chiral Biaryl Compounds, J. Am. Chem. Soc. 2000, 122: 12051~12052
    [62] Mukherjee A., Sarkar A., Pyrazole-tethered arylphosphine ligands for Suzuki reactions of aryl chlorides: how important is chelation?, Tetrahedron Lett. 2004, 45: 9525~9528
    [63] Xu L., Zhu D., Wu F., eds., Highly efficient palladium-catalyzed Suzuki-Miyaura cross-coupling of aryl bromides using 2-(diphenylphosphino)benzaldox-ime ligand, J. Mol. Cata. A: Chemical, 2005, 237: 210~214
    [64] Beller M., Fischer H., Herrmann W., eds., Coordination chemistry and mechanism of metal catalyzed C-C coupling reactions. Part 6. Palladacycles asefficient catalysts for aryl coupling reaction, Angew. Chem.. Int. ed., 1995, 34: 1848~1849
    [65] Bedford R. B., Cazin.C.S.J., Highly active catalysts for the Suzuki coupling of aryl chlorides, Chem.Commun, 2001:1540~1541.
    [66] Alonso D. A., Nájera C., Pacheco M. C., Oxime Palladacycles: Stable and Efficient Catalysts for Carbon?Carbon Coupling Reactions, Org. Lett., 2000, 2(13): 1823~1826
    [67] Zim D., Gruber A. S., Ebeling G., eds., Sulfur-Containing Palladacycles: Efficient Phosphine-Free Catalyst Precursors for the Suzuki Cross-Coupling Reaction at Room Temperature, Org. Lett., 2000, 2(18): 2881~2884
    [68] Garagorri D. B., Bocoki? V., Mereiter K., eds., A Modular Approach to Achiral and Chiral Nickel(II), Palladium(II), and Platinum(II) PCP Pincer Complexes Based on Diaminobenzenes, Organometallics, 2006, 25: 3817~3823
    [69] Kimura T., Uozumi Y., PCP Pincer Palladium Complexes and Their Catalytic Properties: Synthesis via the Electrophilic Ligand Introduction Route ,Organometallics, 2006, 25 (20): 4883~4887
    [70] Zhang B. Sh., Wang Ch., Gong J. F., Facile synthesis of achiral and chiral PCN pincer palladium(II) complexes and their application in the Suzuki and copper-free sonogashira cross-coupling reactions, J. Organomet. Chem.,
    [71] Herrmann W. A., Elison M., Fischer J., Metal Complexes of N-Heterocyclic Carbenes-A New Structural Principle for Catalysts in Homogeneous Catalysis, Angew. Chem.. Int. ed., 1995, 34: 2371~2374
    [72] CalòV., Nacci A., Lopez L., eds., Arylation ofα-substituted acrylates in ionic liquids catalyzed by a Pd–benzothiazole carbene complex, Tetrahedron. Lett., 2001, 42(28): 4701~4703
    [73] (a) Weskamp T., B?hm V. P. W., Herrmann W. A., Combining N-heterocyclic carbenes and phosphines: improved palladium(II) catalysts for aryl coupling reactions, J. Organomet. Chem., 1999, 585(2): 348~352. (b) Herrmann W. A., B?hm V. P. W., Gst?ttmayr C. W. K., eds., Synthesis, structure and catalytic application of palladium(II) complexes bearing N-heterocyclic carbenes and phosphines, J. Organomet. Chem., 2001, 617-618: 616-628
    [74] Loch J. A., Albrecht M., Peris E., Palladium Complexes with Tridentate Pincer Bis-Carbene Ligands as Efficient Catalysts for C?C Coupling, Organometallics, 2002, 21(4): 700~706
    [75] McGuinness D. S., Cavell K. J., Donor-Functionalized Heterocyclic Carbene Complexes of Palladium(II): Efficient Catalysts for C-C Coupling Reactions, Organometallics, 2000, 19: 741~748
    [76] Viciu M. S., Kelly R. A., Stevens E. D., Synthesis, Characterization, andCatalytic Activity of N-Heterocyclic Carbene (NHC) Palladacycle Complexes, Org. Lett., 2003, 5(9), 1479~1482
    [77] Enders D., Gielena H., Raabea G., Synthesis and Stereochemistry of the First Chiral (1midazolinylidene)- and (Triazolinylidene)palladium(II) Complexes, Chem. Ber, 1996,129: 1483~1488
    [78] Grasa G. A., Hillier A. C., Nolan S. P., Convenient and efficient Suzuki-Miyaura cross-coupling catalyzed by a palladium/diazabutadiene system, Org. Lett., 2001, 3(7): 1077~1080
    [79] Borhade S. R., Waghmode S. B., Phosphine-free Pd-salen complexes as efficient and inexpensive catalysts for Heck and Suzuki reaction under aerobic conditions, Tetrahedron. Lett. 2008, 49: 3423~3429
    [80] Mohanty S., Suresh D., Balakrishna M. S., Phosphine free diamino-diol based palladium catalysts and their application in Suzuki–Miyaura cross-coupling reactions, J. Organomet. Chem. 2009, 694: 2114~2121
    [81] Li F. W., Hor T. S. A., Benzimidazolium-Pyrazole-Palladium(II) complexes: new and efficient catalysts for Suzuki, Heck and Sonogashira reactions, Adv. Synth. Catal., 2008, 350: 2391~2400
    [82] Kumar A., Agarwal M., Singh A. K., Schiff bases of 1’-hydroxy-2’- acetonaphthone containing chalcogen functionalities and their complexes with and (p-cymene)Ru(II), Pd(II), Pt(II) and Hg(II): Synthesis, structures and applications in C–C coupling reactions, J. Organomet. Chem., 2008, 693: 3533~3545
    [83] Liu P., Zhou L., Li X. G., Bis(imino)pyridine palladium(II) complexes: synthesis, structure and catalytic activity, J. Organomet. Chem., 2009, 694(14): 2290~2294
    [84] E.里格尔,L. S.鲍,S.卡克,S.施特里格勒,后过渡聚合催化,北京:化学工业出版社,2005.
    [85] Siu A. F. M., Lambrecht R. M., Shani J., eds., Synthesis, attempted kinetic resolution and evaluation of [123I]-MK-447 analogues as inflammation radiopharmaceuticals, Journal of Labelled Compounds and Radiopharmaceuticals, 1998, 39(9), 711~729.
    [86] Sharghi H., Khalifeh R., ECO-FRIENDLY SYNTHESIS OF NOVEL LARIAT ETHERS VIA MANNICH REACTION UNDER SOLVENTLESS CONDITIONS, HETEROCYCLES, 2007, 71(7), 1601~1614
    [87] Hansena T. V., Skatteb?l L., A high yielding one-pot method for the preparation of salen ligands, Tetrahedron. Lett. 2005, 46: 3829~3830
    [88] Campaigne E., Archer W. L., Organic Syntheses, 1963, 4, 331
    [89] Jung M. E., Lazarova T. I., Journal of organic chemistry, 1997, 62, 1553
    [90] Larrow J. F., Jacobsen E. N., Gao Y., A practical method for the large-scalepreparation of [N,N’-bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexanediaminato(2-)] manganese(III) chloride, a highly enantioselective epoxidation catalyst, J. Org. Chem., 1994, 59: 1939~1942
    [91] Hofsl?KKen N. U., Skatteb?l L., Convenient method for the ortho-formylation of phenols, Acta Chemica Scandinavica, 1999, 53:258-262
    [92] Baitar J. C., Busch D. H., The chemistry of the coordination compounds, Reinhold Publishing Co., New York, 1965, 78~84
    [93] McGuinness D. S., Wasserscheid P., Keim W., Novel Cr-PNP complexes as catalysts for the trimerisation of ethylene, Chem. Commun., 2003: 334~335
    [94] Bollmann A., Blann K., Dixon J. T., Ethylene Tetramerization: A New Route to Produce 1-Octene in Exceptionally High Selectivities, J. Am. Chem. Soc. 2004, 126: 14712~14713
    [95] Rohlík Z, Holzhauser P, Kotek J., eds., Synthesis and coordination properties of palladium(II) and platinum(II) complexes with phosphonated triphenylphosphine derivatives, Journal of Organometallic Chemistry, 2006, 691: 2409~2423
    [96]陈寿山,张正之等,金属有机化合物合成手册,化学工业出版社,1986年第一版
    [97] BUCHANANA G. W., DRIEGAA B., MOGHIMIC, cis-Cyclohexano-9-crown-3 ether. Solid state and low-temperature solution stereochemistry as determined by X-ray crystallography and nuclear magnetic resonance spectroscopy, Canadian Journal of Chemistry, 1993, 71: 951~959
    [98] Canadian Journal of Chemistry, Chemistry of the Strong Electrophilic Metal Fragment [99Tc(N)(PXP)]2+ (PXP=Diphosphine Ligand). A Novel Tool for the Selective Labeling of Small Molecules, J. Am. Chem. Soc. 2002, 124: 11468~11479
    [99] Kyle Ward Jr., The Chlorinated Ethylamines—A New Type of Vesicant, J. Am. Chem. Soc., 1935, 57(5): 914~916
    [100] Nuzzo R. G., Haynie S. L., Wilson M. E., Synthesis of Functional Chelating Diphosphines Containing the Bis[2-(diphenylphosphino)ethyl]amino Moiety and the Use of These Materials in the Preparation of Water-Soluble Diphosphine Complexes of Transition Metals, J. Org. Chem., 1981, 46(14): 2861~2867
    [101] Cui D. J., Li Q. Sh., Xu F. B., First Heterobimetallic Seven-Membered Macrocycle Complex with a Fe(0) f Cu(I) Donor-Acceptor Bond, Organometallics, 2001, 20: 4126-4128
    [102] Li Q. Sh, Xu F. B., Cui D. J., Heterobimetallic Pt(II)–M(I) (M= Cu, Ag) eight-membered, macrocyclic complexes with large-bite P,N-ligand bridges Dalton trans., 2003, 1551~1557
    [103] Richard Busby, Michael B. Hursthouse, Penelope S. Jarrett, D i morp hs of [1,2- Bis(diphenylphosphino)ethane] dichloronickel(II), J. Chem. Soc., Dalton Trans., 1993:3767~3770
    [104] Bluhm M. E., Walter O., D?ring M., Chromium imine and amine complexes as homogeneous catalysts for the trimerisation and polymerisation of ethylene, Journal of Organometallic Chemistry, 2005, 690: 713~721
    [105] (a) Miyaura N, Suzuki A, Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds, Chem. Rev., 1995, 95(7): 2457~2483. (b) Cabri W., Candiani I, Recent Developments and New Perspectives in the Heck Reaction, Acc. Chem. Res., 1995, 28(1): 2~7. (c) Dounay A. B., Overman L. E., The Asymmetric Intramolecular Heck Reaction in Natural Product Total Synthesis, Chem. Rev., 2003, 103(8): 2945~2964. (d) Chinchilla R., Nájera C., The Sonogashira Reaction: A Booming Methodology in Synthetic Organic Chemistry, Chem. Rev., 2007, 107(3): 874~922.
    [106] (a) Burns M. J., Fairlamb I. J. S., Kapdi A. R., Simple Palladium(II) Precatalyst for Suzuki?Miyaura Couplings: Efficient Reactions of Benzylic, Aryl, Heteroaryl, and Vinyl Coupling Partners, Org. Lett., 2007, 9(26): 5397~5400. (b) Billingsley K., Buchwald S. L., Highly Efficient Monophosphine-Based Catalyst for the Palladium-Catalyzed Suzuki?Miyaura Reaction of Heteroaryl Halides and Heteroaryl Boronic Acids and Esters, J. Am. Chem. Soc., 2007, 129(11): 3358~3366. (c) Lipshutz B. H., Taft B. R., Heck Couplings at Room Temperature in Nanometer Aqueous Micelles, Org. Lett., 2008, 10(7): 1329~1332. (d) Lindhardt A. T., Mantel M. L. H., Skrydstrup T., Palladium-Catalyzed Intermolecular Ene-Yne Coupling: Development of an Atom-Efficient Mizoroki-Heck-Type Reaction, Angew. Chem. Int. Ed. 2008, 47: 2668~2672.
    [107] (a) Kantchev E. A. B., O'Brien C. J., Organ M. G., Palladium Complexes of N-Heterocyclic Carbenes as Catalysts for Cross-Coupling Reactions - A Synthetic Chemist's Perspective , Angew. Chem. Int. Ed. 2008, 46: 2768~2813. (b) Hahn F. E., Heterocyclic Carbenes, Angew. Chem. Int. Ed. 2006, 45: 1348~1352. (c) Herrmann W. A., N-Heterocyclic Carbenes: A New Concept in Organometallic Catalysis, Angew. Chem. Int. Ed. 2002, 41: 1290~1309.
    [108] (a) Inés B., SanMartin R., Churruca F., A Nonsymmetric Pincer-Type Palladium Catalyst In Suzuki, Sonogashira, and Hiyama Couplings in Neat Water, Organometallics, 2008, 27 (12): 2833~2839. (b) Jiang B., Si Y. G., The First Highly Enantioselective Alkynylation of Chloral: A Practical and Efficient Pathway to Chiral Trichloromethyl Propargyl Alcohols, Adv. Synth. Catal, 2004, 346 (6): 669~674. (c) Naghipour A., Sabounchei S. J., Morales-Morales D., eds., Synthesis of a new class of unsymmetrical PCP′pincer ligands and their palladium (II) complexes: X-ray structure determination of PdCl{C6H3-2-CH2PPh2-6-CH2PBut2}, J. Organomet. Chem., 2004, 689(15), 2494~2502.
    [109] Postnova M. V., Koshel S. G., Lebedeva N. V., Synthesis of Cyclohexylphenols, Russian Journal of Organic Chemistry, 2003, 39 (10): 1415~1417.
    [110] Norrisa J. F., Mulliken R. S., The reaction between alcohols and aqueous solutions of hydrochloric and hydrobromic acids, J. Am. Chem. Soc., 1920, 42(10): 2093~2098
    [111]徐永进,孙俊全,单玉华等,中性镍催化剂的研制及其对乙烯聚合反应的催化性能,催化学报,2004, 25(9),735~740
    [112] Sartori G., Bigi F., Maggi R. eds., Acidity effect in the regiochemical control of the alkylation of phenol with alkenes, J. Chem. Soc., Perkin Trans. 1997, 1: 257~260
    [113] James F. McKenna, Frank J. Sowa, Organic Reactions with Boron Fluoride. XIII. The Alkylation of Benzene with Alcohols, J. Am. Chem. Soc., 1937, 59(3), 470~471
    [114] (a) Iovel I., Mertins K., Kischel J., An Efficient and General Iron-Catalyzed Arylation of Benzyl Alcohols and Benzyl Carboxylates, Angew. Chem. Int. Ed. 2005, 44: 3913~3917. (b) Kischel J., Jovel I., Mertins K., A Convenient FeCl3-Catalyzed Hydroarylation of Styrenes, Org. Lett., 2006, 8(1): 19~22.
    [115] BUU-HO? N. P., BIHAN H. L., Condensation of phenols and naphthols with styrene, J. Org. Chem., 1952, 17 (2): 243~248
    [116] Brayton D. F., Larkin T. M., Vicic D. A, eds., Synthesis of a bis(phenoxyketimine) palladium(II) complex and its activity in the Suzuki–Miyaura reaction, Journal of Organometallic Chemistry, 2009, 694(18): 3008~3011
    [117] Kumar. A, Agarwal. M, Singh A. K., Schiff base of 1’-hydroxy-2’-acetonaphthone containing chalcogen functionalities and their complexes with and (p-cymene)Ru(Ⅱ), Pd(Ⅱ), Pt(Ⅱ) and Hg(Ⅱ): synthesis, structures and applications in C-C coupling reactions. J. Organomet. Chem., 2008, 693: 3533~3545.
    [118] Tas. E, Kilic. A, Durgun. M, eds, Mono- and dinuclear Pd(Ⅱ) complexes of different salicylaldimine ligands as catalysts for transfer hydrogenation of nitrobenzene with cyclohexene and Suzuki-Miyaura coupling reactions, J. Organomet. Chem., 2009, 694(3), 446~454.
    [119] Hanhan M. E., Ligand effects in palladium-catalyzed Suzuki and Heck coupling reactions, Applied Organometallic Chemistry, 2008, 22: 270~275

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700