芳基取代烯烃的三重选择性绿色双氧化反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文报道了一种新型的将芳基取代烯烃转化为芳基取代的乙二醇单酯的选择性顺式双氧化方法。该方法采用催化量的水合三氯化钌作为催化剂,30%的双氧水作为氧化剂,具有独特的化学、立体和区域三重选择性。
     本文第一部分报道了此新型芳基取代烯烃的顺式双氧化方法的探索及其优化过程。该方法以0.02当量水合三氯化钌为催化剂、以2当量30%的双氧水,在室温条件下,15分钟内成功地将反式菧氧化得到2-羟基-1,2-二苯基乙酸酯。
     本文第二部分考察了新型催化氧化体系对于含碳碳双键的多种类型的化合物(包括脂肪链烯烃、芳基取代烯烃、吲哚衍生物等)的适用性,大量实验表明,此催化氧化体系,可广泛用于芳基取代烯烃的顺式双氧化反应,对吲哚类衍生物不能实现顺式双氧化,而是通过双氧水和乙酸生成的过氧乙酸对它们进行缓慢的环氧化反应,并最终得到反式双氧化产物,对于脂肪链烯烃没有氧化作用。根据以上实验结果,我们推断此氧化体系可以实现在脂肪链碳碳双键存在的条件下选择性氧化芳基取代双键。
     本文第三部分考察了新型催化氧化体系对同时含有脂肪链双键和芳基取代双键的二烯烃类化合物和芳基取代的共轭二烯烃(或三烯烃)的选择性双氧化能力。实验表明,此催化氧化体系可以在不破坏脂肪链碳碳双键的条件下,将芳基取代双键成功的进行选择性氧化,并且,此反应体系可以实现芳基取代双键的化学、立体和区域三重选择性氧化。芳基取代的共轭多烯烃,则得到端位双键被氧化的产物。
     本论文第四部分根据此催化氧化体系反应速度快的特点,选取了几种芳基取代烯烃测定了它们的TON和TOF数据。同时,根据对实验现象和结果的分析提出了可能的反应机理,并且通过实验验证了机理的合理性。
     总之,本文报道的芳基取代烯烃的选择性顺式双氧化方法,操作简单、反应条件温和、反应速度快、催化剂用量小、氧化剂价廉易得并且绿色环保,为有机化学和药物化学的发展提供了有力的支持。此方法首次实现了芳基取代烯烃的化学、立体、区域三重选择性氧化,可以为某些化工和医药原料或中间体的合成提供新的途径。
A novel, economical and environmentally friendly synthesis of aryl glycol monoesters from aryl olefins using hydrogen peroxide as the final oxidant catalyzed by ruthenium chloride has been reported in this dissertation.
     The heuristic and optimizing process of this new aryl olefin selective oxidation system has been reported in the first part of this dissertation. We performed a set of preliminary experiments on stilbene as a model substrate using 30% hydrogen peroxide in the presence of various catalysts and solvents at room temperature. Finally, an efficient dioxygenation system of aryl olefins with 0.02 eq ruthenium chloride as catalyst and using 2 eq 30% hydrogen peroxide as oxidant was established.
     The applicability of this new catalytic oxidation system has been examined in the second part of this dissertation. Various aryl olefins were converted into the corresponding aryl glycol monoesters with in 15-40 min at room temperature, while this catalytic oxidation system has no effect on alkyl olefins. Indole derivatives were dioxygenated slowly under the oxidation of peracetic acid which was formed from acetic acid and hydrogen peroxide, and gave trans dioxygenation products.
     The chemoselective dioxygenation of aryl carbon-carbon double bonds of this new catalytic oxidation system has been investigated in the third part of this dissertation. Experiments of intramolecular competition showed that the procedure could be successfully used in the selective dioxygenation of aryl carbon-carbon double bonds with no influence on alkyl carbon-carbon double bonds.
     Another outstanding characteristic has been examined in the forth part of this dissertation. We select several substrates and test the TON and TOF of their oxidation under this system. Moreover, a plausible concerted [5+2] cycloaddition mechanism for the selective dioxygenation of aryl olefins is proposed.
     In conclusion, the first chemo-, regio-, and stereoselectivity dioxygenation of aryl olefins reported herein are operationally simple, and with superior economical and environmentally friendly characteristics. It represents new routs for the synthesis of some chemical and pharmaceutical products.
引文
[1]邓建功,邓建英,崔丽娟,紫杉醇治疗恶性肿瘤的研究进展,2009, 6, 25.
    [2]吴标,庄武,黄诚,徐振武,张晶,黄韵坚,多西紫杉醇联合重组人血管内皮抑制素二线治疗晚期非小细胞肺癌,临床肿瘤学杂志,2009, 14 (7), 634-637.
    [3]吴娟,邵叔丽,多西紫杉醇对卵巢癌HO-8910细胞的增殖抑制及诱导凋亡的研究,中国药物与临床,2009, 9 (5) 401-402.
    [4] El-Zayat A. A. E., Ferrigni N. R., McCloud T. G., McKenzie A. T., Byrn S. R., Cassady J. M., Chang C., McLaughlin J. L., Asymmetric synthesis of (+)-altholactone: A styryllactone isolated from various goniothalamus species, Tetrohedron Lett., 1985, 26, 955-956.
    [5]陈立军,于利人,姚丽,靳秋月,哥纳香三醇衍生物抗肿瘤活性研究进展,中草药,2006, 37 (7), 1116-1117.
    [6] Sakurada I., Yamasaki S., Richard et al., Direct Chlorohydrin and Acetoxy Alcohol Synthesis from Olefins Promoted by a Lewis Acid, Bis(trimethylsilyl) Peroxide and (CH3)3SiX, J. Am. Chem. Soc., 2000, 122, 1245-1246.
    [7] Pidun U., Boehme C., Frenking G., Theory rules out a [2+2] addition of osmium tetroxide to olefins as initial step of the dihydroxylation reaction, Angew. Chem., Int. Ed. Engl., 1996, 35, 2817-2820.
    [8] Dapprich S., Ujaque G., Maseras F., Lledo′s A., Musaev D. G., Morokuma K., Theory Does Not Support an Osmaoxetane Intermediate in the Osmium-Catalyzed Dihydroxylation of Olefins, J. Am. Chem. Soc., 1996, 118, 11660-11661.
    [9] Torrent M., Deng L., Duran M., Sola M., Ziegler T., Density .Functional Study of the [2+2]- and [2+3]-Cycloaddition Mechanisms for the Osmium-Catalyzed Dihydroxylation of Olefins, Organometallics, 1997, 16, 13-19.
    [10] Bergstad K., Piet J. J. N., Ba¨ckvall J. E., In Situ Generation of NMO in the Osmium-Catalyzed Dihydroxylation of Olefins. Stereoselective Oxidation of Olefins to Cis Diols by m-CPBA, J. Org. Chem., 1999, 64, 2545-2548.
    [11] Jonsson S. Y., Adolfsson H, Backvall J E., Osmium-catalyzed asymmetric dihydroxylation of olefins by H2O2 using a biomimetic flavin-based coupled catalytic system, J. Am. Chem. Soc., 2001, 123, 1365-1371.
    [12] Bharathi B., Ranjan M., Richardson D. E., Osmium-catalyzed asymmetric dihydroxylation by carbon dioxide-activated hydrogen peroxide and N-methylmorpholine, Tetrahedron Lett., 2008, 49, 1071-1075.
    [13] Dobler C., Mehltretter G M., Sundermier U., et al., Dihydroxylation of olefins using air as the terminal oxidant, J. Organometallic Chem., 2001, 621, 70-76.
    [14] Severeyns A., De Vos D. E., Fiermans L., Verpoort F., Grobet P. J., Jacobs P. A., A Heterogeneous cis- Dihydroxylation Catalyst with Stable Site-Isolated Osmium-Diolate Reaction Centers, Angew. Chem. Int. Ed., 2001, 40, 586-589.
    [15] Choudary B. M., Jyothi K., Roy M., Kantam M. L., Sreedhar B., Bifunctional catalysts stabilized on nanocrystalline magnesium oxide for one-pot synthesis of chiral diols, Adv. Synth. Catal., 2004, 346, 1471-1480.
    [16] Yang J. W., Han H., Roh E. J., Lee S., Song C. E., Osmium Tetroxide Anchored to Porous Resins Bearing Residual Vinyl Groups: A Highly Active and Recyclable Solid for Asymmetric Dihydroxylation of Olefins, Org. Lett., 2002, 4, 4685-4688.
    [17] Tang W. J., Yang N. F., Yi B., Deng G. J., Huang Y. Y., Fan Q. H., Phase selective soluble dendrimer- bound osmium complex: a highly effective and easily recyclable catalyst for olefin dihydroxylation, Chem. Commun., 2004, 1378-1379.
    [18] Choudary B. M., Chowdari N. S., Kantam M. L., Raghavan K. V., Catalytic Asymmetric Dihydroxylation of Olefins with New Catalysts: The First Example of Heterogenization of OsO42- by lon-Exchange Technique, J. Am. Chem. Soc. 2001., 123, 9220-9221.
    [19] Kobayashi S., Endo M., Nagayama S., Catalytic Asymmetric Dihydroxylation of Olefins Using a Recoverable and Reusable Polymer-Supported Osmium Catalyst, J. Am. Chem. Soc., 1999, 121, 11229-11230.
    [20] Ley S. V., Ramarao C., Lee A. L., Ostergard N., Smith S. C., Shirley I. M., Microencapsulation of Osmium Tetroxide in Polyurea, Org. Lett., 2003, 5, 185-187.
    [21] Yao Q., OsO4 in Ionic Liquid [Bmim]PF6: A Recyclable and Reusable Catalyst System for Olefin Dihydroxylation Remarkable Effect of DMAP, Org. Lett., 2002, 4 (13), 2197-2199.
    [22] Shing T., Tam E., Slovent Effect on Ruthenium Catalyzed Dihydroxylation, Tetrahedron Lett., 1999, 40, 2179-2180.
    [23] Ho C. M., Yu W. Y., Che C. M., Ruthenium Nanoparticles Supported on Hydroxyapatite as an Efficient and Recyclable Catalyst for cis-Dihydroxylation and Oxidative Cleavage of Alkenes, Angew. Chem. Int. Ed., 2004, 43, 3303 -3307.
    [24] Emmanuvel L., Shaikh T., Sudalai A., NaIO4/LiBr-mediated Diastereoselective Dihydroxylation of Olefins: A Catalytic Approach to the Prevost-Woodward Reaction, Org. Lett., 2005, 7 (22), 5071-5074.
    [25] Wassman S., Wilken J .M ., Synthesis and application of C2-symmetrical bi s-β-amino alcohols based on the octahydro- cyclopenta[b]pyrrole system in the catal ytic enantioselective addition of diethylzinc to benzaldehyde, Tetrahedron Asymmetry, 1999,10 (22), 4437-4445.
    [26] Oishi T., Hirama M., Synthesis of chiral 2,3-disubstituted 1,4-diazabicyclo [2.2.2] octane. New ligand for the osmium-catalyzed asymmetric dihydroxylation of olefins, Terahedron Lett., 1992, 33, 639.
    [27] Hanessian S., Meffre P., Girard M., Beaudoin S., et al., Asymmetric dihydroxylation of olefins with a simple chiral ligand, J. Org. Chem., 1993, 58, 1991.
    [28] Crispino G. A., Makita A., Wang Z., M., et a1., A comparison of ligands proposed for the asymmetric dihydroxylation, Tetrahedron. Lett., 1994, 35, 543.
    [29] Sharpleas K. B., Amberg W., Bennani Y.L., et a1., The osmium-catalyzed asymmetric dihydroxylation: a new ligand class and a process improvement, J. Org. Chem., 1992, 57 (10), 2768-2771.
    [30] Wang Z. M., Zhang X. L., Sharpless K. B., Asymmetric dihydroxylation of aryl allyl ethers, Tetrahedron. Lett., 1993, 34, 2267-2270.
    [31] Sharpless K. B., Ambcrg W., Bcnnani Y. L., et a1., The osmium-catalyzed asymmetric dihydroxylation: a new ligand class and a process improvement, J. Org. Chem., 1992, 57, 2768-2771.
    [32]张生勇,孙晓莉,邻位取代1,2-二苯乙烯催化不对称二羟基化反应,应用化学, 1996, 13, 70.
    [33] Byun, H. S., Kumar E. R., Bittman R. J., Enantioselective Syntheses of 1-O-Benzyl-sn-glycerol and 1-O-Hexadecyl-2-O-methyl-sn-glycerol via Asymmetric Dihydroxylation of Allyl 4-Methoxyphenyl Ether. Use of AD-Mix Supplemented with Potassium Persulfate, J. Org. Chem., 1994, 59, 2630.
    [34] Bennani Y. L., Sharpless K. B., Asymmetric dihydroxylation (AD) of N, N-dialkyl and N-methoxy-N-methylα,β- andβ,γ-unsaturated amides. Tetrahedron Lett., 1993, 34, 2079.
    [35] Choudary. B. M., Chowdari N. S., Jyothi K., Kantam. M. L., Catalytic Asymmetric Dihydroxylation of Olefins with Reusable OsO42- on Ion-Exchangers: The Scope and Reactivity Using Various Cooxidants, J. Am. Chem. Soc., 2002, 124, 5341-5349.
    [36] Reddy. S. M., Srinivasulu. M., Reddy Y. V., Narasimhulu. M., Venkateswarlu Y., Catalytic asymmetric dihydroxylation of olefins using polysulfone-based novel microencapsulated osmium tetroxide, Tetrahedron Lett., 2006, 47, 5285-5288.
    [37] Tombo G., Schar H., Fernandez X., et al., Synthesis of Both Enantiomeric forms of 2-Substituted 1, 3-Propanediol Monoacetates Starting from a Common Prochiral Precursor, Using Enzymatic Transformations in Aquous and in Organic Media, Tetrahedron Lett., 1986, 27 (47), 5707-5710.
    [38] Ishihara K., Kurihara H., Yamamoto H., An Extremely Simple, Convenient, and Selective Method for Acetylating Primary Alcohols in the Presence of SecondaryAlcohols, J. Org. Chem. 1993, 58, 3791-3793.
    [39] Bouzide A., Sauve G., Highly Selective Silver(I) Oxide Mediated Monoprotection of Symmetrical Diols, Tetrahedron Lett., 1997, 38, 5945-5948.
    [40] Donnell C., Burke S. D., Selective Mesylation of Vicinal Diols: A Systematic Case Study, J. Org. Chem., 1998, 63, 8614-8616.
    [41] Clarke P. A., Kayaleh N. E., Smith M. A., A One-Step Procedure for the Monoacylation of Symmetrical 1, 2-Diols, J. Org. Chem., 2002, 67, 5226-5231.
    [42] Clarke P. A., Selective mono-acylation of meso- and C2-symmetric 1, 3- and 1, 4-diols, Tetrahedron Lett., 2002, 43, 4761-4763.
    [43] Sharghi H., Sarvari M. H., Highly Selective Methodology for the Direct Conversion of Aromatic Aldehydes to Glycol Monoesters, J. Org. Chem., 2003, 68, 4096-4099.
    [44] Shanzer A., Metalloid derivatives for synthesis: Monoderivatization of symmetric diols, Tetrahedron Lett., 1980, 21, 221-222.
    [45] Martinelli M. J., Vaidyanathan R., Pawlak J. M., Catalytic Regioselective Sulfonylation ofα-Chelatable Alcohols: Scope and Mechanistic Insight, J. Am. Chem. Soc., 2002, 124, 3578-3585.
    [46] Herrado′n B., Morcuende A., Valverde S., Microwave Accelerated Organic Transformations: Dibutylstannylene Acetal Mediated Selective Acylation of Polyols and Amino Alcohols using Catalytic Amounts of Dibutyltin Oxide. Influence of the Solvent and the Power Output on the Selectivity, Synlett., 1995, 455-458.
    [47] Iwasaki F., Maki T., Onomura O., et al., Chemo- and Stereoselective Monobenzoylation of 1, 2-Diols Catalyzed by Organotin Compounds, J. Org. Chem., 2000, 65, 996-1002.
    [48] Oriyama T., Imai K., Sano T., Hosoya T., Highly Efficient Catalytic Asymmetric Acylation of meso-1, 2-Diols with Benzoyl Chloride in the Presence of a Chiral Diamine Combined with Et3N, Tetrahedron Lett., 1998, 39, 3529-3532.
    [49] Oriyama T., Taguchi H., Terakado D., Sano T., Highly Efficient and Enantioselective Method for the Synthesis of Chiral Building Blocks Derived from meso-1, 3-Propanediols, Chem. Lett., 2002, 1, 26.
    [50] Trost B. M., Mino T., Desymmetrization of Meso 1, 3- and 1, 4-Diols with a Dinuclear Zinc Asymmetric Catalyst, J. Am. Chem. Soc., 2003, 125, 2410-2411.
    [51] Bouzide A., Sauve G., Silver(I) Oxide Mediated Highly Selective Monotosylation of Symmetrical Diols Application to the Synthesis of Polysubstituted Cyclic Ethers, Org. Lett., 2002, 4, 2329-2332.
    [52] Cristea I., Kozma E., Batiu C., Stereoselective trans-dihydroxylation of terpinen-4-ol synthesis of some stereoisomers of p-menthane-l, 2, 4-triol.Tetrahedron: Asymmetry, 2002, 13, 915-918.
    [53] Sarma K., et al., A rapid 1, 2-dihydroxylation of alkenes using a lipase and hydrogen peroxide under microwave conditions, Tetrahedron Lett., 2007, 48, 6776-6778.
    [54] Venturello C., Aloisio R., Quaternary ammonittm tetrakis(diperoxotungsto) phosphates(3-) as a new class of catalysts for effective alkene epoxidation with hydrogen peroxide., J. Org. Chem., 1988, 53, 1553-1557.
    [55] Ishii Y., Yamawaki K., Yoshida T., Ogawa M., Hydrogen peroxide oxidation catalyzed by heteropoly acids combined with cetylpyridinium chloride. Epoxidation of olefins and allylic alcohols, ketonization of alcohols and diols, and oxidative cleavage of 1, 2-diols and olefins, J. Org. Chem., 1988, 53, 3587-3593.
    [56] Neumann R., Juwiler D., Oxidations with Hydrogen Peroxide Catalysed by the [WZnMn(II)2(ZnW9O34)2]12- Polyoxometalate, Tetrahedron, 1996, 52, 26, 8781-8788.
    [57] Xi Z. W., Zhou N., Sun Y., Li K. L., Reaction-controlled phaseqransfer catalysis for propylene epoxidation to propylene oxide., Science, 2001, 292, l139-1141.
    [58] Yadav G. D., Vujari A., Epoxidation of Styrene to Styrene Oxide: Synergism of Hetero Acid and Phase-Transfer Catalyst under lshii-Venturello Mechanism. Organic Process Research &Development, 2000, 4, 89-93.
    [59] Klawonn M., Tse M. K., Bhor S., D?bler C., Beller M., A convenient ruthenium-catalyzed alkene epoxidation with hydrogen peroxide as oxidant, J. Mol. Catal. A: Chem., 2004, 218, 13-19.
    [60] Antonelli E., D’Aloisio R., Gambaro M., Venturello C., Efficient oxidative cleavage of olefins to carboxylic acids with hydrogen peroxide catalyzed by methyloctylammonium tetrakis(oxoperoxotungsto)phosphate(3-) under two-phase conditions. Synthetic aspects and investigation of the reaction coarse, J. Org. Chem., 1998, 63, 7190-7206.
    [61] Sato K., Aoki M., Noyori R., A "Green" Route to Adipic Acid: Direct Oxidation of Cyclohexenes with 30 Percent Hydrogen Peroxide, Science, 1998, 28, 1646-1647.
    [62]马祖福,邓友全,王坤,陈静,化学通报,2001, 64, l16.
    [63]蒋安仁,邓景发,许新华,陈海鹰,严彬,过氧化氢一步氧化法从环戊烯制取戊二醛, C. N. Patent 89109401.6, 1993.
    [64]戴维林,俞宏坤,邓景发,蒋安仁,化学学报,1995, 53, 188.
    [65] Choi S., Yang J. D., Ji M., Choi H., Kee M., et al., Selective Oxidation of Allylic Sulfides by Hydrogen Peroxide with the Trirutile-type Solid Oxide Catalyst LiNbMoO6, J. Org. Chem., 2001, 66, 8192-8198.
    [66] Bahrami K., Selective oxidation of sulfides to sulfoxides and sulfones usinghydrogen peroxide (H2O2) in the presence of zirconium tetrachloride, Tetrahedron Lett., 2006, 47, 2009-2012.
    [67] Raju B. R., Sarkar S., Reddy U. C., Saikia A. K., Cerium (IV) triflate-catalyzed selective oxidation of sulfides to sulfoxides with aqueous hydrogen peroxide, J. Mol. Catal. A: Chem., 2009, 308, 169-173.
    [68] Noguchi T., Hiraia Y., Kirihara M., Highly selective 30% hydrogen peroxide oxidation of sulfides to sulfoxides using micromixing, Chem. Commun., 2008, 3040-3042.
    [69] Tomioka H., Takai K., Oshima K., Nozaki H., Selective oxidation of a primary hydroxyl in the presence of secondary one, Tetrahedron Lett.,1981, 22, 1605-1608.
    [70] Yamamoto H., Tsuda M., Sakaguchi S., Ishii Y., Selective Oxidation of Vinyl Ethers and Silyl Enol Ethers with Hydrogen Peroxide Catalyzed by Peroxotungstophosphate, J. Org. Chem., 1997, 62, 7174-7177.
    [71] Zhang S., Zhao G., Gao S., et al., Secondary alcohols oxidation with hydrogen peroxide catalyzed by [n-C16H33N(CH3)3]3PW12O40: Transform-and-retransform process between catalytic precursor and catalytic activity species, Journal of Molecular Catalysis A: Chemical, 2008, 289, 22-27.
    [72] Sato K., Hyodo M., Takagi J., Aoki M., Noyori R., Hydrogen peroxide oxidation of aldehydes to carboxylic acids: an organic solvent-, halide- and metal-free procedure, Tetrahedron Lett., 2000, 41, 1439-1442.
    [73] Hamid R. Mardani, Golchoubian H., Effective oxidation of benzylic and aliphatic alcohols with hydrogen peroxide catalyzed by a manganese(III) Schiff-base complex under solvent-free conditions, Tetrahedron Lett., 2006, 47, 2349-2352.
    [74] Shi M., Feng Y. S., Oxidation of benzyl chlorides and bromides to benzoic acids with 30%hydrogen peroxide in the presence of Na2WO4, Na2VO4, Na2MoO4 under organic solvent free conditions, J. Org. Chem., 2001, 66, 3235-3237.
    [75] Paulo C., Massimo C., Mafia Carla M., Oxone prometed Nefreaction: simple conversion of nitro group into carbonyl, Synth Commun., 1998, 28, 3057-3064.
    [76] Velusamy S., Punniyamurthy T., Copper(II)-catalyzed C-H oxidation of alkylbenzenes and cyclohexane with hydrogen peroxide, Tetrahedron Lett., 2003, 44, 8955-8957.
    [77] Ballistreri F. P., Failla S., Tomaselli A. G., Oxidation of acetylene to glyoxal by dilute hydrogenperoxide, Tetrahedron, 1992, 48, 9999-1002.
    [78] Volodarsky L., Kosover V., Synthesis of acetonine nitroxide radical and 1-hydroxy-2, 2, 4, 6, 6-pentamethyl-1, 2, 5, 6-tetrahydropyrimidine pergamon. Tetrahedron Lett., 2004, 1, 179-181.
    [79] Yuri I. Binev, Miglena K. Georgieva, Lalka I., Daskalova Spectrochemical, ab initio and density functional studies on the conversion of 2-hydroxybenzonitrile (o-cyanophenol) into the oxyanion., J. Chem. Soc., Perkin Trans. 2, 1996, 12, 2601-2610.
    [80] Dussault P. H., Anderson T. A., Hayden M. R., Koeller K. J., Niu Q. J., Tetrahedron, Auxiliary-Directed Peroxidation of 1, 4-Dienes, 1996, 52, 12381-12398.
    [81] Uff B. C., Burford D. L. W., Ho Y. P., Reissert compound formation by use of solid-liquid phase-transfer catalysis, J. Chem. Res., Synop, 1989, 12, 386-387.
    [82] Babiak J., Elokdah H. M., Miller C. P., Sulkowski, Preparation of 2-substituted-1-acyl-1, 2-dihydroquinolines with high-density lipoprotein cholesterol-elevating and antiatherosclerotic properties, US patent 5939435, 1999.
    [83] Tyman, John H. P.; Mehet S. K., The separation and synthesis of lipidic 1, 2- and 1, 3-diols from natural phenolic lipids for the complexation and recovery of boron, Chem. Phys. Lipids, 2003, 126 (2), 177-199.
    [84] Arnold D. R., Mines S. A., Radical ions in photochemistry. 21. The photosensitized (electron-transfer) tautomerization of alkenes; the phenylalkene system, Can. J. Chem., 1989, 67 (4), 689-698.
    [85] Higuchi K., Sato Y., Tsuchimochi M., Sugiura K., Hatori M., Kawasaki T., First Total Synthesis of Hinckdentine A., Chem. Pharm. Bull., 1987, 35 (4), 1339-1346.
    [86] Raptis R. G., Staples R. J., King C., Fackler Jnr J. P., Structure of [3,5-(C6H5)2C3H2N2]4. A 3, 5-diphenylpyrazole tetramer linked by hydrogen bonds, J. Chem. Soc., Perkin Trans. 1: Organic and Bio-Organic Chemistry (1972-1999), 1984, 6, 1241-1246.
    [87] Mahboobi S., Uecker A., Sellmer A., Ce′nac C., Novel Bis(1H-indol-2-yl)methanones as Potent Inhibitors of FLT3 and Platelet-Derived Growth Factor Receptor Tyrosine Kinase, J. Med. Chem. 2006, 49, 3101-3115.
    [88] Li Y., Song D., Dong V. M., Palladium-Catalyzed Olefin Dioxygenation, J. Am. Chem. Soc., 2008, 130, 2962-2964.
    [89] Maki T., Murakami S., Onomura O., Copper Ion-induced Activation and Asymmetric benzoylation of 1, 2-Diols: Kinetic Chiral Molecular Recognition, J. Am. Chem. Soc., 2003, 125 (8), 2052-2053.
    [90] Naimi-Jamal M. R., Mokhtari J., Dekamin M. G., Fast and efficient method for quantitative reduction of carbonyl compounds by NaBH4 under solvent-free conditions. Proceedings of the International Electronic Conference on Synthetic Organic Chemistry, 2007, 11, 1-30.
    [91] Bolitt V., Mioskowski C., Shin D. S., Falck, Triphenylphosphine hydrobromide: a mild and efficient catalyst for tetrahydropyranylation of tertiary alcohols,Tetrahedron Lett., 1988, 29 (36), 4583-4586.
    [92] Kiuchi F., Nakmura N., Saitoh M., Synthesis and Nematocidal activity of aralkyl- and aralkenylamides related to piperamide on second-stage larvae of toxocara canis, Chem. Pharm. Bull., 1997, 45 (4), 685-696.
    [93] Milbank, J. B., Tercel M., Atwell G. J., Wilson W. R., Hogg A., Denny W. A., Synthesis of 1-substitutued 3-(chloromethyl)-6-aminoindoline (6-amino-seco-CI) DNA minor groove alkylating agents and structure-activity relationships for their cytotoxicity, J. Med. Chem., 1999, 42, 649-658.
    [94] Myles A. J., Zhang Z., Liu G., Branda N. R., Novel Synthesis of Photochromic Polymers via ROMP, Org. Lett., 2000, 2 (18), 2749-2751.
    [95] Shizunobu H., Isao F., A novel synthesis of phenyl carboxylates, Bull. Chem. Soc. Jpn., 1981, 54, 2227-2228.
    [96] Brewster J. H., Ciotti Jr. C. J., Dehydrations with Aromatic Sulfonyl Halides in Pyridine. A Convenient Method for the Preparation of Esters, J. Am. Chem. Soc., 1955, 77, 6214-6215.
    [97] Goldstein S. W., Dambek P. J., 2-Substituted 1, 2, 3, 4-tetrahydroquinolines from quinoline, Synthesis, 1989, 3, 221-222.
    [98] Mucsi Z., Chass G. A., Csizmadia I. G., Amidicity Change as a Significant Driving Force and Thermodynamic Selection Rule of Transamidation Reactions. A Synergy between Experiment and Theory, J. Phys. Chem. B, 2008, 112 (26), 7885-7893.
    [99] Coqueret X., Wargnier F. B., Chuche J., Allylzinc Reagent Additions in Aqueous Media, J. Org. Chem., 1985, 50, 910-912.
    [100] Minabe M., Yamazaki A., Imai T., Takanezawa T., Karikomi M., Formation of 2, 2'-diacyl-9, 9'-bifluorenylidene isomers from 2-acyl-9-bromofluorene and base-catalyzed isomerization of the formed alkenes, Bull. Chem. Soc. Jpn., 2006, 79, 1758-1765.
    [101] Curry M. J., Stevens I. D. R., Preparation and stereochemistry of some 1, 1-disubstituted buta-1, 3-dienes, J. Chem. Soc., Perkin Trans. 1: Organic and Bio-Organic Chemistry (1972-1999), 1980, 8, 1756-1760.
    [102] Kolb H. C., VanNiewenhze M. S., Sharpless K. B., Catalytic Asymmetric Dihydroxylation, Chem. Rev. 1994, 94, 2483-2547.
    [103] Woodward R. B., Brutcher F. V., cis-Hydroxylation of a Synthetic Steroid Intermediate with Iodine, Silver Acetate and Wet Acetic Acid, J. Am. Chem. Soc., 1958, 80, 209-210.
    [104] Barry S. M., Rutledge P. J., cis-Dihydroxylation of Alkenes by a Non-Heme Iron Enzyme Mimic, Synlett., 2008, 14, 2172-2174.
    [105] Iida H., Tanaka M., Kibayashi C., Synthesis of (±)-Lasubhe I andⅡand(±)-Subcosine ibid., 1984, 49, 1909-1912.
    [106] Magiatis P., Mitaku S., Skaltsounis A. L., Tillequin F., Koch M., Pierre A., Atassi G., Synthesis and cytotoxic activity of 1-alkoxy- and 1-amino-2-hydroxy-1,2-dihydroacronycine derivatives, Chemical & Pharmaceutical Bulletin , 1999, 47(5), 611-614.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700