大孔结构催化剂的制备及其用于H_2中CO优先氧化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
CO优先氧化(CO-PROX)是将用于燃料电池的富氢气体中少量CO脱除至规定要求范围内的重要手段,CO扩散限制是影响CO不能被降至规定ppm级的关键原因。同时作为燃料电池氢源系统的重要组成部分,小型化反应器的开发是核心技术。针对这两个问题,采用有机模板法制备三维有序大孔(3DOM)催化剂和大孔整体式催化剂,通过适当调节催化剂的孔道结构使CO易于扩散和传递,同时采用有机泡沫模板法制备的大孔整体式催化剂具有整体式结构和更高的比表面积/体积比,缩小反应器体积,实现小型化。主要结果如下:
     以聚苯乙烯(PS)胶晶为模板,采用柠檬酸法制得3DOM CuO-CeO_2催化剂,并将其与破碎大孔结构的催化剂及常规颗粒催化剂在不同空速下进行CO-PROX反应性能测试,发现3DOM CuO-CeO_2催化剂在160,000 mL.gcat~(-1).h~(-1)的高空速下仍能在150~175℃范围内完全转化CO,而破碎大孔结构的催化剂和常规颗粒催化剂在80,000 mL.gcat~(-1).h~(-1)的空速下已不能完全转化CO。这是由于规整排列的连通大孔有利于消除CO扩散限制,提高CO转化率。
     首次采用向大孔整体式PS泡沫模板中填充水溶胶的方法制备大孔整体式SiO_2和Al_2O_3,该方法制得的大孔整体式除具有有机模板法形状大小和孔道尺寸可调的优点外,还具有溶胶廉价易得、孔隙率高、体积收缩小、孔道相互连通等优点,适用于催化剂载体。前驱物种类、水溶胶浓度、填充次数、添加介孔模板剂、焙烧温度等制备条件均对大孔整体式氧化物的结构有影响,其中以焙烧温度对大孔整体式Al_2O_3的孔结构、晶体结构和机械强度的影响最为显著。
     在上述大孔整体式Al_2O_3上分别负载CuO-CeO_2和Pt催化剂,考察负载方法和载体制备条件对大孔整体式催化剂结构和性能的影响。在CuO-CeO_2/-Al_2O_3催化剂上,活性组分CuO-CeO_2的负载量对其催化活性有较大影响,负载量较高的催化剂对应的催化活性也较高。在Pt-Ni/-Al_2O_3催化剂上,以Pt(NH3)2(NO_2)2和Ni(NO_3)2.6H_2O为原料,在pH = 7时共同浸渍制得的催化剂具有最佳CO-PROX反应活性。在1vol.% CO、1vol.% O_2、50vol.% H_2、12.5vol.% CO_2、15vol.% H_2O,N_2平衡的反应气氛中,体积空速为20,000 h-1时,能够在160℃将CO含量降低至40 ppm,具有实际应用前景。相比蜂窝整体式催化剂和微反应器,缩小了催化剂的体积,可实现小型化。
Preferential oxidation of CO (CO-PROX) is the most promising way for removing CO from H_2-rich gases in fuel cells. It is difficult to reduce the CO content to below the required ppm level due to the diffusive limitation of CO in its oxidation reaction. Furthermore, for CO-PROX, an important part of fuel cell oriented hydrogen production from hydrocarbons, miniaturization is another key challenge. For these two crucial issues, three-dimensionally ordered macroporous (3DOM) catalysts and macroporous monolithic catalysts were prepared via templating method in this work. Properly adjusting the porous structure of the catalysts is favor of CO diffusion and mass transfer. At the same time, the macroporous monolith supports possess monolithic shape and high specific surface area to volume ratio, which are beneficial to compacting reactor volume. Therefore, it is a potential alternative for the miniaturization. The main experimental results and conclusions are as follows:
     3DOM CuO-CeO_2 catalysts were prepared by using polystyrene (PS) colloidal crystal as the template, nitrate as the precursor and citric acid as the chelator. For CO-PROX reaction, at a higher space velocity of 160,000 mL.gcat~(-1).h~(-1), complete CO conversion has been obtained between 150 oC and 175 oC. As the macropores of 3DOM are destroyed, complete CO conversion cannot be obtained even at a lower space velocity of 80,000 mL.gcat~(-1).h~(-1), and likewise over particulate CuO-CeO_2 catalysts. It is proposed that the ordered macropores in the 3DOM catalyst favor mass transfer of CO, resulting in the excellent catalytic performance.
     Macroporous silica and alumina monoliths have been prepared for the first time by filling polystyrene foam templates with the corresponding hydrosols. The macroscopic shape and macroporous size of the monoliths can be adjusted by the moldable polymer template. Besides, the obtaining macroporous monoliths have the advantages such as cheap and facile raw materials, high porosity, small volume shrinkage and inter-connected macropores, which make them very suitable for using as catalyst supports. The effects of the precursor and the filling times of the alumina hydrosols, the mesopore surfactant addition in the hydrosols and the calcination temperature on the properties of the alumina monolith have been investigated. The characterization results show that the calcination temperature has the most remarkable influence to the porous structure, crystalline phase and compressive strength of the alumina monoliths.
     CuO-CeO_2 catalysts and Pt-based catalysts were loaded on the macroporous alumina monoliths mentioned above. The influences of the preparation methods and conditions to the catalytic performance were investigated. For macroporous CuO-CeO_2/α-Al_2O_3 monolithic catalysts, the loading amount of the CuO-CeO_2 active component is very important. The monolithic catalysts with higher loading amounts give better catalytic performance for CO-PROX reaction. Among the macroporous Pt-Ni/α-Al_2O_3 monolithic catalysts, excellent performance was observed over the sample prepared via co-impregnating of Pt(NH_3)_2(NO_2)2 and Ni(NO_3)2.6H_2O under pH = 7. At 160 oC and a space velocity of 20,000 h-1, the exit CO content could be reduced to 40 ppm under the reactant feed gas of 1vol.% CO, 1vol.% O_2, 50vol.% H_2,12.5vol.% CO_2, 15vol.% H_2O in N2. Compared to honeycomb monolith and micro-channel catalytic reactor, the volume of the macroporous monolith should be much smaller, indicating that macroporous monolithic catalyst is a potential alternative for CO-PROX compact reactor.
引文
[1] Brinker C J, Porous inorganic materials, Current Opinion in Solid State and Materials Science, 1996, 1(6): 798~805
    [2] Stein A, Schroden R C, Colloidal crystal templating of three-dimensionally ordered macroporous solids: materials for photonics and beyond, Current Opinion in Solid State and Materials Science, 2001, 5(6): 553~564
    [3] Maekawa H, Esquena J, Bishop S, et al., Meso/macroporous inorganic oxide monoliths from polymer foams, Advanced Materials, 2003, 15(7-8): 591~596
    [4] Guliants V V, Carreon M A, Lin Y S, Ordered mesoporous and macroporous inorganic films and membranes, Journal of Membrane Science, 2004, 235(1-2): 53~72
    [5] Taguchi A, Schüth F, Ordered mesoporous materials in catalysis, Microporous and Mesoporous Materials, 2005, 77(1): 1~45
    [6] Lu A-H, Schüth F, Nanocasting: A versatile strategy for creating nanostructured porous materials, Advanced Materials, 2006, 18(14): 1793~1805
    [7] Vantomme A, Léonard A, Yuan Z-Y, et al., Self-formation of hierarchical micro-meso-macroporous structures: Generation of the new concept "Hierarchical Catalysis", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 300(1-2): 70~78
    [8] Tan Q, Bao X, Song T, et al., Synthesis, characterization, and catalytic properties of hydrothermally stable macro-meso-micro-porous composite materials synthesized via in situ assembly of preformed zeolite Y nanoclusters on kaolin, Journal of Catalysis, 2007, 251(1): 69~79
    [9] Lefebvre L-P, Banhart J, Dunand D C, Porous metals and metallic foams: current status and recent developments, Advanced Engineering Materials, 2008, 10(9): 775~787
    [10] Everett D H. Definitions, terminology and symbols in colloid and surface chemistry: part I. IUPAC manual of symbols and terminology for physiochemical quantities and units: Appendix II. London: Butterworths 1972: 578~638.
    [11] Yuan Z-Y, Su B-L, Insights into hierarchically meso-macroporous structured materials, Journal of Materials Chemistry, 2006, 16(7): 663~677
    [12] Davis M E, Lobo R F, Zeolite and molecular sieve synthesis, Chemistry of Materials, 1992, 4(4): 756~768
    [13] Barrer R M, Denny P J, Hydrothermal chemistry of the silicates. Part IX. Nitrogenous aluminosilicates, Journal of Chemistry Society, 1961: 971~982
    [14] Lewis D W, Chapter 8-Template-host interaction and template design, Computer Modelling of Microporous Materials, 2004: 243~265
    [15] Kresge C T, Leonowicz M E, Roth W J, et al., Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism, Nature, 1992, 359: 710~712
    [16] Zhao D, Feng J, Huo Q, et al., Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores Science, 1998, 279: 548~552
    [17] Velev O D, Jede T A, Lobo R F, et al., Porous silica via colloidal crystallization, Nature, 1997, 389: 447~448
    [18] Imhof A, Pine D J, Ordered macroporous materials by emulsion templating, Nature, 1997, 389: 948~951
    [19] Velev O D, Jede T A, Lobo R F, et al., Microstructured porous silica obtained via colloidal crystal templates, Chemistry of Materials, 1998, 10(11): 3597~3602
    [20] Holland B T, Blanford C F, Do T, et al., Synthesis of highly ordered, three-dimensional, macroporous structures of amorphous or crystalline inorganic oxides, phosphates, and hybrid composites, Chemistry of Materials, 1999, 11(4): 795~805
    [21] Yan H, Blanford C F, Holland B T, et al., A chemical synthesis of periodic macroporous NiO and metallic Ni, Advanced Materials, 1999, 11(12): 1003~1006
    [22] Braun P V, Wiltzius P, Electrochemically grown photonic crystals, Nature, 1999, 402: 603~604
    [23] Velev O D, Tessier P M, Lenhoff A M, et al., A class of porous metallic nanostructures, Nature, 1999, 401: 548
    [24] Gundiah G, Rao C N R, Macroporous oxide materials with three-dimensionally interconnected pores, Solid State Sciences, 2000, 2(8): 877~882
    [25] Míguez H, Chomski E, García-Santamaría F, et al., Photonic bandgap engineering in germanium inverse opals by chemical vapor deposition, Advanced Materials, 2001, 13(21): 1634~1637
    [26] Wu Q Z, Shen Y, Liao J F, et al., Synthesis and characterization of three-dimensionally ordered macroporous rare earth oxides, Materials Letters, 2004, 58(21): 2688~2691
    [27] Bing Z, Yuan Y, Wang Y, et al., Electrochemical characterization of a threedimensionally ordered macroporous anatase TiO2 electrode, Electrochemical and Solid-State Letters, 2006, 9(3): A101~A104
    [28] Li F, Wang Z, Ergang N S, et al., Controlling the shape and alignment of mesopores by confinement in colloidal crystals: designer pathways to silica monoliths with hierarchical porosity, Langmuir, 2007, 23(7): 3996~4004
    [29] Stein A, Sphere templating methods for periodic porous solids, Microporous and Mesoporous Materials, 2001, 44-45: 227~239
    [30] St?ber W, Fink A, Bohn E, Controlled growth of monodisperse silica spheres in the micron size range, Journal of Colloid and Interface Science, 1968, 26: 62~69
    [31] Goodwin J W, Hearn J, Ho C C, et al., Studies on the preparation and characterisation of monodisperse polystyrene latices, Colloid and Polymer Science, 1974, 252(6): 464~471
    [32] Xia Y, Gates B, Yin Y, et al., Monodispersed colloidal spheres: old materials with new application, Advanced Materials, 2000, 12(10): 693~713
    [33] Davis K E, Russel W B, Glantschnig W J, Disorder-to-order transition in settling suspensions of colloidal silica: X-ray measurements, Science, 1989, 245: 507~510
    [34] Zhou Z, Zhao X S, Flow-controlled vertical deposition method for the fabrication of photonic crystals, Langmuir, 2004, 20(4): 1524~1526
    [35]王晓冬,董鹏,仪桂云,制备高质量聚苯乙烯微球胶粒晶体的蒸发自组装法,物理学报, 2006, 55(4): 2092~2098
    [36] Rogach A L, Kotov N A, Kpktysh D S, et al., Electrophoretic deposition of latex-based 3D colloidal photonic crystals: A technique for rapid production of high-quality opals, Chemistry of Materials, 2000, 12(9): 2721~2726
    [37] Park S H, Qin D, Xia Y, Crystallization of mesoscale particles over large areas, Advanced Materials, 1998, 10(13): 1028~1032
    [38] Woodcock L V, Entropy difference between the face-centred cubic and hexagonal close-packed crystal structures, Nature, 1997, 385: 141~143
    [39] Vlasov Y A, Bo X Z, Sturm J C, et al., On-chip natural assembly of silicon photonic bandgapcrystals, Nature, 2001, 414: 289~293
    [40] Yan H, Blanford C F, Holland B T, et al., General synthesis of periodic macroporous solids by templated salt precipitation and chemical conversion, Chemistry of Materials, 2000, 12(4): 1134~1141
    [41] Davidoff J, Davies I, Roberson D, Electrochemical deposition of macroporous platinum, palladium and cobalt films using polystyrene latex sphere templates, Chemical Communications, 2000, (17): 1671~1672
    [42] Xu L, Zhou W, Frommen C, et al., Electrodeposited nickel and gold nanoscalemetal meshes with potentially interesting photonic properties, Chemical Communications, 2000, (12): 997~998
    [43] Bertone J F, Jiang P, Hwang K S, et al., Thickness dependence of the optical properties of ordered silica-air and air-polymer photonic crystals, Physical Review Letter, 1999, 83(2): 300~303
    [44] Subramanian G, Manoharan V N, Thorne J D, Ordered macroporous materials by colloidal assembly: a possible route to photonic bandgap materials, Advanced Materials, 1999, 11(15): 1261~1265
    [45] Vlasov Y A, Yao N, Norris D J, Synthesis of photonic crystals for optical wavelengths from semiconductor quantum dots, Advanced Materials, 1999, 11(12): 165~169
    [46] Blanco A, Chomski E, Grabtchak S, et al., Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometers, Nature, 2000, 405: 437~440
    [47] Rhodes K H, Davis S A, Caruso F, et al., Hierarchical assembly of zeolite nanoparticles into ordered macroporous monoliths using core-shell building blocks, Chemistry of Materials, 2000, 12(10): 2832~2834
    [48] Wang D, Caruso R A, Caruso F, et al., Synthesis of macroporous titania and inorganic composite materials from coated colloidal spheres-a novel route to tune pore morphology, Chemistry of Materials, 2001, 13(2): 364~371
    [49] Yang P, Rizvi A H, Messer B, et al., Pattening porous oxides within microchannel network, Advanced Materials, 2001, 13(6): 427~431
    [50] Matsushita S, Miwa T, Fujishima A, Preparation of a new nanostructured TiO2 surface using a two-dimensional array-based template, Chemistry Letters, 1997, 26(9): 925~926
    [51] Luo Q, Liu Z, Li L, Creating highly ordered metal, alloy, and semiconductor macrostructures by electrodeposition, ion spraying, and laser spraying, Advanced Materials, 2001, 13(4): 286~289
    [52] Holland B T, Blanford C F, Stein A, Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids, Science, 1998, 10: 538~540
    [53] Wijnhoven J E G J, Wos W L, Preparation of photonic crystals made of air spheres in titania, Science, 1998, 281: 795~805
    [54] Carreon M A, Guliants V V, Ordered meso- and macroporous binary and mixed metal oxides, European Journal of Inorganic Chemistry, 2005, 1: 27~43
    [55] Madhavi S, Ferraris C, White T, Synthesis and characterization of three-dimensionally ordered macroporous ternary oxide, Journal of Solid State Chemistry, 2006, 179(3): 866~872
    [56] Wang C, Geng A, Guo Y, et al., A novel preparation of three-dimensionally ordered macroporous M/Ti (M = Zr or Ta) mixed oxide nanoparticles with enhanced photocatalytic activity, Journal of Colloid and Interface Science, 2006, 301(1): 236~247
    [57] Yan H, Blanford C F, Lytle J C, et al., Influence of processing conditions on structures of 3D ordered macroporous metals prepared by colloidal crystal templating, Chemistry of Materials, 2001, 13(11): 4314~4321
    [58] Sokolov S, Bell D, Stein A, Preparation and characterization of macroporousα-alumina, Journal of the American Ceramic Society, 2003, 86(9): 1481~1486
    [59] Zhang X Y, Wang T W, Jiang W Q, et al., Preparation and characterization of three-dimensionally ordered crystalline macroporous CeO2, Chinese Chemical Letters, 2005, 16(8): 1109~1112
    [60]邬泉周,沈勇,李玉光,三维有序大孔Al2O3制备的新方法及表征,物理化学学报, 2003, 19(8): 737~741
    [61] Sadakane M, Asanuma T, Kubo J, et al., Facile procedure to prepare three-dimensionally ordered macroporous (3DOM) perovskite-type mixed metal oxides by colloidal crystal templating method, Chemistry of Materials, 2005, 17(13): 3546~3551
    [62]邬泉周,尹强,廖菊芳等,硝酸盐制备三维有序大孔金属氧化物材料研究,化学学报, 2005, 63(10): 891~896
    [63] Dionigi C, Calestani G, Ferraroni T, et al., Template evaporation method for controlling anatase nanocrystal size in ordered macroporous TiO2, Journal of Colloid and Interface Science, 2005, 290(1): 201~207
    [64] Kuai S, Badilescu S, Bader G, et al., Preparation of large-area 3D ordered macroporous titania films by silica colloidal crystal templating, Advanced Materials, 2003, 15(1): 73~75
    [65] Turner M E, Trentler T J, Colvin V L, Thin films of macroporous metal oxides, Advanced Materials, 2001, 13(3): 180~183
    [66] Yan H, Zhang K, Blanford C F, et al., In vitro hydroxycarbonate apatote mineralization of CaO-SiO2 sol-gel glasses with a three-dimensionally ordered macroporous structures, Chemistry of Materials, 2001, 13(4): 1374~1382
    [67] Madhavi S, Ferraris C, White T J, Synthesis and crystallization of macroporous hydroxyapatite, Journal of Solid State Chemistry, 2005, 178(9): 2838~2845
    [68] Schroden R C, Blanford C F, Melde B J, et al., Direct synthesis of ordered macroporous silica materials functionalized with polyoxometalate clusters, Chemistry of Materials, 2001, 13(3): 1074~1081
    [69] Johnson B J S, Stein A, Surface modification of mesoporous, macroporous, and amorphous silica with catalytically active polyoxometalate clusters, InorganicChemistry, 2001, 40(4): 801~808
    [70]郭伊荇,杨宇,胡长文等,三维有序大孔杂化材料SiW11O398--SiO2和γ-SiW10O368--SiO2,高等学校化学学报, 2002, 23(11): 2035~2039
    [71] Carreon M A, Guliants V V, Synthesis of catalytic materials on multiplelenth scales: from mesoporous to macroporous bulk mixed metal oxides for selective oxidation of hydrocarbons, Catalysis Today, 2005, 99(1-2): 137~142
    [72] Chen S-L, Dong P, Xu K, et al., Large pore heavy oil processing catalysts prepared using colloidal particles as templates, Catalysis Today, 2007, 125(3-4): 143~148
    [73] Carn F, Saadaoui H, MasséP, et al., Three-dimensional opal-like silica foams, Langmuir, 2006, 22(12): 5469~5475
    [74] Zhang H, Hardy G C, Khimyak Y Z, et al., Synthesis of hierarchically porous silica and metal oxide beads using emulsion-templated polymer scaffolds, Chemistry of Materials, 2004, 16(22): 4245~4256
    [75]álvarez S, Fuertes A B, Synthesis of macro/mesoporous silica and carbon monoliths by using a commercial polyurethane foam as sacrificial template, Materials Letters, 2007, 61(11-12): 2378~2381
    [76] Suárez S, Yate M, Avila P, et al., New TiO2 monolithic supports based on the improvement of the porosity, Catalysis Today, 2005, 105(3-4): 499~506
    [77] Han Y-s, Li J-b, Wei Q-m, et al., The effect of sintering temperatures on alumina foam strength, Ceramics International, 2002, 28(7): 755~759
    [78] Han Y S, Li J B, Chen Y J, Fabrication of bimodal porous alumina ceramics, Materials Research Bulletin, 2003, 38(2): 373~379
    [79] Studart A R, Gonzenbach U T, Tervoort E, et al., Processing routes to macroporous ceramics: a review, Journal of the American Ceramic Society, 2006, 89(6): 1171~1789
    [80] Liang C, Dai S, Guiochon G, A graphitized-carbon monolithic column, Analytical Chemistry, 2003, 75(18): 4904~4912
    [81] Alvarez S, Esquena J, Solans C, et al., Meso/macroporous carbon monoliths from polymeric foams, Advanced Engineering Materials, 2004, 6(11): 897~899
    [82] Dong H, Brennan J D, Macroporous monolithic methylsilsesquioxanes prepared by a two-step acid/acid processing method, Chemistry of Materials, 2006, 18(17): 4176~4182
    [83] Zhang J, Zhang H, Wu L, et al., Fabrication of three dimensional polymertic scaffolds with spherical pores, Journal of Materials Science, 2006, 41(2): 1725~1731
    [84] Cameron N R, High internal phase emulsion templating as a route to well-defined porous polymers, Polymer, 2005, 46(5): 1439~1449
    [85] Lissant K J, Emulsions and emulsion technology part 1, New York: Marcel Dekker Inc. 1974
    [86]杜中杰,张晨,励杭泉,反相浓乳液发制备聚苯乙烯/二乙烯苯结构型泡孔聚合物,高等学校化学学报, 2002, 23(8): 1614~1617
    [87] Viklund C, Svec F, Fréchet J M J, Monolithic, "molded", porous materials with high flow characteristics for separations, catalysis, or solid-phase chemistry: control of porous properties during polymerization, Chemistry of Materials, 1996, 8(3): 744~750
    [88] Ottens M, Leene G, Beenackers A A C M, et al., PolyHipe: a new polymeric support for heterogeneous catalytic reactions: kinetics of hydration of cyclohexene in two- and three-phase systems over a strongly acidic sulfonated PolyHipe, Industrial and Engineering Chemistry Research, 2000, 39(2): 259~266
    [89] Busby W, Cameron N R, Jahoda C A B, Tissue engineering matrixes by emulsion templating, Polymer International, 2002, 51(10): 871~881
    [90] Song C, Fuel processing for low-temperature and high-temperature fuel cells: Challenges, and opportunities for sustainable development in the 21st century, Catalysis Today, 2002, 77(1-2): 17~49
    [91] Son I-H, Shin W-C, Lee Y-K, et al., 35-We polymer electrolyte membrane fuel cell system for notebook computer using a compact fuel processor, Journal of Power Sources, 2008, 185(1): 171~178
    [92] Chalk S G, Miller J F, Wagner F W, Challenges for fuel cells in transport applications, Journal of Power Sources, 2000, 86(1-2): 40~51
    [93] Chu D, Jiang R, Gardner K, et al., Polymer electrolyte membrane fuel cells for communication applications, Journal of Power Sources, 2001, 96(1): 174~178
    [94] Costamagna P, Srinivasan S, Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000: Part I. Fundamental scientific aspects, Journal of Power Sources, 2001, 102(1-2): 242~252
    [95] Costamagna P, Srinivasan S, Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000: Part II. Engineering, technology development and application aspects, Journal of Power Sources, 2001, 102(1-2): 253~269
    [96] Acres G J K, Recent advances in fuel cell technology and its applications, Journal of Power Sources, 2001, 100(1-2): 60~66
    [97] Cacciola G, Antonucci V, Freni S, Technology up date and new strategies on fuel cells, Journal of Power Sources, 2001, 100(1-2): 67~79
    [98] Barbir F, Gómez T, Efficiency and economics of proton exchange membrane (PEM) fuel cells, International Journal of Hydrogen Energy, 1996, 21(10):891~901
    [99] Ghenciu A F, Review of fuel processing catalysts for hydrogen production in PEM fuel cell systems, Current Opinion in Solid State and Materials Science, 2002, 6(5): 389~399
    [100] Krumpelt M, Krause T R, Carter J D, et al., Fuel processing for fuel cell systems in transportation and portable power applications, Catalysis Today, 2002, 77(1-2): 3~16
    [101] Adams W A, Blair J, Bullock K R, et al., Enhancement of the performance and reliability of CO poisoned PEM fuel cells, Journal of Power Sources, 2005, 145(1): 55~61
    [102] Wee J-H, Lee K-Y, Overview of the development of CO-tolerant anode electrocatalysts for proton-exchange membrane fuel cells, Journal of Power Sources, 2006, 157(1): 128~135
    [103] Gasteiger H A, Kocha S S, Sompalli B, et al., Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs, Applied Catalysis B: Environmental, 2005, 56(1-2): 9~35
    [104] Trimm D L, Minimisation of carbon monoxide in a hydrogen stream for fuel cell application, Applied Catalysis A: General, 2005, 296(1): 1~11
    [105] Lopez E, Kolios G, Eigenberger G, Structured folded-plate reactor for CO preferential oxidation, Industrial and Engineering Chemistry Research, 2005, 44(25): 9659~9667
    [106] Choi Y, Stenger H G, Kinetics, simulation and insights for CO selective oxidation in fuel cell applications, Journal of Power Sources, 2004, 129(2): 246~254
    [107] Park E D, Lee D, Lee H C, Recent progress in selective CO removal in a H2-rich stream, Catalysis Today, 2009, 139(4): 280~290
    [108] Lu G Q, Costa J C D d, Duke M, et al., Inorganic membranes for hydrogen production and purification: A critical review and perspective, Journal of Colloid and Interface Science, 2007, 314(2): 589~603
    [109] Ockwig N W, Nenoff T M, Membranes for hydrogen separation, Chemical Reviews, 2007, 107(10): 4078~4110
    [110] Dagle R A, Wang Y, Xia G-G, et al., Selective CO methanation catalysts for fuel processing applications, Applied Catalysis A: General, 2007, 326(2): 213~218
    [111] Kr?mer M, Duisberg M, St?we K, et al., Highly selective CO methanation catalysts for the purification of hydrogen-rich gas mixtures, Journal of Catalysis, 2007, 251(2): 410~422
    [112] Teng Y, Sakurai H, Ueda A, et al., Oxidative removal of CO contained in hydrogen by using metal oxide catalysts, International Journal of HydrogenEnergy, 1999, 24(4): 355~354
    [113] Omata K, Kobayashi Y, Yamada M, Artificial neural network aided virtual screening of additives to a Co/SrCO3 catalyst for preferential oxidation of CO in excess hydrogen, Catalysis Communications, 2007, 8(1): 1-5
    [114] Omata K, Kobayashi Y, Yamada M, Artificial neural network-aided design of Co/SrCO3 catalyst for preferential oxidation of CO in excess hydrogen, Catalysis Today, 2006, 117(1-3): 311~315
    [115] Guo Q, Liu Y, MnOx modified Co3O4-CeO2 catalysts for the preferential oxidation of CO in H2-rich gases, Applied Catalysis B: Environmental, 2008, 82(1-2): 9~26
    [116]郭强,吴美玲,刘源等,介孔CeO2负载的Co3O4催化剂催化富氢气体中的CO优先氧化反应,催化学报, 2007, 28(11): 953~957
    [117] Yung M M, Zhao Z, Woods M P, et al., Preferential oxidation of carbon monoxide on CoOx/ZrO2, Journal of Molecular Catalysis A: Chemical, 2008, 279(1): 1~9
    [118] Ko E-Y, Park E D, Seo K W, et al., A comparative study of catalysts for the preferential CO oxidation in excess hydrogen, Catalysis Today, 2006, 116(3): 377~383
    [119] Lippits M J, Gluhoi A C, Nieuwenhuys B E, A comparative study of the effect of addition of CeOx and Li2O onγ-Al2O3 supported copper, silver and gold catalysts in the preferential oxidation of CO Topics in Catalysis, 2007, 44(1-2): 159~165
    [120] Chen L, Ma D, Pietruszka B, et al., Carbon-supported silver catalysts for CO selective oxidation in excess hydrogen, Journal of Natural Gas Chemistry, 2006, 15(3): 181~190
    [121] Qu Z, Cheng M, Dong X, et al., CO selective oxidation in H2-rich gas over Ag nanoparticles-effect of oxygen treatment temperature on the activity of silver particles mechanically mixed with SiO2, Catalysis Today, 2004, 93-95: 247~255
    [122] Qu Z, Cheng M, Huang W, et al., Formation of subsurface oxygen species and its high activity toward CO oxidation over silver catalysts, Journal of Catalysis, 2005, 229(2): 446~458
    [123]曲振平,程谟杰,石川等,银负载量及反应气预处理对银催化剂上氢气中CO选择氧化反应的影响,催化学报, 2002, 23(5): 460~464
    [124] Avgouropoulos G, Ioannides T, Papadopoulou C, et al., A comparative study of Pt/γ-Al2O3, Au/α-Fe2O3 and CuO-CeO2 catalysts for the selective oxidation of carbon monoxide in excess hydrogen, Catalysis Today, 2002, 75(1-4): 157~167
    [125] Avgouropoulos G, Papavasiliou J, Tabakava T, et al., A comparative study of ceria-supported gold and copper oxide catalysts for preferential CO oxidationreaction, Chemical Engineering Journal, 2006, 124(1-3): 41~45
    [126] Liu Y, Fu Q, Stephanopoulos M F, Preferential oxidation of CO in H2 over CuO-CeO2 catalysts, Catalysis Today, 2004, 93-95: 241~246
    [127] Avgouropoulos G, Ioannides T, Adsorption and reaction of CO on CuO-CeO2 catalysts prepared by the combustion method Catalysis Letters, 2007, 116(1-2): 15~22
    [128] Avgouropoulos G, Ioannides T, Matralis H K, et al., CuO-CeO2 mixed oxide catalysts for the selective oxidation of carbon monoxide in excess hydrogen Catalysis Letters, 2001, 73(1): 33~40
    [129] Avgouropoulos G, Ioannides T, Matralis H, Influence of the preparation method on the performance of CuO-CeO2 catalysts for the selective oxidation of CO, Applied Catalysis B: Environmental, 2005, 56(1-2): 87~93
    [130] Liu Z, Zhou R, Zheng X, Influence of preparation methods on CuO-CeO2 catalysts in the preferential oxidation of CO in excess hydrogen, Journal of Natural Gas Chemistry, 2008, 17(2): 125~129
    [131] Marbán G, Fuertes A B, Highly active and selective CuOx/CeO2 catalyst prepared by a single-step citrate method for preferential oxidation of carbon monoxide, Applied Catalysis B: Environmental, 2005, 57(1): 43~53
    [132] Avgouropoulos G, Ioannides T, Effect of synthesis parameters on catalytic properties of CuO-CeO2, Applied Catalysis B: Environmental, 2006, 67(1-2): 1~11
    [133] Avgouropoulos G, Ioannides T, Selective CO oxidation over CuO-CeO2 catalysts prepared via the urea-nitrate combustion method, Applied Catalysis A: General, 2003, 244(1): 155~167
    [134] Bae C M, Ko J B, Kim D H, Selective catalytic oxidation of carbon monoxide with carbon dioxide, water vapor and excess hydrogen on CuO-CeO2 mixed oxide catalysts, Catalysis Communications, 2005, 6(8): 507~511
    [135] Lee H C, Kim D H, Kinetics of CO and H2 oxidation over CuO-CeO2 catalyst in H2 mixtures with CO2 and H2O, Catalysis Today, 2008, 134(1-4): 109~116
    [136] Liu Z, Zhou R, Zheng X, The preferential oxidation of CO in excess hydrogen: A study of the influence of KOH/K2CO3 on CuO-CeO2-x catalysts, Journal of Molecular Catalysis A: Chemical, 2006, 255(1-2): 103~108
    [137] Gamarra D, Hornés A, Koppány Z, et al., Catalytic processes during preferential oxidation of CO in H2-rich streams over catalysts based on copper-ceria, Journal of Power Sources, 2007, 169(1): 110~116
    [138] Kim D H, Cha J E, A CuO-CeO2 mixed-Oxide catalyst for CO clean-up by selective oxidation in hydrogen-rich mixtures, Catalysis Letters, 2003, 86(1-3): 107~112
    [139] Gamarra D, Munuera G, Hungría A B, et al., Structure-activity relationship in nanostructured copper-ceria-based preferential CO oxidation catalysts, Journal of Physical Chemistry C, 2007, 111(29): 11026~11038
    [140] Papavasiliou J, Avgouropoulos G, Ioannides T, In situ combustion synthesis of structured Cu-Ce-O and Cu-Mn-O catalysts for the production and purification of hydrogen, Applied Catalysis B: Environmental, 2006, 66(3-4): 168~174
    [141] Liu Z, Zhou R, Zheng X, Comparative study of different methods of preparing CuO-CeO2 catalysts for preferential oxidation of CO in excess hydrogen, Journal of Molecular Catalysis A: Chemical, 2007, 267(1-2): 137~142
    [142]胡涛,杨建,赵军等,尿素燃烧法制备Cu-Ce-O催化剂用于消除CO,催化学报, 2007, 28(10): 844~846
    [143] Jung C R, Han J, Nam S W, et al., Selective oxidation of CO over CuO-CeO2 catalyst: effect of calcination temperature, Catalysis Today, 2004, 93-95: 183~190
    [144] Wang J B, Shih W-H, Huang T-J, Study of Sm2O3-doped CeO2/Al2O3-supported copper catalyst for CO oxidation, Applied Catalysis A: General, 2000, 203(2): 191~199
    [145] Wang J B, Lin S-C, Huang T-J, Selective CO oxidation in rich hydrogen over CuO/samaria-doped ceria, Applied Catalysis A: General, 2002, 232(1-2): 107~120
    [146] Park J-W, Jeong J-H, Yoon W-L, et al., Activity and characterization of the Co-promoted CuO-CeO2/γ-Al2O3 catalyst for the selective oxidation of CO in excess hydrogen, Applied Catalysis A: General, 2004, 274(1-2): 25~32
    [147] Park J W, Jeong J H, Yoon W L, et al., Selective oxidation of CO in hydrogen-rich stream over Cu-Ce catalyst promoted with transition metals, International Journal of Hydrogen Energy, 2005, 30(2): 209~220
    [148] Park J W, Jeong J H, Yoon W L, et al., Selective oxidation of carbon monoxide in hydrogen-rich stream over Cu-Ce/γ-Al2O3 catalysts promoted with cobalt in a fuel processor for proton exchange membrane fuel cells, Journal of Power Sources, 2004, 132(1-2): 18~28
    [149] Cheekatamarla P K, Epling W S, Lane A M, Selective low-temperature removal of carbon monoxide from hydrogen-rich fuels over Cu-Ce-Al catalysts, Journal of Power Sources, 2005, 147(1-2): 178~183
    [150] Martínez-Arias A, Hungría A B, Fernández-García M, et al., Preferential oxidation of CO in a H2-rich stream over CuO/CeO2 and CuO/(Ce,M)Ox (M = Zr, Tb) catalysts, Journal of Power Sources, 2005, 151: 32~42
    [151] Sirichaiprasert K, Luengnaruemitchai A, Pongstabodee S, Selective oxidation of CO to CO2 over Cu-Ce-Fe-O composite-oxide catalyst in hydrogen feed stream,International Journal of Hydrogen Energy, 2007, 32(7): 915~925
    [152] Chen Y-Z, Liaw B-J, Wang J-M, et al., Selective removal of CO from hydrogen-rich stream over CuO/CexSn1-xO2-Al2O3 catalysts, International Journal of Hydrogen Energy, 2008, 33(9): 2389~2399
    [153] Ratnasamy P, Srinivas D, Satyanarayana C V V, et al., Influence of the support on the preferential oxidation of CO in hydrogen-rich steam reformates over the CuO-CeO2-ZrO2 system, Journal of Catalysis, 2004, 221(2): 455~465
    [154] Lin R, Luo M-F, Zhong Y-J, et al., Comparative study of CuO/Ce0.7Sn0.3O2, CuO/CeO2 and CuO/SnO2 catalysts for low-temperature CO oxidation, Applied Catalysis A: General, 2003, 255(2): 331~336
    [155] Moretti E, Lenarda M, Storaro L, et al., Catalytic purification of hydrogen streams by PROX on Cu supported on an organized mesoporous ceria-modified alumina, Applied Catalysis B: Environmental, 2007, 72(1-2): 149~156
    [156] Chen Y-Z, Liaw B-J, Chang W-C, et al., Selective oxidation of CO in excess hydrogen over CuO/CexZr1-xO2-Al2O3 catalysts, International Journal of Hydrogen Energy, 2007, 32(17): 4550~4558
    [157] Liu Z, Zhou R, Zheng X, Influence of rare-earth metal doping on the catalytic performance of CuO-CeO2 for the preferential oxidation of CO in excess hydrogen, Journal of Natural Gas Chemistry, 2008, 17(3): 283~287
    [158] Sedmak G, Ho?evar S, Levec J, Kinetics of selective CO oxidation in excess of H2 over the nanostructured Cu0.1Ce0.9O2-y catalyst, Journal of Catalysis, 2003, 213(2): 135~150
    [159] Martínez-Arias A, Fernández-García M, Gálvez O, et al., Comparative study on redox properties and catalytic behavior for CO oxidation of CuO/CeO2 and CuO/ZrCeO4 catalysts, Journal of Catalysis, 2000, 195(1): 207~216
    [160] Gamarra D, Belver C, Fernández-García M, et al., Selective CO oxidation in excess H2 over copper-ceria catalysts: identification of active entities/species, Journal of the American Ceramic Society, 2007, 129(40): 12064~12065
    [161] Martínez-Arias A, Hungría A B, Munuera G, et al., Preferential oxidation of CO in rich H2 over CuO/CeO2: Details of selectivity and deactivation under the reactant stream, Applied Catalysis B: Environmental, 2006, 65(3-4): 207~216
    [162] Haruta M, Yamada N, Kobayashi T, et al., Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide, Journal of Catalysis, 1989, 115(2): 301~309
    [163] Sanchez R M T, Ueda A, Tanaka K, et al., Selective oxidation of CO in hydrogen over gold supported on manganese oxides, Journal of Catalysis, 1997, 168(1): 125~127
    [164] Grisel R J H, Nieuwenhuys B E, Selective oxidation of CO, over supported Aucatalysts, Journal of Catalysis, 2001, 199(1): 48~59
    [165] Grisel R J H, Weststrate C J, Goossens A, et al., Oxidation of CO over Au/MOx/Al2O3 multi-component catalysts in a hydrogen-rich environment, Catalysis Today, 2002, 72(1-2): 123~132
    [166] Panzera G, Modafferi V, Candamano S, et al., CO selective oxidation on ceria-supported Au catalysts for fuel cell application, Journal of Power Sources, 2004, 135(1-2): 177~183
    [167] Deng W, Jesus J D, Saltsburg H, et al., Low-content gold-ceria catalysts for the water-gas shift and preferential CO oxidation reactions, Applied Catalysis A: General, 2005, 291(1-2): 126~135
    [168] Arena F, Famulari P, Trunfio G, et al., Probing the factors affecting structure and activity of the Au/CeO2 system in total and preferential oxidation of CO, Applied Catalysis B: Environmental, 2006, 66(1-2): 81~91
    [169] Guzman J, Carrettin S, Corma A, Spectroscopic evidence for the supply of reactive oxygen during CO oxidation catalyzed by gold supported on nanocrystalline CeO2, Journal of the American Ceramic Society, 2005, 127(10): 3286~3287
    [170] Luengnaruemitchai A, Thoa D T K, Osuwan S, et al., A comparative study of Au/MnOx and Au/FeOx catalysts for the catalytic oxidation of CO in hydrogen rich stream, International Journal of Hydrogen Energy, 2005, 30(9): 981~987
    [171] Landon P, Ferguson J, Solsona B E, et al., Selective oxidation of CO in the presence of H2, H2O and CO2 via gold for use in fuel cells, Chemical Communications, 2005, (27): 3385~3387
    [172] Kahlich M J, Gasteiger H A, Behm R J, Kinetics of the selective low-temperature oxidation of CO in H2-rich gas over Au/α-Fe2O3, Journal of Catalysis, 1999, 182(2): 430~440
    [173] Schubert M M, Venugopal A, Kahlich M J, et al., Influence of H2O and CO2 on the selective CO oxidation in H2-rich gases over Au/α-Fe2O3, Journal of Catalysis, 2004, 222(1): 32~40
    [174] ScirèS, Crisafulli C, MinicòS, et al., Selective oxidation of CO in H2-rich stream over gold/iron oxide: An insight on the effect of catalyst pretreatment, Journal of Molecular Catalysis A: Chemical, 2008, 284(1-2): 24~32
    [175] Galletti C, Fiorot S, Specchia S, et al., Catalytic performance of Au-TiO2 catalysts prepared by deposition-precipitation for CO preferential oxidation in H2-rich gases, Chemical Engineering Journal, 2007, 134(1-3): 45~50
    [176] Ruszel M, Grzybowska B, ?aniecki M, et al., Au/Ti-SBA-15 catalysts in CO and preferential (PROX) CO oxidation, Catalysis Communications, 2007, 8(8): 1284~1286
    [177] Chang L-H, Sasirekha N, Chen Y-W, Au/MnO2-TiO2 catalyst for preferential oxidation of carbon monoxide in hydrogen stream, Catalysis Communications, 2007, 8(11): 1702~1710
    [178] Steyn J, Pattrick G, Scurrell M S, et al., On-line deactivation of Au/TiO2 for CO oxidation in H2-rich gas streams, Catalysis Today, 2007, 122(3-4): 254~259
    [179] Kandoi S, Gokhale A A, Grabow L C, et al., Why Au and Cu are more selective than Pt for preferential oxidation of CO at low temperature, Catalysis Letters, 2004, 93(1-2): 93~100
    [180] Kung H H, Kung M C, Costello C K, Supported Au catalysts for low temperature CO oxidation, Journal of Catalysis, 2003, 216(1-2): 425~432
    [181] Zhou S, Yuan Z, Wang S, Selective CO oxidation with real methanol reformate over monolithic Pt group catalysts: PEMFC applications, International Journal of Hydrogen Energy, 2006, 31(7): 924~933
    [182] Manasilp A, Gulari E, Selective CO oxidation over Pt/alumina catalysts for fuel cell applications, Applied Catalysis B: Environmental, 2002, 37(1): 17~25
    [183] Kahlich M J, Gasteiger H A, Behm R J, Kinetics of the selective CO oxidation in H2-rich gas on Pt/Al2O3, Journal of Catalysis, 1997, 171(1): 93~105
    [184] Atalik B, Uner D, Structure sensitivity of selective CO oxidation over Pt/γ-Al2O3, Journal of Catalysis, 2006, 241(2): 268~275
    [185] Son I H, Shamsuzzoha M, Lane A M, Promotion of Pt/γ-Al2O3 by new pretreatment for low-temperature preferential oxidation of CO in H2 for PEM fuel cells, Journal of Catalysis, 2002, 210(2): 460~465
    [186] Pozdnyakova-Tellinger O, Teschner D, Kr?hnert J, et al., Surface water-assisted preferential CO oxidation on Pt/CeO2 catalyst, Journal of Catalysis, 2007, 111(14): 5426~5431
    [187] Watanabe M, Uchida H, Ohkubo K, et al., Hydrogen purification for fuel cells: selective oxidation of carbon monoxide on Pt-Fe/zeolite catalysts, Applied Catalysis B: Environmental, 2003, 46(3): 595~600
    [188] Shou M, Tanaka K-i, Yoshioka K, et al., New catalyst for selective oxidation of CO in excess H2 designing of the active catalyst having different optimum temperature, Catalysis Today, 2004, 90(3-4): 255~261
    [189] Tang X, Zhang B, Li Y, et al., Novel Pt-Fe/Al2O3 catalyst for CO selective oxidation, Chinese Journal of Catalysis, 2005, 26(1): 1~3
    [190] Siani A, Captain B, Alexeev O S, et al., Improved CO oxidation activity in the presence and absence of hydrogen over cluster-derived PtFe/SiO2 catalysts, Langmuir, 2006, 22(11): 5160~5167
    [191] Kotobuki M, Watanabe A, Uchida H, et al., Reaction mechanism of preferential oxidation of carbon monoxide on Pt, Fe, and Pt-Fe/mordenite catalysts, Journalof Catalysis, 2005, 236(2): 262~269
    [192] Kotobuki M, Watanabe A, Uchida H, et al., High catalytic performance of Pt-Fe alloy nanoparticles supported in mordenite pores for preferential CO oxidation in H2-rich gas, Applied Catalysis A: General, 2006, 307(2): 275~283
    [193] Kwak C, Park T-J, Suh D J, Effects of sodium addition on the performance of PtCo/Al2O3 catalysts for preferential oxidation of carbon monoxide from hydrogen-rich fuels, Applied Catalysis A: General, 2006, 278(2): 181~186
    [194] Suh D J, Kwak C, Kim J-H, et al., Removal of carbon monoxide from hydrogen-rich fuels by selective low-temperature oxidation over base metal added platinum catalysts, Journal of Power Sources, 2005, 142(1-2): 70~74
    [195] Choi J, Shin C B, Suh D J, Co-promoted Pt catalysts supported on silica aerogel for preferential oxidation of CO, Catalysis Communications, 2008, 9(5): 880~885
    [196] nce T, Uysal G, Ak?n A N, et al., Selective low-temperature CO oxidation over Pt-Co-Ce/Al2O3 in hydrogen-rich streams, Applied Catalysis A: General, 2005, 292: 171~176
    [197] Kwak C, Park T-J, Suh D J, Preferential oxidation of carbon monoxide in hydrogen-rich gas over platinum-cobalt-alumina aerogel catalysts, Chemical Engineering Science, 2005, 60(5): 1211~1217
    [198] Ko E-Y, Park E D, Lee H C, et al., Supported Pt-Co catalysts for selective CO oxidation in a hydrogen-rich stream, Angewandte Chemie International Edition, 2007, 46(5): 734~737
    [199] Ko E-Y, Park E D, Seo K W, et al., Selective CO oxidation in the presence of hydrogen over supported Pt catalysts promoted with transition metals, Korean Journal of Chemical Engineering, 2006, 23(2): 182~187
    [200] Ko E-Y, Park E D, Seo K W, et al., Pt-Ni/γ-Al2O3 catalyst for the preferential CO oxidation in the hydrogen stream, Catalysis Letters, 2006, 110(3-4): 275~279
    [201] Ayastuy J L, González-Marcos M P, González-Velasco J R, et al., MnOx/Pt/Al2O3 catalysts for CO oxidation in H2-rich streams, Applied Catalysis B: Environmental, 2007, 70(1-4): 532~541
    [202] Guerrero S, Miller J T, Wolf E E, Activity and selectivity control by niobium for the preferential oxidation of co on Pt supported catalysts, Applied Catalysis A: General, 2007, 328(1): 27~34
    [203] Kuriyama M, Tanaka H, Ito S-i, et al., Promoting mechanism of potassium in preferential CO oxidation on Pt/Al2O3, Journal of Catalysis, 2007, 252(1): 39~48
    [204] Tanaka H, Kuriyama M, Ishida Y, et al., Preferential CO oxidation inhydrogen-rich stream over Pt catalysts modified with alkali metals: Part I. Catalytic performance, Applied Catalysis A: General, 2008, 343(1): 117~124
    [205] Tanaka H, Kuriyama M, Ishida Y, et al., Preferential CO oxidation in hydrogen-rich stream over Pt catalysts modified with alkali metals: Part II. Catalyst characterization and role of alkali metals, Applied Catalysis A: General, 2008, 343(1): 125~133
    [206] Minemura Y, Ito S-i, Miyao T, et al., Preferential CO oxidation promoted by the presence of H2 over K-Pt/Al2O3, Chemical Communications, 2005, 11: 1429~1431
    [207] Pedrero C, Waku T, Iglesia E, Oxidation of CO in H2-CO mixtures catalyzed by platinum: alkali effects on rates and selectivity, Journal of Catalysis, 2005, 233(2): 242~255
    [208] Minemura Y, Kuriyama M, Ito S-i, et al., Additive effect of alkali metal ions on preferential CO oxidation over Pt/Al2O3, Catalysis Communications, 2006, 7(9): 623~626
    [209] Cho S-H, Park J-S, Choi S-H, et al., Effect of magnesium on preferential oxidation of carbon monoxide on platinum catalyst in hydrogen-rich stream, Journal of Power Sources, 2006, 156(2): 260~266
    [210] Son I H, Lane A M, Promotion of Pt/γ-Al2O3 by Ce for preferential oxidation of CO in H2, Catalysis Letters, 2001, 76(3-4): 151~154
    [211] Son I H, Study of Ce-Pt/γ-Al2O3 for the selective oxidation of CO in H2 for application to PEFCs: Effect of gases, Journal of Power Sources, 2006, 159(2): 1266~1273
    [212] ?im?ek E, ?zkara ?, Aksoylu A E, et al., Preferential CO oxidation over activated carbon supported catalysts in H2-rich gas streams containing CO2 and H2O, Applied Catalysis A: General, 2007, 316(2): 169~174
    [213] Uysal G, Ak?n A N, ?nsan Z , et al., Preferential CO oxidation over Pt-SnO2/Al2O3 in hydrogen rich streams containing CO2 and H2O (CO removal from H2 with PROX), Catalysis Letters, 2006, 111(3-4): 173~176
    [214] Souza M M V M, Ribeiro N F P, Schmal M, Influence of the support in selective CO oxidation on Pt catalysts for fuel cell applications, International Journal of Hydrogen Energy, 2007, 32(3): 425~429
    [215] Oh S H, Sinkevitch R M, Carbon monoxide removal from hydrogen-rich fuel cell feedstreams by selective catalytic oxidation, Journal of Catalysis, 1993, 142(1): 254~262
    [216] Echigo M, Shinke N, Takami S, et al., Development of residential PEFC cogeneration systems: Ru catalyst for CO preferential oxidation in reformed gas, Catalysis Today, 2003, 84(3-4): 209~215
    [217] Rosso I, Antonini M, Galletti C, et al., Selective CO-oxidation over Ru-based catalysts in H2-rich gas for fuel cell applications, Topics in Catalysis, 2004, 30-31(1): 475~480
    [218] Chin S Y, Alexeev O S, Amiridis M D, Preferential oxidation of CO under excess H2 conditions over Ru catalysts, Applied Catalysis A: General, 2005, 286(2): 157~166
    [219] Ito S-i, Tanaka H, Minemura Y, et al., Selective CO oxidation in H2-rich gas over K2CO3-promoted Rh/SiO2 catalysts: effects of preparation method, Applied Catalysis A: General, 2004, 273(1-2): 295~302
    [220] Huang Y, Wang A, Wang X, et al., Preferential oxidation of CO under excess H2 conditions over iridium catalysts, International Journal of Hydrogen Energy, 2007, 32(16): 3880~3886
    [221] Chin S Y, Alexeev O S, Amiridis M D, Structure and reactivity of Pt-Ru/SiO2 catalysts for the preferential oxidation of CO under excess H2, Journal of Catalysis, 2006, 243(2): 329~339
    [222] Lee S H, Han J, Lee K-Y, Development of 10-kWe preferential oxidation system for fuel cell vehicles, Journal of Power Sources, 2002, 109(2): 394~402
    [223] Ouyang X, Besser R S, Effect of reactor heat transfer limitations on CO preferential oxidation, Journal of Power Sources, 2005, 141(1): 39~46
    [224] Giroux T, Hwang S, Liu Y, et al., Monolithic structures as alternatives to particulate catalysts for the reforming of hydrocarbons for hydrogen generation, Applied Catalysis B: Environmental, 2005, 56(1-2): 95~110
    [225] Ahluwalia R K, Zhang Q, Chmielewski D J, et al., Performance of CO preferential oxidation reactor with noble-metal catalyst coated on ceramic monolith for on-board fuel processing applications, Catalysis Today, 2005, 99(3-4): 271~283
    [226] Roberts G W, Chin P, Sun X, et al., Preferential oxidation of carbon monoxide with Pt/Fe monolithic catalysts: interactions between external transport and the reverse water-gas-shift reaction, Applied Catalysis B: Environmental, 2003, 46(3): 601~611
    [227] Zhao S, Zhang J, Weng D, et al., A method to form well-adheredγ-Al2O3 layers on FeCrAl metallic supports, Surface and Coatings Technology, 2003, 167(1): 97~105
    [228] Zeng S H, Liu Y, Wang Y Q, CuO-CeO2/Al2O3/FeCrAl monolithic catalysts prepared by sol-pyrolysis method for preferential oxidation of carbon monoxide, Catalysis Letters, 2007, 117(3-4): 119~125
    [229] Kolb G, Hessel V, Micro-structured reactors for gas phase reactions, Chemical Engineering Journal, 2004, 98(1-2): 1~38
    [230] Delsman E R, Laarhoven B J P F, Croon M H J M D, et al., Comparison between conventional fixed-bed and microreactor technology for a portable hydrogen production case, Chemical Engineering Research and Design, 2005, 83(9): 1063~1075
    [231] Snytnikov P V, Popova M M, Men Y, et al., Preferential CO oxidation over a copper-cerium oxide catalyst in a microchannel reactor, Applied Catalysis A: General, 2008, 350(1): 53~62
    [232] Cominos V, Hessel V, Hofmann C, et al., Selective oxidation of carbon monoxide in a hydrogen-rich fuel cell feed using a catalyst coated microstructured reactor, Catalysis Today, 2005, 110(1-2): 140~153
    [233] Delsman E R, Croon M H J M D, Pierik A, et al., Design and operation of a preferential oxidation microdevice for a portable fuel processor, Chemical Engineering Science, 2004, 59(22-23): 4795~4802
    [234] Kim K-Y, Han J, Nam S W, et al., Preferential oxidation of CO over CuO/CeO2 and Pt-Co/Al2O3 catalysts in micro-channel reactors, Catalysis Today, 2008, 131(1-4): 431~436
    [235] Guan G, Zapf R, Kolb G, et al., Preferential CO oxidation over catalysts with well-defined inverse opal structure in microchannels, International Journal of Hydrogen Energy, 2008, 33(2): 797~801
    [236] Chin P, Sun X, Roberts G W, et al., Preferential oxidation of carbon monoxide with iron-promoted platinum catalysts supported on metal foams, Applied Catalysis A: General, 2006, 302(1): 22~31
    [237] Goerke O, Pfeifer P, Schubert K, Water gas shift reaction and selective oxidation of CO in microreactors, Applied Catalysis A: General, 2004, 263(1): 11~18
    [238] Kolb G, Hessel V, Cominos V, et al., Selective oxidations in micro-structured catalytic reactors--For gas-phase reactions and specifically for fuel processing for fuel cells, Catalysis Today, 2007, 120(1): 2~20
    [239] Srinivas S, Dhingra A, Im H, et al., A scalable silicon microreactor for preferential CO oxidation: performance comparison with a tubular packed-bed microreactor, Applied Catalysis A: General, 2004, 274(1-2): 285~293
    [240] Ou J-L, Yang J-K, Chen H, Styrene/potassium persulfate/water systems: effects of hydrophilic comonomers and solvent additives on the nucleation mechanism and the particle size, European Polymer Journal, 2001, 37(4): 789~799
    [241] Visschers M, Laven J, German A L, Current understanding of the deformation of latex particles during film formation, Progress in Organic Coatings, 1997, 30(1): 39~49
    [242] Visschers M, Laven J, Linde R v d, Forces operative during film formation from latex dispersions, Progress in Organic Coatings, 1997, 31(4): 311~323
    [243]程轲,邢前,田宝丽等,单分散聚苯乙烯乳胶球的制备及其模板的组装,河南大学学报(自然科学版), 2003, 33(3): 14~16
    [244]黄忠兵,高继宁,汪静等,改性聚苯乙烯微球的制备及其胶体晶体的组装,物理化学学报, 2004, 20(6): 651~655
    [245] Rivas M E, Fierro J L G, Goldwasser M R, et al., Structural features and performance of LaNi1-xRhxO3 system for the dry reforming of methane, Applied Catalysis A: General, 2008, 344(1-2): 10~19
    [246] Christian, Mitchell M, Kim D-P, et al., Ceramic microreactors for on-site hydrogen production, Journal of Catalysis, 2006, 241(2): 235~242
    [247] Guan G, Zapf R, Kolb G, et al., Low temperature catalytic combustion of propane over Pt-based catalyst with inverse opal microstructure in a microchannel reactor, Chemical Communications, 2007, (3): 260~262
    [248] Ren J, Du Z-J, Zhang C, et al., Macroporous titania monolith prepared via sol-gel process with polymer foam as the template, Chinese Journal of Chemistry, 2006, 24(7): 955~960
    [249] Gregg S J, Sing K S W, Adsorption, surface area and porosity 2nd edition, London: Academic Press 1982
    [250] Cabrera S, Haskouri J E, Alamo J, et al., Surfactant-assisted synthesis of mesoporous alumina showing continuously adjustable pore sizes, Advanced Materials, 1999, 11(5): 379~381
    [251] Levin I, Brandon D, Metastable alumina polymorphs: crystal structures and transition sequences Journal of the American Ceramic Society, 1998, 81(8): 1995~2012
    [252] Tseng C-C, Chang C-P, Sung Y, et al., Noble metallic nanoparticles reduced by PS-based oligomers through one-step synthesis, Colloid and Surfaces A: Physicochemical and Engineering Aspects, 2009, 333(1-3): 138~144
    [253] Zeng S H, Liu Y, Nd- or Zr-modified CuO-CeO2/Al2O3/FeCrAl monolithic catalysts for preferential oxidation of carbon monoxide in hydrogen-rich gases, Applied Surface Science, 2008, 254(15): 4879~4885
    [254] Biamino S, Fino P, Fino D, et al., Catalyzed traps for diesel soot abatement: In situ processing and deposition of perovskite catalyst, Applied Catalysis B: Environmental, 2005, 61(3-4): 297~305
    [255] Hwang C-P, Yeh C-T, Platinum-oxide species formed by oxidation of platinum crystallites supported on alumina, Journal of Molecular Catalysis A: Chemical, 1996, 112(2): 295~302
    [256] Nijhuis T A, Beers A E W, Vergunst T, et al., Preparation of monolithic catalysts, Catalysis Reviews, 2001, 43(4): 345~380
    [257] Yao H C, Sieg M, Jr. H K P, Surface interactions in the Pt/γ-Al2O3 system,Journal of Catalysis, 1979, 59(3): 365~374
    [258] Tiernan M J, Finlayson O E, Effects of ceria on the combustion activity and surface properties of Pt/Al2O3 catalysts, Applied Catalysis B: Environmental, 1998, 19(1): 23~35
    [259]罗锡辉,艾家声,何金海等,铂在γ-Al2O3表面上的分散过程和状态,燃料化学学报, 1990, 18(4): 289~294
    [260] Lieske H, Lietz G, Spindler H, et al., Reactions of platinum in oxygen- and hydrogen-treated Pt/γ-Al2O3 catalysts : I. Temperature-programmed reduction, adsorption, and redispersion of platinum, Journal of Catalysis, 1983, 81(1): 8~16
    [261] Olsbye U, Wendelbo R, Akporiaye D, Study of Pt/alumina catalysts preparation, Applied Catalysis A: General, 1997, 152(1): 127~141
    [262] Huizinga T, Grondelle J V, Prins R, A temperature programmed reduction study of Pt on Al2O3 and TiO2, Applied Catalysis, 1984, 10(2): 199~213
    [263] Lee C-H, Chen Y-W, Effect of basic additives on Pt/Al2O3 for CO and propylene oxidation under oxygen-deficient conditions, Industrial and Engineering Chemistry Research, 1997, 36(5): 1498~1506
    [264] Derrouiche S, Gravejat P, Bassou B, et al., Impact of potassium on the heats of adsorption of adsorbed CO species on supported Pt particles by using the AEIR method, Applied Surface Science, 2007, 253(13): 5894~5898
    [265] Requies J, Barrio V L, Cambra J F, et al., Effect of redox additives over Ni/Al2O3 catalysts on syngas production via methane catalytic partial oxidation, Fuel, 2008, 87(15-16): 3223~3231
    [266] Poncelet G, Centeno M A, Molina R, Characterization of reducedα-alumina-supported nickel catalysts by spectroscopic and chemisorption measurements, Applied Catalysis A: General, 2005, 288(1-2): 232~242
    [267] Pawelec B, Damyanova S, Arishtirova K, et al., Structural and surface features of PtNi catalysts for reforming of methane with CO2, Applied Catalysis A: General, 2007, 323: 188~201
    [268]严前古,高利珍,储伟等,甲烷部分氧化制合成气Pt-Ni/Al2O3催化剂的研究,化学学报, 1998, 56(10): 1021~1026

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700