Fe(Ⅲ)催化的α-取代-β-二羰基化合物的杂环化反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球生态环境的急剧恶化,人类正面临着前所未有的生存危机,如何实现可持续发展已成为人类社会面临的重大问题。近年来,以从源头上消除污染、节省资源为核心的绿色化学研究已经成为解决日益严峻的生态环境问题的强有力手段。因此,开发高效无毒、绿色环保、价格低廉的催化体系已成为当代有机化学研究的重要内容。与金、铑、钌、钯等贵金属相比,铁催化剂价格低廉、环境友好,所以铁催化的反应研究已成为当前有机化学研究的热点,铁催化的反应类型也不断地涌现,包括氧化、还原、偶联、取代、加成、环加成与环扩张、多组分反应等多种类型。
     本论文主要论述了利用三价铁盐作为催化剂,从α-取代-β-二羰基化合物出发,通过分子内环化反应或分子间串联反应,合成几类重要的杂环结构,包括:喹啉酮、吡咯、吡唑,以及烯胺酮类化合物,为这些化合物的制备提供新颖的合成方法。在具体的研究过程中,我们主要完成了以下工作:(1)通过对催化剂、反应溶剂、反应温度等进行反应条件优化,确定了最佳的反应条件,并且在最佳的反应条件下合成几类杂环化合物以及烯胺酮类化合物。(2)通过理论计算、捕获反应中间体等方法,研究了反应机理,初步揭示了反应规律和三价铁盐作为催化剂的作用机制。
     本论文共分为五章,第一、二章分别综述了近几年来铁催化有机化学反应的研究进展以及本论文的选题依据。
     在第三章,我们利用廉价的FeCl_3作为催化剂,从N-烷基-α,α-双烷基取代乙酰乙酰芳胺类化合物出发,实现了第一例铁催化的分子内芳环与非活化的酮羰基的烯基化反应,制备了具有抗HIV病毒活性的4-亚甲烯基-2-喹啉酮类化合物。同时,结合理论计算与实验设计,提出了可能的反应机理。
     在第四章,我们提出利用三价铁盐作为催化剂,从非环前体4-丁炔基酮类化合物出发,经由与伯胺的[4C+1N]型环化反应,合成多取代吡咯及吡咯并环化合物的新策略,并且提出了一种可能的反应机理。
     在第五章,我们利用三价铁盐作为催化剂,实现了铁催化的β-羰基-1,3-二噻烷与胺(或氨水)的胺解反应,合成了立体构型确定的β-烯胺酮类化合物。进一步,利用水合肼作为胺源合成了3,4-二取代吡唑类化合物。
With a sharp deterioration in the global ecological environment, human beings are facing an unprecedented crisis of survival, how to achieve sustainable development have become major problems. In recent years, in order to eliminate the pollution from the source, saving resources as the core of green chemistry research has become to solve the increasingly serious environmental problems of the powerful tool. Therefore, the development of efficient non-toxic, green, inexpensive catalyst system has become an important part of modern organic chemistry research. Compared with gold, rhodium, ruthenium, palladium and other precious metals, iron catalyst are inexpensive, environmentally friendly, so the iron-catalyzed reaction has become a hot research in organic chemistry. And the typies of reactions catalyzed by iron salts also continue to emerge, including oxidation, reduction , coupling, replacement, addition, cycloaddition and ring extensions, multicomponent reactions, and so on.
     This dissertation mainly discusses using iron(Ⅲ) salts as catalysts, several important application classes of heterocyclic compounds, including quinolinones, pyrroles, pyrazoles and enamintones are synthesized based on theα-substituted-β-dicarbonyl compounds by intramolecular cyclization or intermolecular tandem reaction. In the specific research process, we mainly have completed the following major tasks:(1) we determined the optimizing conditions through screening of reaction conditions like the catalyst, solvent, reaction temperature and so on, and synthesized several series heterocyclic compounds and enamintones under optimal conditions.(2) We studied the reaction mechanism in-depth by theoretical calculations and capturing reaction intermediates, so that we understood the reaction rules and the important role of iron(Ⅲ) salts as catalysts.
     This dissertation is divided into five chapters. The first chapter introduce reviews the development of research on iron catalysts in recent years. And the dissertation proposal was presented in the second chapter.
     The third chapter, we fistly realized the intramolecular aromatic C-H alkenylation of arenes with non-activated ketones to synthesize 4-alkenylquinolin-2-ones prosessing anti-HIV activities by using FeCl_3 as a catalyst and N-alkyl-α,α-dialkyl substituted acetoacetarylamides as starting materials. According to theoretical calculations and experimental plans, the possible reaction mechanism is proposed.
     The fourth chapter shows a novel strategy for the synthesis of polysubstituted pyrroles via[4C+1N] cyclization of 4-acetylenic ketones with primary amines by using the iron(III) salt as a catalyst. And the possible reaction mechanism is proposed.
     The fifth chapter briefly involves iron(Ⅲ) salts-catalyzed aminalysis ofβ-carbonyl 1,3-dithianes to synthesize stereodefined enaminones and 3,4-disubstituted pyrazoles.
引文
[1] Tsuji J. Transition Metal Reagents and Catalysts, Innovations in Organic Synthesis[M]. Wiley, Chichester:John Wiley & Sons Ltd, 2000. 7-25.
    [2] a) Tamaru Y. Modern Organonickel Chemistry[M]. Wiley-VCH, Weinheim: Verlag GmbH & Co. KGaA, 2005. 41-56. b) Negishi E. Organopalladium Chemistry for Organic Synthesis[M]. Wiley, New York: John Wiley & Sons Ltd, 2002. 1491-1521
    [3] Nordberg G F, Fowler B A, Nordberg M, et al. Handbook on the Toxicology of Metals[M]. Third Edition. Elsevier Inc. 2007. 1-1024.
    [4] a) Bolm C, Legros J, Paih J L, et al. Iron-Catalyzed Reactions in Organic Synthesis[J]. Chem Rev, 2004, 104(12): 6217-6254. b) Sun C, Li B, Shi Z. Direct C-H Transformation via Iron Catalysis[J]. Chem Rev, 2011, 111(3): 1293-1314.
    [5] Chen M S, White M C. A Predictably Selective Aliphatic C-H Oxidation Reaction for Complex Molecule Synthesis[J]. Science, 2007, 318: 783-787.
    [6] Chen M S, White M C. Combined Effects on Selectivity in Fe-Catalyzed Methylene Oxidation[J]. Science, 2010, 327: 566-571.
    [7] M?ller K, Wienh?fer G, Schr?der K, et al. Selective Iron-Catalyzed Oxidation of Phenols and Arenes with Hydrogen Peroxide: Synthesis of Vitamin E Intermediates and Vitamin K3[J]. Chem Eur J, 2008, 10(34): 10300-10303.
    [8] Anikumar G, Bitterlich B, Gelalcha F G, et al. An Efficient Biomimetic Fe-Catalyzed Epoxidation of Olefins Using Hydrogen Peroxide[J]. Chem Commun, 2007(3): 289-291.
    [9] Johnson M D, Hornstein B J. Unexpected Selectivity in the Oxidation of Arylamines with Ferrate-Preliminary Mechanistic Considerations[J]. Chem Commun, 1996(8): 965-966.
    [10] Delaude L, Laszlo P. A Novel Oxidizing Reagent Based on Potassium Ferrate(VI)[J]. J Org Chem, 1996, 61(18): 6360-6370.
    [11] Legros J, Bolm C. Highly Enantioselective Iron-Catalyzed Sulfide Oxidation with Aqueous Hydrogen Peroxide under Simple Reaction Conditions[J]. Angew Chem Int Ed, 2004, 43(32): 4225-4228.
    [12] Bart S C, Lobkovsky E, Chirik P J. Preparation and Molecular and Electronic Structures of Iron(0) Dinitrogen and Silane Complexes and Their Application to Catalytic Hydrogenation and Hydrosilation[J]. J Am Chem Soc, 2004, 126(42): 13794-13807.
    [13] Casey C P, Guan H. An Efficient and Chemoselective Iron Catalyst for the Hydrogenation of Ketones[J]. J Am Chem Soc, 2007, 129(18): 5816-5817.
    [14] Zhou S, Junge K, Addis D, et al. A Convenient and General Iron-Catalyzed Reduction of Amides to Amines[J]. Angew Chem Int Ed, 2009, 48(50): 9507-9510.
    [15] Zhou S, Fleischer S, Junge K, et al. Enantioselective Synthesis of Amines: General, Efficient Iron-Catalyzed Asymmetric Transfer Hydrogenation of Imines[J]. Angew Chem Int Ed, 2010, 49(44): 8121-8125.
    [16] Choi J, Kohno K, Masuda D, et al. Iron-Catalysed Green Synthesis of Carboxylic Esters by the Intermolecular Addition of Carboxylic Acids to Alkenes[J]. Chem Commun, 2008(6): 777-779.
    [17] Kohno K, Nakagawa K, Yahagi T, et al. Fe(OTf)3-Catalyzed Addition of sp C-H Bonds to Olefins[J]. J Am Chem Soc, 2009, 131(8): 2784-2785.
    [18] Shirakura M, Suginome M. Nickel-Catalyzed Addition of C-H Bonds of Terminal Alkynes to 1,3-Dienes and Styrenes[J]. J Am Chem Soc, 2008, 130(16): 5410-5411.
    [19] Ren K, Wang M, Wang L. FeX3-Promoted Intermolecular Addition of Benzylic Alcohols to Aromotic Alkenes: A Mild and Efficient Strategy for the Synthesis of Alkenyl Halides[J]. Eur J Org Chem, 2010, 565-571.
    [20] Shirakawa E, Yamagami T, Kimura T, et al. Arylmagnesiation of Alkynes Catalyzed Cooperatively by Iron and Copper Complexes[J]. J Am Chem Soc, 2005, 127(49): 17164-17165.
    [21] Zou T, Pi S, Li J. FeCl3-Catalyzed 1,2-Addition Reactions of Aryl Aldehydes with Arylboronic Acids[J]. Org Lett, 2009, 11(2): 453-456.
    [22] Kawatsura M, Komatsu Y, Yamamoto M, et al. Enantioselective C-S Bond Formation by Iron/Pybox Catalyzed Michael Addition of Thiols to(E)-3-Crotonoyloxazolidin-2-one[J], Tetrahedron Lett, 2007, 48(37): 6480-6482.
    [23] Fujiwara M, Kawatsura M, Hayase S, et al. Iron(Ⅲ) Salt-Catalyzed Nazarov Cyclization/Michael Addition of Pyrrole Derivatives[J]. Adv Synth Catal, 2009, 351(1): 123-128.
    [24] Tamura M, Kochi J K. Vinylation of Grignard reagents. Catalysis by Iron[J]. J Am Chem Soc, 1971, 93(6): 1487-1489.
    [25] a) Cahiez G, Chavant P Y, Metais E. A New Simple Route to Furanic Ketones; Preparation of Elsholtzione, Naginata Ketone and Perilla Ketone[J]. Tetrahedron Lett, 1992, 33(36): 5245-5248; b) Cahiez G, Metais E. Highly Chemo- and Stereoselective Fe-Catalyzed Alkenylation of Organomanganese Reagents[J]. Tetrahedron Lett, 1996, 37(11): 1773-1776; c) Duplais C, Bures F, Korn T, et al. An Efficient Synthesis of Diaryl Ketones by Iron-Catalyzed Arylation of Aroyl Cyanides[J]. Angew Chem Int Ed, 2004, 43(22): 2968–2970; d) Cahiez G, Habiak V, Duplais C, et al. Iron-Catalyzed Alkylations of Aromatic Grignard Reagents[J]. Angew Chem Int Ed, 2007, 46(23): 4364-4366.
    [26] a) Fürstner A, Leitner A, Méndez M, et al. Iron-Catalyzed Cross-Coupling Reactions[J]. J Am Chem Soc, 2002, 124(46): 13856-13863; b) Martin R, Fürstner A. Cross-Coupling of Alkyl Halides with Aryl Grignard Reagents Catalyzed by a Low-Valent Iron Complex[J]. Angew Chem Int Ed, 2004, 43(30): 3955-3957; c) Fürstner A, Krause H, Lehmann C W. Unusual Structure and Reactivity of a Homoleptic“Super-Ate”Complex of Iron: Implications for Grignard Additions, Cross-Coupling Reactions, and the Kharasch Deconjugation[J]. Angew Chem Int Ed, 2006, 45(3): 440-444; d) Scheiper B, Bonnekessel M,Krause H, et al. Selective Iron-Catalyzed Cross-Coupling Reactions of Grignard Reagents with Enol Triflates, Acid Chlorides, and Dichloroarenes[J]. J Org Chem, 2004, 69(11), 3943-3949.
    [27] Nakamura M, Hirai A, Nakamura E. Iron-Catalyzed Olefin Carbometalation[J]. J Am Chem Soc, 2000, 122(5): 978-979; b) Nakamura M, Matsuo K, Ito S, et al. Iron-Catalyzed Cross-Coupling of Primary and Secondary Alkyl Halides with Aryl Grignard Reagents[J]. J Am Chem Soc, 2004, 126(12): 3686-3687; c) Hatakeyama T, Nakamura M. Iron-Catalyzed Selective Biaryl Coupling: Remarkable Suppression of Homocoupling by the Fluoride Anion[J]. J Am Chem Soc, 2007, 129(32): 9844-9845.
    [28] a) Bedford R D, Bruce D W, Frost R M, et al. Iron(III) Salen-Type Catalysts for the Cross-Coupling of Aryl Grignards with Alkyl Halides Bearingβ-Hydrogens[J]. Chem Commun, 2004(24): 2822-2823; b) Bedford R D, Bruce D W, Frost R M, et al. Simple Iron-Amine Catalysts for the Cross-Coupling of Aryl Grignards with Alkyl Halides Bearingβ-Hydrogens[J]. Chem Commun, 2005(33): 4161-4163; c) Bedford R B, Betham M, Bruce D W, et al. Iron Nanoparticles in the Coupling of Alkyl Halides with Aryl Grignard Reagents[J]. Chem Commun, 2006(13):1398-1400; d) Bedford R B, Betham M, Bruce D W , et al. Iron?Phosphine, ?Phosphite, ?Arsine, and ?Carbene Catalysts for the Coupling of Primary and Secondary Alkyl Halides with Aryl Grignard Reagents[J]. J Org Chem, 2006, 46(3): 1104-1110.
    [29] Guérinot A, Reymond S, Cossy J. Iron-Catalyzed Cross-Coupling of Alkyl Halides with Alkenyl Grignard Reagents[J]. Angew Chem Int Ed, 2007, 46(34): 6521-6524.
    [30] Yoshikai N, Matsumoto A, Norinder J, et al. Iron-Catalyzed Chemoselective ortho -Arylation of Aryl Imines by Directed C-H Bond Activation[J]. Angew Chem Int Ed, 2009, 48(16): 2925–2928.
    [31] Ilies L, Okabe J, Yoshikai N, et al. Iron-Catalyzed, Directed Oxidative Arylation of Oliefins with Oranozinc and Grignard Reagents[J]. Org Lett, 2010, 12(12): 2838-2840.
    [32] a) Fiandanese V F, Marchese G, Martina V, et al. Iron Catalyzed Cross-Coupling Reactions of Acyl Chlorides with Grignard Reagents. A Mild, General, and Convenient Synthesis of Aliphatic and Aromatic Ketones[J]. Tetrahedron Lett, 1984, 25(42): 4805-4808; b) Volla C M R, Vogel P. Iron-Catalyzed Desulfinylative C-C Cross-Coupling Reactions of Sulfonyl Chlorides with Grignard Reagents[J]. Angew Chem Int Ed, 2008, 47(7): 1305-1307.
    [33] Liu W, Cao H, Lei A. Iron-Catalyzed Direct Arylation of Unactivated Arenes with Aryl Halides[J]. Angew Chem Int Ed, 2010, 49(11): 2004-2008.
    [34] Xiang S, Zhang L, Jiao N. Sp-sp3 C-C Bond Formation via Fe(OTf)3/TfOH Cocatalyzed Coupling Reaction of Terminal Alkynes with Benzylic Alcohols[J]. Chem Commun, 2009(42): 6487-6489.
    [35] Wen J, Zhang J, Chen S, et al. Iron-Mediated Direct Arylation of Unactivated Arenes[J]. Angew Chem Int Ed, 2008, 47(46): 8897-8900.
    [36] Li Z, Cao L, Li C. FeCl2-Catalyzed Selective C-C Bond Formation by Oxidative Activation of a Benzylic C-H Bond[J]. Angew Chem Int Ed, 2007, 46(34): 6505-6507.
    [37] Li Y, Li B, Lu X, et al. Cross Dehydrogenative Arylation(CDA) of a Benzylic C-H Bond with Arenes by Iron Catalysis[J]. Angew Chem Int Ed, 2009, 48(21): 3817-3820.
    [38] Volla C M R, Vogel P. Chemoselective C?H Bond Activation: Ligand and Solvent Free Iron-Catalyzed Oxidative C?C Cross-Coupling of Tertiary Amines with Terminal Alkynes. Reaction Scope and Mechanism[J]. Org Lett, 2009, 11(8): 1701-1704.
    [39] Wang K, Lu M, Yu A, et al. Iron(Ⅲ) Chloride Catalyzed Oxidative Coupling of Aromatic Nuclei[J]. J Org Chem. 2009, 74(2): 935-938.
    [40] Taillefer M, Xia N, Ouali A. Efficient Iron/Copper Co-Catalyzed Arylation of Nitrogen Nucleophiles[J]. Angew Chem Int Ed, 2007, 46(6): 934–936.
    [41] Recyclable Heterogenous Iron Catalyst for C-N Cross-Coupling under Ligand-Free Conditions [J]. J Org Chem. 2009, 74(19): 7514-7517.
    [42] Wu X, Jiang R, Wu B, et al. Nano-Iron Oxide as a Recyclable Catalyst for Intramolecular C-N Cross-Coupling Reactions under Ligand-Free Conditions: One-Pot Synthesis of 1,4-Dihydroquinoline Derivatives[J]. Adv Synth Catal, 2009, 351(18): 3150-3156.
    [43] Wang Z, Zhang Y, Fu H, et al. Efficient Intermolecular Iron-Catalyzed Amidation of C?H Bonds in the Presence of N-Bromosuccinimide[J]. Org Lett, 2008, 10(9): 1863-1866.
    [44] Pan S, Liu J, Li H, et al. Iron-Catalyzed N-Alkylation of Azoles via Oxidation of C-H Bond Adjacent to an Oxygen Atom[J]. Org Lett, 2010, 12(9): 1932-1935.
    [45] A General and Efficient FeCl3-Catalyzed Nucleophilic Substitution of Propargylic Alcohols [J]. J Org Chem. 2006, 71(21): 8298-8301.
    [46] Reddy M A, Reddy P S, Sreedhar B. Iron(Ⅲ) Chloride-Catalyzed Direct Sulfonylation of Alcohols with Sodium Arenesulfinates[J]. Adv Synth Catal, 2010, 352(11-12): 1861-1869.
    [47] Taniguchi T, Ishibashi H. Iron-Mediated Radical Nitro-Cyclization Reaction of 1,6-Dienes[J]. Org Lett, 2010, 12(1): 124-126.
    [48] Takacs J M, Vayalakkada S, Mehrman S J, et al. Iron-Catalyzed Enediene Carbocyclizations. The Total Synthesis of(-)-Gibboside[J]. Tetrahedron Lett, 2002, 43(11): 8417–8420.
    [49] Seitz W J, Hossain M M. Iron Lewis Acid Catalyzed Reactions of Phenyldiazomethane and Olefins: Formation of Cyclopropanes with Very High Cis Selectivity[J]. Tetrahedron Lett, 1994, 35(41): 7561-7564.
    [50] Mahmood S J, Saha A K, Hossaln M M. Iron Lewis Acid Catalyzed Reactions of Phenyldiazomethane with Aromatic Aldehydes[J]. Tetrahedron, 1998, 54(3-4): 349-358.
    [51] Redlich M, Hossain M M. Synthesis of asymmetric Iron-Pybox Complexes and Their Application to Aziridine Forming Reactions[J]. Tetrahedron Lett, 2004, 45(49): 8987–8990.
    [52] Barrett A G M, Mortier J, Sabat M, et al. Iron(Ⅱ) Vinylidenes and Chromium Carbene Complexes inβ-Lactam Synthesis[J]. Organometallics, 1988, 7(12): 2553-2561.
    [53] Bouwkamp M W, Bowman A C, Lobkovsky E, et al. Iron-Catalyzed[2π+ 2π] Cycloaddition ofα,ω-Dienes: The Importance of Redox-Active Supporting Ligands[J]. J Am Chem Soc, 2006, 128(32): 13340-13341.
    [54] Imhof W, Anders E, G?bel A, et al. A Theoretical Study on the Complete Catalytic Cycle of the Hetero-Pauson-Khand-Type[2+2+1] Cycloaddition Reaction of Ketimines, Carbon Monoxide and Ethylene Catalyzed by Iron Carbonyl Complexes[J]. Chem Eur J, 2003, 9(5): 1166-1132.
    [55] Ohara H, Kiyokane H, Itoh T. Cycloaddition of Styrene Derivatives with Quinone Catalyzed by Ferric Ion; Remarkable Acceleration in an Ionic Liquid Solvent System[J]. Tetrahedron Lett, 2002, 43(16): 3041-3044.
    [56] Itoh K, Sakamaki H, Horiuchi C A. One-Pot Synthesis of 3-Benzoyl- and 3-Acetyl-1,2,4-oxadiazole Derivatives Using Iron(III) Nitrate[J]. Synthesis, 2005(12): 1935–1938.
    [57] Viton F, Bernardinelli G, Kündig E P. Iron and Ruthenium Lewis Acid Catalyzed Asymmetric 1,3-Dipolar Cycloaddition Reactions between Nitrones and Enals[J]. J Am Chem Soc, 2002, 124(18): 4968-4969.
    [58] Eaton B E, Rollman B. The First Catalytic Iron-Mediated[4 + 1] Cyclopentenone Assembly: Stereoselective Synthesis of 2,5-Diakylidenecyclo-3-pentenones[J]. J Am Chem Soc, 1992, 114(15): 6245-6246.
    [59] Sigman M S, Eaton B E. Catalytic Iron-Mediated[4 + 1] Cycloaddition of Diallenes with Carbon Monoxide[J]. J Am Chem Soc, 1996, 118(47): 11783-11788.
    [60] Sigman M S, Kerr C E, Eaton B E. Catalytic Iron-Mediated Carbon-Oxygen and Carbon-Carbon Bond Formation in[4 + 1] Assembly of Alkylidenebutenolides[J]. J Am Chem Soc, 1993, 115(16): 7545-7546.
    [61] Sigman M S, Eaton B E. Low-Temperature Study of the Iron-Mediated[4 + 1] Cyclization of Allenyl Ketones with Carbon Monoxide[J]. Organometallics, 1996, 15(12): 2829-2832.
    [62] Sigman M S, Eaton B E. The First Iron-Mediated Catalytic Carbon-Nitrogen Bond Formation:[4 + 1] Cycloaddition of Allenyl Imines and Carbon Monoxide[J]. J Org Chem, 1994, 59(24): 7488-7491.
    [63] Chiara Breschi, Loris Piparo, Paolo Pertici, et al.(η6-Cyclohepta-1,3,5-triene)(η4-cycloocta-1,5-diene) iron(0) complex as attractive precursor in catalysis[J]. J Organometallic Chem, 2000, 607(1-2): 57–63.
    [64] Saino N, Kogure D, Kase K, et al. Iron-Catalyzed Intramolecular Cyclotrimerization of Triynes to Annulated Benzenes[J]. J Organometallic Chem, 2000, 691(14): 3129-3136.
    [65] Kurdyumov A V, Lin N, Hsung R P, et al. A Lewis Acid-Catalyzed Formal[3 + 3] Cycloaddition ofα,β-Unsaturated Aldehydes with 4-Hydroxy-2-Pyrone, Diketones, and Vinylogous Esters[J]. Org Lett, 2006, 8(2): 191-193.
    [66] Kündig E P, Saudan C M, Viton F. Chiral Cyclopentadienyl-Iron and -Ruthenium Lewis Acids Containing the Electron-Poor BIPHOP-F Ligand: a Comparison as Catalysts in an Asymmetric Diels-Alder Reaction[J]. Adv Synth Catal, 2001,343(1): 51-56.
    [67] Gorman D B, Tomlinson I A. Iron(Ⅲ) 2-ethylhexanoate as a Novel, Stereoselective Hetero-Diels–Alder Catalyst[J]. Chem Commun, 1998(42): 25-26.
    [68] Baldenius K U, Dieck H T, K?nig W A, et al. Enantioselective Syntheses of Cyclopentanoid Compounds from Isoprene and trans-1,3-Pentadiene[J]. Angew Chem Int Ed, 1992, 31(3): 305-307.
    [69] Fadel A, Salaün J. Anhydrous Ferric Chloride Dispersed on Silica Gel Induced Ring Enlargement of Tettiary Cycloalkanols.ⅡA Convenient Homologation of Cycloalkanones, Preparation of Spiro Systems and Propella-γ-lactones[J]. Tetrahedron, 1985, 41(7): 1267-1275.
    [70] Taber D F, Joshi P V, Kanai K. 2,5-Dialkyl Cyclohexenones by Fe(CO)5-Mediated Carbonylation of Alkenyl Cyclopropanes: Functional Group Compatibility[J]. J Org Chem, 2004, 69(7): 2268-2271.
    [71] Taber D F, Kanai K, Jiang Q, et al. Enantiomerically Pure Cyclohexenones by Fe-Mediated Carbonylation of Alkenyl Cyclopropanes[J]. J Am Chem Soc, 2000, 122(28): 6807-6808.
    [72] Hilt G, Bolze P, Heitbaum M, et al. Synthesis of Hexahydrocyclopenta[c]furans by an Intramolecular Iron-Catalyzed Ring Expansion Reaction[J]. Adv Synth Catal, 2007, 349(11-12): 2018-2026.
    [73] Hilt G, Walter C, Bolze P. Iron-Salen Complexes as Efficient Catalysts in Ring Expansion Reactions of Epoxyalkenes[J]. Adv Synth Catal, 2006, 348(10-11): 1241-1247.
    [74] Wei C, Li Z, Li C. The First Silver-Catalyzed Three-Component Coupling of Aldehyde, Alkyne, and Amine[J]. Org Lett, 2003, 5(23): 4473-4475.
    [75] Wei C, Li C. A Highly Efficient Three-Component Coupling of Aldehyde, Alkyne, and Amines via C-H Activation Catalyzed by Gold in Water[J]. J Am Chem Soc, 2003, 125(32): 9584-9585.
    [76] Lo V K, Liu Y, Wong M, et al. Gold(III) Salen Complex-Catalyzed Synthesis of Propargylamines via a Three-Component Coupling Reaction[J]. Org Lett, 2006, 8(8): 1529-1532.
    [77] Li C, Wei C. Highly Efficient Grignard-Type Imine Additions via C–H Activation in Water and Under Solvent-Free Conditions[J]. Chem Commun, 2002(3): 268-269.
    [78] Li PH, Zhang YC, Wang L. Iron-Catalyzed Ligand-Free Three-Component Coupling Reactions of Aldehydes, Terminal Alkynes, and Amines[J]. Chem Eur J, 2009, 15(9): 2045-2049.
    [79] Cao K, Zhang F, Tu Y, et al.. Iron(III)-Catalyzed and Air-mediated Tandem Reaction of Aldehydes, Alkynes and Amines: An Efficient Approach to Substituted Quinolines[J]. Chem Eur J, 2009, 15(26): 6332-6334.
    [80] a) Ouyang Y, Dong D, Liang Y, et al. Acid-Promoted Thioacetalization in Water using 2-(1,3-Dithian-2-ylidene)malonic Acid as an Odorless and Efficient Thioacetalization Reagent[J]. Synth Commun, 2007, 37: 993-1000; b) Dong D, Ouyang Y, Yu H, et al. Chemoselective Thioacetalization in Water: 3-(1,3-Dithian-2-ylidene)pentane 2,4-dione as an Odorless, Efficient, and Practical Thioacetalization Reagent[J]. J Org Chem, 2005, 70(11): 4535-4537.
    [81] Bi X, Dong D, Liu Q, et al.[5+1] Annulation: A Synthetic Strategy for Highly Substituted Phenols and Cyclohexenones[J]. J Am Chem Soc, 2005, 127(13): 4578-4579.
    [82] [5C+1N] Annulation: A Novel Synthetic for Functionalized 2, 3-Dihydro-4-pytidones[J]. Chem Commun, 2005(28), 3580-3582.
    [83] [5C+1S] Annulation: A Facile and Efficient Synthetic Route toward Functionalized 2, 3-Dihydrothiop- yran-4-ones[J]. J Org Chem, 2005, 70(26): 10886-10889.
    [84] Tan J, Xu X, Zhang L, et al. Tandem Double Michael Addition/Cyclization/Acyl Migration of 1,4-Dien-3-ones and Isocyanoacetate: A New Strategy for Stereoselective Synthesis of Pyrrolizidines[J]. Angew Chem Int Ed, 2009, 48(16): 2868-2872.
    [85] a) Zhang Z, Zhang Q, Sun S, Xiong T, et al. Domino Ring-Opening/Recyclization Reactions of Doubly Activated Cyclopropanes as a Strategy for the Synthesis of Furoquinoline Derivatives[J]. Angew Chem Int Ed, 2007, 46(10): 1726-1729; b) Zhang Q, Zhang Z, Yan Z, et al. A New Efficient Synthesis of Pyranoquinolines from 1-Acetyl N-Aryl Cyclopentanecarboxamides[J]. Org Lett, 2007, 9(18): 3651-3653; c) Zhang Z, Zhang Q, Ni Z, et al. Ag-Containing All Carbon 1,3-Dipoles: Generation and Formal Cycloaddition for Furo[3, 2-b]-β/γ-lactams[J]. Chem Commun, 2010, 46(8): 1269-1271; d) Xiong T, Zhang Q, Zhang Z, et al. A Divergent Synthesis ofγ-Iminolactones, Dihydroquinolin-2-ones andγ-Lactames fromβ-Hydroxymethylcyclopropanylamides[J]. J Org Chem, 2007, 72(21): 8005-8009.
    [86] Wang Q, Chen T, Bastow K F, et al. Altaicalarins A-D, Cytotoxic Bisabolane Sesquiterpenes from Ligularia Altaica[J]. J Nat Prod, 2010, 73(2): 139-142.
    [87] Heck R F, Nolley J P. Palladium-Catalyzed Vinylic Hydrogen Substitution Reactions with Aryl, Benzyl, and Styryl Halides[J]. J Org Chem, 1972, 37(14): 2320-2322.
    [88] Dieck H A, Heck R F. Organophosphinepalladium Complexes as Catalysts for Vinylic Hydrogen Substitution Reactions[J]. J Am Chem Soc, 1974, 96(4): 1133-1136.
    [89] Ben-David Y, Portnoy M, Gozin M, et al. Palladium-Catalyzed Vinylatlon of Aryl Chlorldes. Chelate Effect in Catalysis[J]. Organometallics, 1992, 11(6): 1995-1996.
    [90] Jutand A, Mosleh A. Rate and Mechanism of Oxidative Addition of Aryl Triflates to Zerovalent Palladium Complexes. Evidence for the Formation of Cationic(σ-Ary1)palladium Complexes[J]. Organometallics, 1995, 14(4): 1810-1817.
    [91] Stadler D, Bach T. Concise Stereselective Synthesis of(-)-Podophyllotoxin by an Intermolecular Iron(Ⅲ)-Catalyzed Friedel-Crafts Alkylation[J]. Angew Chem Int Ed, 2008, 47(39): 7557-7559.
    [92] Hansen A L, Skrydstrup T. Regioselective Heck Couplings ofα,β-Unsaturated Tosylates and Mesylates with Electron-Rich Olefins[J]. Org Lett, 2005, 7(25): 5585-5587.
    [93] Kelkar A A. The Vinylation of Aryl Iodides Using Homogeneous Platinum Complex Catalyst[J]. Tetrahedron Lett, 1996, 37(49): 8911-8920.
    [94] Na Y, Park S, Han S B, et al. Ruthenium-Catalyzed Heck-Type Olefination and Suzuki Coupling Reactions: Studies on the Nature of Catalytic Species[J]. J Am Chem Soc, 2004, 126(1): 250-258.
    [95] Zou G, Wang Z, Zhu J, et al. Rhodium-Catalyzed Heck-Type Reaction of Arylboronic Acids withα,β-Unsaturated Esters: Tuningβ-Hydrogen Elimination vs. Hydrolysis of Alkylrhodium Species[J]. Chem Commun, 2003(19): 2438-2439.
    [96] Iyer S, Ramesh C, Ramani A. Ni(0) Catalyzed Reactions of Aryl and Vinyl Halides with Alkenes and Alkynes[J]. Tetrahedron Lett, 1997, 38(49): 8533-8536.
    [97] Iyer S. The Vinylation of Aryl Iodides Catalysed by Co, Rh and Ir Complexes[J]. J Organometallic Chem, 1995, 490(1-2): C27-C28.
    [98] CalòV, Nacci A, Monopoli A, et al. Copper Bronze Catalyzed Heck Reaction in Ionic Liquids[J]. Org Lett, 2005, 7(4): 617-620.
    [99] Loska R, Volla C M R, Vogel P. Iron-Catalyzed Mizoroki-Heck Cross-Coupling Reaction with Styrenes[J]. Adv Synth Catal, 2008, 350(18): 2859-2864.
    [100] Jia C, Lu W, Oyamada J, et al. Novel Pd(II)- and Pt(II)-Catalyzed Regio- and Stereoselective trans-Hydroarylation of Alkynes by Simple Arenes[J]. J Am Chem Soc, 2000, 122(6): 1133-1136.
    [101] Shi Z, He C. Efficient Functionalization of Aromatic C-H Bonds Catalyzed by Gold(III) under Mild and Solvent-Free Conditions[J]. J Org Chem, 2004, 69(15): 3669-3671.
    [102] Tsuchimoto T, Maeda T, Shirakawa E, et al. Friedel-Crafts Alkenylation of Arenes Using Alkynes Catalysed by Metal Trifluoromethanesulfonates[J]. Chem Commun, 2000(17):1573-1574.
    [103] Li R, Wang S R, Lu W. FeCl3-Catalyzed Alkenylation of Simple Arenes with Aryl-Substituted Alkynes[J]. Org Lett, 2007, 9(11): 2219-2222.
    [104] Oyamada J, Jia C, Fujiwara Y, et al. Direct Synthesis of Coumarins by Pd(II)-Catalyzed Reaction of Alkoxyphenols and Alkynoates[J]. Chem Lett, 2002, 31(3): 380-381.
    [105] Jia C, Piao D, Kitamura T, et al. New Method for Preparation of Coumarins and Quinolinones via Pd-Catalyzed Intramolecular Hydroarylation of C-C Triple Bonds[J]. J Org Chem, 2000, 65(22): 7516-7522.
    [106] Komeyama K, Igawa R, Takaki K. Cationic Iron-Catalyzed Intramolecular Alkyne-Hydroarylation with Electron-Deficient Arenes[J]. Chem Commun, 2010, 46(9): 1748-1750.
    [107] Zotto C D, Wehbe J, Virieux D, et al. FeCl3-Catalyzed Intramolecular Hydroarylation of Alkynes[J]. Synlett, 2008(13): 2033–2035.x
    [108] Tsukada N, Mitsuboshi T, Setoguchi H, et al. Stereoselective cis-Addition of Aromatic C-H Bonds to Alkynes Catalyzed by Dinuclear Palladium Complexes[J]. J Am Chem Soc, 2003, 125(40): 12102-12103.
    [109] Lim Y, Lee K, Koo B T, et al. Rhodium(I)-Catalyzed ortho-Alkenylation of 2-Phenylpyridines with Alkynes[J]. Tetrahedron Lett, 2001,42(43): 7609-7612.
    [110] Chernyak N, Gevorgyan V. Exclusive 5-exo-dig Hydroarylation of o-Alkynyl Biaryls Proceeding via C-H Activation Pathway[J]. J Am Chem Soc, 2008, 130(17): 5636-5637.
    [111] Xu X, Chen J, Gao W, et al. Palladium-Catalyzed Hydroarylation of Alkynes with Arylboronic Acids[J]. Tetrahedron, 2010, 66(13): 2433-2438.
    [112] Kitamura T, Kobayashi S, Taniguchi H, et al. Vinylation of Aromatic Substrates with Solvolytically Generated Trisubstituted Vinyl Cations[J]. J Org Chem, 1982, 47(25): 5003-5009.
    [113] Takeda T, Kanamofu F, Matsljsita H, et al. The Friedel-Crafts Reaction of 1-(Phenylthio)vinyl Chlorides[J]. Tetrahedron Lett, 1991,32(45): 6563-6566.
    [114] Petasis N A, Lu S, Bzowej E I, et al. Organotitanium Compounds in Organic Synthesis[J]. Pure & Appl Chem, 1996, 68(3): 667-670.
    [115] Johnson C R, Tait B D. A Cerium(Ⅲ) Modification of the Peterson Reaction: Methylenation of Readily Enolizable Carbonyl Compounds[J]. J Org Chem, 1987, 52(2): 281-283.
    [116] Oh C H, Park S J. Palladium-Catalyzed Cycloreductions of Haloene-ynes in the Presence of Triethylsilane[J]. Tetrahedron Lett, 2003, 44(19): 3785–3787.
    [117] Staskun B. The Conversion of Benzoylacetanilides into 2- and 4-hydroxy Quinolines[J]. J Org Chem, 1964, 29(5): 1153-1157.
    [118] Sai K K S, Gilbert T M, Klumpp D A. Knorr Cyclizations and Distonic Superelectrophiles[J]. J Org Chem, 2007, 72(25): 9761-9764.
    [119] Hiroaki Kurouchi, Hiromichi Sugimoto, Yuko Otani, et al. Cyclization of Arylacetoacetates to Indene and Dihydronaphthalene Derivatives in Strong Acids. Evidence for Involvement of Further Protonation of O, O-Diprotonatedβ-Ketoester, Leading to Enhancement of Cyclization[J]. J Am Chem Soc, 2010, 132(2): 807-815.
    [120] O’Connor M J, Boblak K N, Topinka M J, et al. Superelectrophiles and the Effects of Trifluoromethyl Substituents[J]. J Am Chem Soc, 2010, 132(10): 3266–3267.
    [121] Bandini M, Sinisi R. Efficient Guanidine-Catalyzed Alkylation of Indoles with Fluoromethyl Ketones in the Presence of Water[J]. Org Lett, 2009, 11(10): 2093-2096.
    [122] Prakash G K S, Yan P, T?r?k B, et al. Superacid Catalyzed Hydroxyalkylation of Aromatics with Ethyl Trifluoropyruvate: A New Synthetic Route to Mosher’s Acid Analogs[J]. Synlett, 2003(4): 527-531.
    [123] Bi X, Zhang J, Liu Q, et al. Intramolecular Aza-Anti-Michael Addition of an Amide Anion to Enones: A Regiosoecific Approach to Tetramic Acid Dervatives[J]. Adv Synth Catal, 2007, 349(14-15): 2301-2306.
    [124] Meng J, Zhao Y, Ren C, et al. Highly Efficient Access to Bi- and Tricyclic Ketals via Gold-Catalyzed Tandem Reactions of 4-Acyl-1, 6-diynes[J]. Adv Synth Catal, 2008, 350(10): 1537-1543.
    [125] Zhang Z, Zhang Q, Yan Z, et al. One-Step Synthesis of the Tricyclic Core of Martinellic Acid from 2-(Cyanomethyl)-3-oxo-N-arylbutanami-des[J]. J Org Chem, 2007, 72(25): 9808-9810.
    [126] Kirsch R, Kleim J, Riess G, et al. Substiteted Quinoline Derivatives, a Process for Their Preparation, and Their Use[P]. US005798365A, 1998-8-25.
    [127] Bellina F, Rossi R. Synthesis and Biological Activity of Pyrrole, Pyrroline and Pyrrolidine Derivatives with Two Aryl Groups on Adjacent Positions[J]. Tetrahedron, 2006, 62(31): 7213–7256.
    [128] a) Loudet A, Burgess K. BODIPY Dyes and Their Derivatives: Syntheses and Spectroscopic Properties[J]. Chem Rev, 2007, 107(11): 4891-4932; b) Ulrich G, Ziessel R, Harriman A. The Chemistry of Fluorescent Bodipy Dyes: Versatility Unsurpassed[J]. Angew Chem Int Ed, 2008, 47(7): 1184-1201; c) Wienk M M, Turbiez M, Gilot J, et al. Narrow-Bandgap Diketo-Pyrrolo-PyrrolePolymer Solar Cells: The Effect of Processing on the Performance[J]. Adv. Mater. 2008, 20(13): 2556-2560; d) Park K, Schougaard S B, Goodenough J B. Conducting-Polymer/Iron-Redox-Couple Composite Cathodes for Lithium Secondary Batteries[J]. Adv. Mater. 2007, 19(6): 848-851.
    [129] Schmuck C, Rupprecht D. The Synthesis of Highly Functionalized Pyrroles: A Challenge in Regioselectivity and Chemical Reactivity[J]. Synthesis, 2007(20): 3095–3110.
    [130] Hantzsch A. Neue Bildungsweise von Pyrrolderivaten[J]. Ber Dtsch Chem Ges[J]. 1890, 23:1474-1476.
    [131] a) Knorr, L. Synthese von Pyrrolderivaten[J]. Ber Dtsch Chem Ges, 1884, 17(2): 1635-1642; b) Paal, C. Synthese von Thiophen- und Pyrrolderivaten[J]. Ber Dtsch Chem Ges, 1885, 18(1):367-371.
    [132] a) Barton, D. H. R.; Zard, S. J. A new synthesis of pyrroles from nitroalkenes[J]. J Chem Soc, Chem Commun, 1985(16): 1098-1100; b) Barton, D. H. R.; Kervagoret, J.; Zard, S. J. A Useful Synthesis of Pyrroles from Nitroolefins[J]. Tetrahedron, 1990, 46(21): 7587-7598.
    [133] Arcadi A, Giuseppe S D, Marinelli F, et al. Gold-Catalyzed Sequential Amination/Annulation Reactions of 2-Propynyl-1,3-dicarbonyl Compounds[J]. Adv Synth Catal, 2001,343(5): 443-446.
    [134] Seregin I V, Gevorgyan V. Gold-Catalyzed 1,2-Migration of Silicon, Tin, and Germanium en Route to C-2 Substituted Fused Pyrrole-Containing Heterocycles[J]. J Am Chem Soc, 2006, 128(37): 12050-12051.
    [135] Gorin D J, Davis N R, Toste F D. Gold(I)-Catalyzed Intramolecular Acetylenic Schmidt Reaction[J]. J Am Chem Soc, 2005, 127(32): 11260-11261.
    [136] Du X, Xie X, Liu Y. Gold-Catalyzed Cyclization of Alkynylaziridines as an Efficient Approach toward Functionalized N-Phth Pyrroles[J]. J Org Chem, 2010, 75(2): 510–513.
    [137] Saito A, Konishi T, Hanzawa Y. Synthesis of Pyrroles by Gold(I)-Catalyzed Amino-Claisen Rearrangement of N-Propargyl Enaminone Derivatives[J]. Org Lett, 2010, 12(2): 372-374.
    [138] Harrison T J, Kozak J A, Corbella-PanéM, et al. Pyrrole Synthesis Catalyzed by AgOTf or Cationic Au(I) Complexes[J]. J Org Chem, 2006, 71(12): 4525-4529.
    [139] Liu W, Jiang H, Huang L. One-Pot Silver-Catalyzed and PIDA-Mediated Sequential Reactions: Synthesis of Polysubstituted Pyrroles Directly from Alkynoates and Amines[J]. Org Lett, 2010, 12(2): 312-315.
    [140] Bian Y, Liu X, Ji K, et al. Efficient Synthesis of Highly Substituted Pyrroles Based on the Tandem Reactions: Intermolecular Amination and Pd(II)-Catalyzed Intramolecular Hydroamidation[J]. Tetrahedron, 2009, 65(7): 1424-1429.
    [141] Siriwardana A I, Kathriarachchi K K A D S, Nakamura I, et al. Synthesis of Pyridinylpyrrole Derivatives via the Palladium-Catalyzed Reaction of Acetylpyridines with Methyleneaziridines[J]. J Am Chem Soc, 2004, 126(46): 13898-13899.
    [142] Rajiv Dhawan and Bruce A. Arndtsen. Palladium-Catalyzed Multicomponent Coupling of Alkynes, Imines, and Acid Chlorides: A Direct and Modular Approach to Pyrrole Synthesis[J]. J Am Chem Soc, 2004, 126(3): 468-469.
    [143] Martn R, Rivero M R, Buchwald S L. Domino Cu-Catalyzed C-N Coupling/Hydroamidation: A Highly Efficient Synthesis of Nitrogen Heterocycles[J]. Angew Chem Int Ed, 2006, 45(42): 7079 -7082.
    [144] Larionov O V, Meijere A D. Versatile Direct Synthesis of Oligosubstituted Pyrroles by Cycloaddition ofα-Metalated Isocyanides to Acetylenes[J]. Angew Chem Int Ed, 2005, 44(35): 5664 -5667.
    [145] Chiba S, Wang Y, Lapointe G, et al. Synthesis of Polysubstituted N-H Pyrroles from Vinyl Azides and 1,3-Dicarbonyl Compounds[J]. Org Lett, 2008, 10(2): 313-316.
    [146] Mizuno A, Kusama H, Iwasawa N. Rhodium(I)-Catalyzed[4+1] Cycloaddition Reactions ofα,β-Unsaturated Imines with Terminal Alkynes for the Preparation of Pyrrole Derivatives[J]. Angew Chem Int Ed, 2009, 48(44): 8318-8320.
    [147] Chris V. Galliford and Karl A. Scheidt. Catalytic Multicomponent Reactions for the Synthesis of N-Aryl Trisubstituted Pyrroles[J]. J Org Chem, 2007, 72(5): 1811-1813.
    [148] Demir A S, Emrullahoglu M, Ardahan G. New Approaches to Polysubstituted Pyrroles and Pyrrolinones fromα-Cyanomethyl-β-Ketoesters[J]. Tetrahedron, 2007, 63(2): 461-468.
    [149] Wyr?bek P, Sniady A, Bewick N, et al. Microwave-assisted Zinc Chloride-Catalyzed Synthesis of Substituted Pyrroles from Homopropargyl Azides[J]. Tetrahedron, 2009, 65(7): 1268-1275.
    [150] Wong Y, Parthasarathy K, Cheng C. Cobalt-Catalyzed Regioselective Synthesis of Pyrrolidinone Derivatives by Reductive Coupling of Nitriles and Acrylamides[J]. J Am Chem Soc, 2009, 131(51): 18252-18253.
    [151] Rivera S, Bandyopadhyay D, Banik B K. Facile Synthesis of N-substituted Pyrroles via Microwave-Induced Bismuth Nitrate-Catalyzed Reaction[J]. Tetrahedron Lett, 2009, 50(39): 5445-5448.
    [152] Ackermann L, Sandmann R, Kaspar L T. Two Titanium-Catalyzed Reaction Sequences for Syntheses of Pyrroles from(E/Z)-Chloroenynes orα-Haloalkynols[J]. Org Lett, 2009, 11(9): 2031-2034.
    [153] Miura T, Yamauchi M, Murakami M. Nickel-Catalyzed Denitrogenative Alkyne Insertion Reactions of N-Sulfonyl-1,2, 3-Triazoles[J]. Chem Commun, 2009,(12): 1470–1471.
    [154] Liu X, Huang L, Zheng F, et al. Indium(III) Chloride-Catalyzed Propargylation/Amination/ Cyclo-isomerization Tandem Reaction: One-Pot Synthesis of Highly Substituted Pyrroles from Propargylic Alcohols, 1,3-Dicarbonyl Compounds and Primary Amines[J]. Adv Synth Catal, 2008, 350(17): 2778-2788.
    [155] Cadierno V, Gimeno J, Nebra N. One-Pot Three-Component Catalytic Synthesis of Fully Substituted Pyrroles from Readily Available Propargylic Alcohols, 1,3-Dicarbonyl Compounds and Primary Amines[J]. Chem Eur J, 2007, 13(35): 9973 -9981.
    [156] Ma S, Zhang J. Tuning the Regioselectivity in the Palladium(II)-Catalyzed Isomerization of Alkylidene Cyclopropyl Ketones: A Dramatic Salt Effect[J]. Angew Chem Int Ed, 2003, 42(2): 183-187.
    [157] Lu L, Chen G, Ma S. Ring-Opening Cyclization of Alkylidenecyclopropyl Ketones with Amines. An Efficient Synthesis of 2, 3, 4-Trisubstituted Pyrroles[J]. Org Lett, 2006, 8(5): 835-838.
    [158] Sigman M S, Eaton B E. The First Iron-Mediated Catalytic Carbon-Nitrogen Bond Formation:[4 +1] Cycloaddition of Allenyl Imines and Carbon Monoxide[J]. J Org Chem, 1994, 59(24): 7488-7491.
    [159] Maiti S, Biswas S, Jana U. Iron(III)-Catalyzed Four-Component Coupling Reaction of 1,3-Dicarbonyl Compounds, Amines, Aldehydes, and Nitroalkanes: A Simple and Direct Synthesis of Functionalized Pyrroles[J]. J Org Chem, 2010, 75(5): 1674–1683.
    [160] Bellur E, Langer P. Synthesis of Functionalized Pyrroles and 6,7-Dihydro-1H-Indol-4(5H)-ones by Reaction of 1,3-Dicarbonyl Compounds with 2-Azido-1,1-Diethoxyethane[J]. Tetrahedron Lett, 2006, 47(13): 2151–2154.
    [161] Cacchi S, Fabrizi G, Filisti E. N-Propargylicβ-Enaminones: Common Intermediates for the Synthesis of Polysubstituted Pyrroles and Pyridines[J]. Org Lett, 2008, 10(13): 2629-2632.
    [162] Arcadi A, Rossi E. Synthesis of Functionalised Furans and Pyrroles through Annulation Reactions of 4-Pentynones[J]. Tetrahedron, 1998, 54(50): 15253-15272.
    [163] Barluenga J, Trincado M, Rubio E, et al. IPy2BF4-Promoted Intramolecular Addition of Masked and Unmasked Anilines to Alkynes: Direct Assembly of 3-Iodoindole Cores[J]. Angew Chem Int Ed, 2003, 42(21): 2406-2409.
    [164] Tejedor D, González-Cruz D, García-Tellado F, et al. A Diversity-Oriented Strategy for the Construction of Tetrasubstituted Pyrroles via Coupled Domino Processes[J]. J Am Chem Soc, 2004, 126(27): 8390-8391.
    [165] Lu Y, Arndtsen B A. A Direct Phosphine-Mediated Synthesis of Pyrroles from Acid Chlorides andα,β-Unsaturated Imines[J]. Org Lett, 2009, 11(6): 1369-1372.
    [166] St Cyr D J, Arndtsen B A. A New Use of Wittig-Type Reagents as 1,3-Dipolar Cycloaddition Precursors and in Pyrrole Synthesis[J]. J Am Chem Soc, 2007, 129(41): 12366-12367.
    [167] St Cyr D J, Martin N, Arndtsen B A. Direct Synthesis of Pyrroles from Imines, Alkynes, and Acid Chlorides: An Isocyanide-Mediated Reaction[J]. Org Lett, 2007, 9(3): 449-452.
    [168] Khalili B, Jajarmi P, Eftekhari-Sis B, et al. Novel One-Pot, Three-Component Synthesis of New 2-Alkyl-5-aryl-(1H)-pyrrole-4-ol in Water[J]. J Org Chem, 2008, 73(6): 2090-2095.
    [169] Zhu Q, Jiang H, Li J, et al. Concise and Versatile Multicomponent Synthesis of Multisubstituted Polyfunctional Dihydropyrroles[J]. J Comb Chem, 2009, 11(4): 685–696.
    [170] a) Bertolini F, Woodward S. Rapid 1,4-Alkynylation of Acyclic Enones Using K[F3BCCR][J]. Synlett, 2009(1): 51-54; b) Arcadi A, Attanasi A, de Crescentini L, Rossi E, Serra-Zanetti F. Synthesis and Transition Metal Catalysed Reactions of 1-Ureido-3-Propargyl-2,3-Dihydropyrrol-2-ols, 1-Ureido-3-Propargyl- Pyrroles and 1-Ureido-3-Propargyl-3-Phosphono-1H-Pyrrol-2(3H)-ones[J].Tetrahedron, 1996, 52(11): 3997-4012; c) Yamaguchi M, Hayashi A, Hirama M. Direct Formation of Reactive Alkynyltrichlorotins from 1-Alkynes, SnCl4, and Bu3N. A Mild Alkynylation Reagent of Aldehydes, Acetals, and Enones[J]. Chem Lett, 1992(21): 2479-2482; d) Nicholas K M, Mulvaney M, Bayer M. Synthetic Applications of Transition-Metal-Stabilized Carbenium Ions. Selective Alkylation of Ketones and Ketone Derivatives with(Propargyl)Dicobalt Hexacarbonyl Cations[J]. J Am Chem Soc. 1980, 102(7): 2508-2510; e) Stork G, Brizzolara A, Landesman H, Szmuskovicz J, Terrel R. The Enamine Alkylation and Acylation of Carbonyl Compounds[J]. J Am Chem Soc, 1963, 85(2): 207-222; f) Stork G, ltertell R, Szmuszkovicz J. A New Synthesis of 2-Alkyl and 2-Acylketones[J]. J Am Chem Soc, 1954, 76(7): 2029-2030; g) Brown C, Chong J, Shen L. An Efficient Synthesis of 2, 3, 5- Trisubstituted Furans fromα,β-Unsaturated Ketones[J]. Tetrahedron, 1999, 55(50): 14233-14242.
    [171] Greenhill J V. Enaminone[J]. Chem Soc Rev, 1977, 6(3): 277-294.
    [172] Negri G, Kascheres C, Kascheres A. Recent Development in Preparation Reactivity and Biological Activity of Enaminoketones and Enaminothiones and Their Utilization to Prepare Heterocyclic Compounds[J]. J Heterocycl Chem, 2004, 41: 461-491.
    [173] a)李明,郭维斯,文丽荣,等.烯胺酮的合成及其在有机合成中的应用[J].有机化学,2006, 26(9):1192-1207; b) Elassar A A, El-Khair A A. Recent Developments in the Chemistry of Enaminones[J]. Tetrahedron, 2003, 59(43): 8463-8480.
    [174] Gaber H M, Bagley M C. Unlocking the Chemotherapeutic Potential ofβ-Aminovinyl Ketones and Related Compounds[J]. Chem Med Chem, 2009, 4(7): 1043 -1050.
    [175]邓爵安,申东升,荆亚萍.烯胺酮(酯)类化合物合成研究进展[J].化学研究与应用,2010, 22(3):276-282.
    [176] a) El-Taweei F M A A, Elangdi M H. Studies with Enaminones: Synthesis of New Cournarin-3-yl Azoles, Coumarin-3-yl Azines, Coumarin-3-yl Azolozines, Coumarin-3-yl Pyrone and Coumarin-2-yl Benzo[b]Furans[J]. J Heterocycl Chem, 2001,38: 981-984; b) Al-Omran F. Studies with 1-Functionally Substituted Alkylbenzotriazoles: An Efficient Route for the Synthesis of 1-Azolylbenzotriazoles, Benzotriazolylazines and Benzotriazolylazoloazines[J]. J Heterocycl Chem, 2000, 37: 1219-1223; c) Tseng S S, Epstein J W, Brabander H J, et al. A Simple Regioselective Synthesis of Pyrimido[1,2-a]benzimidazoles[J]. J Heterocycl Chem, 1987, 24: 837-843.
    [177] Selected examples: a) Epifano F, Genovese S, Curini M. Ytterbium Triflate Catalyzed Synthesis ofβ-Enaminones[J]. Tetrahedron Lett, 2007, 48(15): 2717-2720; b) Ge H, Niphakis M J, Georg G I. Palladium(II)-Catalyzed Direct Arylation of Enaminones Using Organotrifluoroborates[J]. J Am Chem Soc, 2008, 130(12): 3708-3709; c) Serrano P, Lebaria A L, Delgado A. An Unexpected Chelation-Controlled Yb(OTf)3-Catalyzed Aminolysis and Azidolysis of Cyclitol Epoxides[J]. J Org Chem, 2002, 67(20): 7165-7167.
    [178] Reddy D S, Rajale T V, Shivakumar K, et al. A Mild and Efficient Method for the Synthesis of Vinylogous Carbamates from Alkyl Azides[J]. Tetrahedron Lett, 2005, 46(6-7): 979-982.
    [179] Haak E. Ruthenium-Catalyzed Enaminoketone Formation from Propargyl Alcohols[J]. Synlett, 2006(12): 1847-1848.01.
    [180] Haight A R, Stuk T L, Menzia J A, et al. A Convenient Synthesis of Enaminones Using Tandem Acetonitrile Condensation, Grignard Addition[J]. Tetrahedron Lett, 1997, 38(24): 4191-4194.
    [181] a) Domínguez E, Ibeas E, Marigorta E M d, et al. A Convenient One-Pot Preparative Method for 4,5-Diarylisoxazoles Involving Amine Exchange Reactions[J]. J Org Chem, 1996, 61(16): 5435-5439; b) Marco Fogagnolo, Pier Paolo Giovannini, Alessandra Guerrini, et al. Homochiral(R)- and(S)-1-Heteroaryl- and 1-Aryl-2-propanols via Microbial Redox[J]. Tetrahedron: Asymmetry, 1998, 9(13): 2317-2327.
    [182] a) Singh M O, Junjappa H, Ila H. Reaction of Lithioamino Anions withα-Oxoketene Dithioketals: an Improved and a New General Method for the Synthesis ofα-Oxoketene S,N- and N,N-Ketals[J]. J Chem Soc, Perkin Trans 1, 1997(23): 3561-3566; b) Kohra S, Turuya S, Kimura M, et al. Reaction ofα-Oxoketene Dithioacetals with Arylamines in the Presence of BF3·OEt2 for the Synthesis of Ketene S, N-Acetals[J]. Chem Pharm Bull, 1993, 41(7): 1293-1296.
    [183] Seko S, Tani N. A Novel Two-step Preparation of Enaminoketones by Amination ofα,β-Unsaturated Ketones with Methoxyamine[J]. Tetrahedron Lett, 1998, 39(44): 8117-8120.
    [184] Alizadeh A, Babaki M, Zohreh N. Solvent-Free Synthesis of Hydrazine-Substituted Enaminones via a One-Pot Four-Component Reaction[J]. Synthesis, 2008(20): 3295–3298.x
    [185] Adbel-Khalik M M, Elnagdi M H, Agamy S M. Studies with Functionally Substituted Heteroaromatics: The Chemistry of N-Phenylhydrazonylalkylpyridinium Salts and of Phenylhydrazonylalkylbenzoazoles[J]. Synthesis, 2000(8): 1166-1169.
    [186] Schenone P, Fossa P, Menozzi G. Reaction of 2-Dimethylaminomethylene-l, 3-diones with Dinucleophiles. X. Synthesis of 5-Substituted Ethyl or Methyl 4-Isoxazolecarboxylates and Methyl 4-(2, 2-Dimethyl-1-oxopropyl)-5-isoxazolecarboxylate[J]. J Heterocycl Chem, 2001,38: 981-984.
    [187] Elghamry I. Synthesis of Ethyl Pyrrole-2-carboxylates: A Regioselective Cyclization of Enaminones under Knorr-Type Conditions[J]. Synth Commun, 2002, 32(6): 897-902.
    [188] a) Reddy G J, Latha D, Thirupathaiah C, et al. A Facile Synthesis of 2, 3-Disubstituted-6- arylpyridines From Enaminones Using Montmorillonite K10 as Solid Acid Support[J]. Tetrahedron Lett, 2005, 46(2): 301-302; b) Fischer M, Troschütz R. Synthesis of Substituted Phenyl 2- Aminopyridine-3-sulfonates[J]. Synthesis, 2003(10): 1603-1609; c) Gr?f E, Troschütz R. Synthesis of 6-Phenyl Substituted 2-Formylnicotinates[J]. Synthesis, 1999(7): 1216-1222.
    [189] a) Wang S, Meades C, Wood G, et al. 2-Anilino-4-(thiazol-5-yl)pyrimidine CDK Inhibitors: Synthesis, SAR Analysis, X-ray Crystallography, and Biological Activity[J]. J Med Chem, 2004, 47(7): 1662-1675; b) Porcheddu A, Giacomelli G, De Luca L, et al. A“Catch and Release”Strategy for the Parallel Synthesis of 2, 4, 5-Trisubstituted Pyrimidines[J]. J Comb Chem, 2004, 6(1): 105-111.
    [190] Al-Omran F, Khalik M M A, Abou-Elkhair A, et al. Studies With Functionally Substituted Heteroaromatics: A Novel Route for the Synthesis of 1-Aryl-6-oxopyridazinones, 1-Arylpyridazine-6-imines and 1-Aryl-6-imino-4-pyridazinals[J]. Synthesis, 1997(1): 91-94.
    [191] a) Paradkar V M, Latham T B, Krishnaswami A. Reaction of -Keto Ethyleneacetals with Hydroxylamine: A Correction[J]. J Heterocycl Chem, 1993, 30: 1497-1500; b) Bargagna A, Erangelisti F, Schenone P. Reaction of -Keto Ethyleneacetals with Hydroxylamine: A Correction Reaction of Ketenes with N, N-Disubstituted a-Aminomethyleneketones VIII. Synthesis of N, N-Disubstituted 4-Amino-3-chloro-6-phenyl-2H-pyran-2-ones[J]. J Heterocycl Chem, 1979, 16: 93-96.
    [192] Abdel-Khalik M M, Elnagdi M H. Enaminones in Organic Synthesis: A Novel Synthesis of 1,3, 5-Trisubstituted Benzene Derivatives and of 2-Substituted-5-Aroylpyridines[J]. Synth Commun, 2002, 32(2): 159-164.
    [193] San Martin R, de Marigorta E M, Dominguez E. A Convenient Alternative Route toβ-Aminoketones[J]. Tetrahedron, 1991, 50(7): 2255-2264
    [194] Nakamura T, Sato M, Kakinuma H, et al. Pyrazole and Isoxazole Derivatives as New, Potent, and Selective 20-Hydroxy-5, 8, 11, 14-eicosatetraenoic Acid Synthase Inhibitors[J]. J Med Chem, 2003, 46(25): 5416-5427.
    [195] Kang J, Liang F, Sun S, et al. Copper-Mediated C-N Bond Formation via Direct Aminolysis of Dithioacetals[J]. Org Lett, 2006, 8(12): 2547-2550.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700