带有机械臂的球形机器人若干问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
带有机械臂的球形机器人是在现有球形机器人的基础上,融合多臂机器人特点的一种移动机器人。这种机器人一方面能够进行全方位行走运动,同时又具有对外界环境进行灵活操作的能力,具有广泛的应用前景。本论文以一种新型的带有机械臂球形机器人为主要研究对象,并借助1个移动关节5个旋转关节(1P5R)和3个旋转关节(3R)的柔性关节机械臂模型对该球形机器人的若干问题进行较为深入的研究。论文建立了一种带有机械臂球形机器人的动力学模型,提出了欠驱动球形机器人惯性参数的辨识方法,设计了球形机器人球壳静止时的柔性关节机械臂的动力学控制策略,并提出了一种运动状态下的关节面物理参数辨识方法。主要研究工作如下:
     1.分析了一种具有13个刚体、15个自由度的带有机械臂球形机器人系统的运动特性。以球壳为基座,球壳内部的驱动装置、两侧的球冠以及球冠内部的臂杆为连杆,分析了系统各构件的运动规律;充分考虑非完整约束条件,得到了各构件的偏速度、偏角速度、广义主动力和广义惯性力的表达式。利用Kane方程建立了系统质量分布均匀时的动力学模型。对球壳沿直线及S曲线行走时各关节力/力矩以及球壳欧拉角分别进行了仿真分析。
     2.针对欠驱动球形机器人动力学模型的特点,提出了基于惯性测量单元(IMU)传感器的惯性参数辨识方法。根据Kane方法建立了系统质量分布不均匀时的动力学模型,利用模型中的三个欠驱动方程推导出了球形机器人惯性参数辨识模型;以一种新型的带有机械臂球形机器人为实验平台,根据安装在球形机器人内框上的惯性测量单元实测信息,对所提辨识方法进行了实验验证。实验结果表明该方法简单可行,同时为其它欠驱动机器人惯性参数辨识提供了一种新的思路。
     3.将球形机器人球壳静止时的臂杆操作系统假想为带有移动关节和旋转关节的机械臂系统,建立了6自由度柔性关节机械臂的刚柔耦合动力学模型,并在该模型的基础上,详细讨论了1P5R(1个移动关节、5个旋转关节)柔性关节机械臂的反馈线性化控制方法。在系统工作空间内设计轨迹生成器,借助MATLAB软件工具,采用数值方法分别对同一路径下两种不同运动状态的轨迹进行了跟踪仿真控制。该研究对于合理规划机械臂末端操作轨迹有很好的指导意义。
     4.针对带有机械臂球形机器人的多连杆柔性关节机械臂,设计了基于高斯径向基函数(RBF)神经网络的滑模控制器,该控制器利用神经网络的逼近能力,将各关节的切换函数作为网络的输入,系统的控制量作为网络的输出,控制器完全由连续的RBF神经网络实现。利用该控制器与线性二次型跟踪器以及传统滑模控制器对三连杆柔性关节机械臂进行了轨迹跟踪控制仿真,并对结果进行了对比分析。
     5.针对柔性关节机械臂关节面参数的时变特性,提出了一种多体机械系统运动状态下关节面参数辨识的新方法。将机械臂柔性关节等效为弹性扭转轴,并将应用于结构中的行波分析方法与机器人关节旋转变换矩阵相结合,建立了运动机构系统的波导方程。根据系统各结点力平衡与位移边界条件,建立了运动状态下系统激励预测模型,根据预测出的系统激励以及实验测量得到的关节扭转角等因素,建立了系统振动方程。分别采用最小二乘法和神经网络方法对上述方程进行求解,推导出了关节动态刚度和阻尼的辨识模型。以两种不同的运动轨迹驱动3自由度机械臂,对其进行了辨识实验研究。
The spherical robot with arms is different from the present spherical robot. It is a novel structure of robot, which combines the advantages of general spherical robot with traditional manipulator robot. This type of robot has excellent performance, including high maneuverability to the environment and omni-direction movement, so it will have far-ranging application perspective in various fields. In this dissertation, all research work is mainly on a newtype of spherical robot with arms, but for the purpose of convenient, the platforms of 1 prismatic joint and 5 revolute joints (1P5R) flexible manipulator and 3 revolute joints (3R) flexible manipulator are under consideration as well. Some critical technique about this spherical robot is discussed deeply and detailly in this dissertation. The innovational work includes deriving the dynamic model of the spherical robot, presenting an approach to identify inertial parameters of the underactuated spherical robot, designing an intelligent controller for flexible joint manipulator, and proposing an approach to identify joint parameters of the flexible joint robot under movement. The detail specification of this work will be shown as follow:
     At the beginning of the dissertation, a novel structure of spherical robot with arms was introduced. This robot has 13 rigid bodies and 15 degrees of freedom (DOF). Kinemetic characteristic of the robot was detailly analyzed. Regarding the sphere shell of the robot as the base and the driving installations inside the shell plus the sphere caps and the arms inside the caps as the links, law of motion of each link was analyzed. Considering the condition of nonholonomic constraints fully, partial velocity, partial angle velocity, generalized active force and generalized inertia force of each link were derived respectively. Based on Kane's equation, dynamic model of the spherical robot was derived ultimately. Joints forces/torques and Euler angles of the robot were analyzed respectively after rectilinear motion and sigmoid curve motion simulation.
     Secondly, according to the characteristic of the dynamic model of spherical robot, an approach based on inertial measurement unit (IMU) to identify inertial parameters of the underactuated spherical robot was presented. Considering the condition of asymmetrical mass distribution in each link of the spherical robot, dynamical model was constructed with Kane's method, and accordingly, the inertial parameters identification model was derived. Aming at a newtype of spherical robot, the proposal identification method was examplified by an identification experiment according to the information from IMU fixed on the frame of the robot. The experimental result shows that the identification datum are reasonable, and the proposal approach is simple and feasibly, which is a good guidline for inertial parameters identification of other underactuated robots.
     Thirdly, based on the assumption that the arms system of the spherical robot can be taken as the manipulator system of prismatic joints and revolute joints when the sphere shell was immobile, the dynamic model of rigid-flexible coupling system of a 6DOF flexible joint manipulator was established.According to the dynamic model, a feedback linearization controller of 1P5R manipulator was discussed detailedly. Furthermore, the trajectory was designed in workspace of the system, and tracking controls under the condition of two different motions at the same route were simulated numerically with MATLAB. This research is a good guidance for rationally planning the trajectory of manipulator endpoint.
     Fourthly, aiming at the multiple-links flexible joint arms of the spherical robot, a sliding mode controller for manipulator was proposed based on Gaussian Radial Basis Function Neural Networks (GRBFNN). Regarding the switching function of each joint as the input and the controlling variables as ouput of RBFNN, the proposed controller was realized by continuous RBF neural network using the approximation ability of the network. The simulations of tracking control of three-links flexible joint manipulator was done with the proposed controller, and the linear quadratic regulator (LQR) tracker and traditional sliding mode controller (SMC) comparely.
     Finally, focusing on the time-variant joint surface parameters of the flexible joint manipulator, a new approach to identify joint parameters of the flexible joint manipulator under the condition of moving states was presented. Regarding a flexible joint as an elastic twist axis, and combining the wave theory used in structures analysis with rotation transform matrix of joints, the wave equations of mechanism were established. Considering the condition of generalized forces balance and displacement boundary of each joint, the stimulator prediction model of the system under the condition of moving states was derived. Vibration equations were derived according to the predicted stimulator and the measuring twist angles of joints. Joint dynamic stiffness and damping were identified via solving the former identification model by use of least square method (LSM) or neural network method. Experiments on a 3-DOF manipulator were performed when driving the manipulator under two different trajectories.
引文
[1]Halme A., Schonberg T., and Wang Y. Motion Control of a Spherical Mobile Robot [A].4th IEEE International Workshop on Advanced Motion Control [C], Mie University, Japan,1996: 259-264.
    [2]Bicchi A., Balluchi A., Prattichizzo D., and Gorelli A. Introducing the Sphericle:An Experimental Testbed for Research and Teaching in Nonholonomy [A]. Proceeding of the 1997 IEEE International Conference on Robotics and Automation [C], Albuquerque, New Mexico, April 1997:2620-2625.
    [3]Chemel B., Mutschler E., Schempf H. Cyclops:Miniature Robotic Reconnaissance System [A]. Proceedings of the 1999 IEEE International Conference on Robotics and Automation [C], Detriot, Michigan, May 1999:2298-2302.
    [4]Bhattacharya S., Agrawal S.K. Spherical Rolling Robot:A Design and Motion Planning Studies [J]. IEEE Transactions on Robotics and Automation,2000,16(6):835-839.
    [5]Javadi A. A. H., Mojabi P. Introducing August:A Novel Strategy for an Omnidirectional Spherical Rolling Robot [A]. Proceedings of the 2002 IEEE International Conference on Robotics and Automation [C], Washington, DC, May 2002:3527-3533.
    [6]Antol J., Calhoun P., Flick J., Hajos G., Kolacinski R., Minton D., Owens R., and Parker J. Low Cost Mars Surfaceexploration:The Mars Tumbleweed [A]. August 2003, NASA Langley Research Center. NASA/TM-2003-212411.
    [7]Bruhn F. C., Pauly K., Kaznov V. Extremely Low Mass Spherical Rovers for Extreme Environments and Planetary Exploration Enabled with Mems [A]. Proceeding of the 8th International Symposium on Artifical Intelligence, Robotics and Automation in Space [C], Munich, Germany, September 2005:347-354.
    [8]Michaud F., Laplante J. F., Larouche H., et al. Autonomous Spherical Mobile Robot for Child-Development Studies [J]. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans,2005,35(4):471-480.
    [9]Otani T., Urakuboi T., Maekawa S., et al. Position and Attitude Control of a Spherical Rolling Robot Equipped with a Gyro [A].9th IEEE International Workshop on Advanced Motion Control [C], Istanbul, Turkey,2006:416-421.
    [10]付清岭.全方位球形机器人的研究[D].北京:北京邮电大学,2003.
    [11]战强,贾川,马晓辉,陈明.一种球形机器人的运动性能分析[J].北京航空航天大学学报,2005,31(7):744-747.
    [12]戴武城.球形机器人的设计和运动学、动力学分析及运动学计算机仿真[D].上海:上海交通大学机械与动力工程学院,2001.
    [13]岳明.球形运动器的研究[D].哈尔滨:哈尔滨工业大学,2004.
    [14]邓宗全,岳明.球形机器人的发展概况综述[J].机器人技术与应用,2006,3:27-31.
    [15]邓宗全,岳明,禹鑫燚,方海涛.球形运动器动力学分析及控制系统设计[J].机器人,2006,28(6):565-570.
    [16]肖爱平,孙汉旭,廖启征.一种球形机器人的设计与原理分析机[J].机电产品开发与创新,2004,17(1):14-16.
    [17]肖爱平,孙汉旭,谭月胜等.一种球形机器人运动轨迹规划与控制[J].机器人,2004,26(5):444-447.
    [18]Xiao A. P., Sun H. X., Tan Y. S. et al. Kinematics Analysis on a Spherical Robot [A]. Pro-ceedings of SPIE-Intelligent Robots and Computer Vision ⅩⅩⅢ:Algorithms, Techniques, and Active Vision [C]. Boston, Massachusetts, USA,2005, Vol.60061D:1-9.
    [19]孙汉旭,肖爱平,贾庆轩,王亮清.二驱动球形机器人的全方位运动特性分析[J].北京航空航天大学学报,2005,31(7):735-739.
    [20]Zhuang W., Liu X. P., Fang C. W., Sun H. X. Dynamic Modeling of a Spherical Robot with Arms by Using Kane's Method [A]. Proceedings of the 4th International Conference on Natural Computation [C], ICNC 2008,4:373-377.
    [21]Zhuang W., Fang C. W., Liu X. P., Sun H. X. Kinematics Simulation of A Spherical Robot with Arms Based on Virtual Prototype Technology [A]. Third Asia International Symposium on Mechatronics [C], AISM,2008:239-244.
    [22]李团结,朱超.基于虚拟样机技术的球形机器人运动仿真研究[J].系统仿真学报,2006,18(4):1026-1029.
    [23]李团结,朱超.一种具有稳定平台可全向滚动的球形机器人设计与分析[J].西安电子科技大学学报(自然科学版),2006,33(1):53-56.
    [24]Li T. J., Zhang Y. G., Zhang Y. Approaches to Motion Planning for a Spherical Robot Based on Differential Geometric Control Theory [A]. Proceedings of the 6th World Congress on Intelligent Control and Automation [C], Dalian China,2006:8918-8922.
    [25]金康进.球形机器人及其控制策略研究[D].上海:上海交通大学,2005.
    [26]金康进,施光林.基于DSP的新型球形机器人控制器设计[J].微型机与应用,2005,7:30-31.
    [27]Zhan Qiang, Zhou Tingzhi, Chen Ming, Cai Sanlong. Dynamic Trajectory Planning of a Sphe-rical Mobile Robot [A].2006 IEEE Conference on Robotics, Automation and Mechatronics [C], June 2006:1-6.
    [28]Zhan Qiang, Cai Yao, Liu Zengbo. Near-Optimal Trajectory Planning of a Spherical Mobile Robot for Environment Exploration [A].2008 IEEE Conference on Robotics, Automation and Mechatronics [C], Chengdu, China, September 2008:84-89.
    [29]曹骁炜.带臂球形机器人关键技术的研究[D].北京:北京邮电大学,2008.
    [30]Zheng Y. L., Sun H. X., Jia Q. X., et al. An Omni-Directional Rolling Spherical Robot with Telescopic Manipulator [A]. Proceedings of 2nd IEEE International Symposium on Systems and Control in Aeronautics and Astronautics [C], ISSCAA,2008:1-6.
    [31]Sun H. X., Zheng Y. L., Jia Q. X., Shi C. K. The Dynamic Analysis and Control Strategy of Spherical Robot with Telescopic Manipulator [A]. Proceedings of SPIE-The International Society for Optical Engineering, Space Exploration Technologies Ⅱ [C],2009,7331:
    [32]梅凤翔.非完整系统力学基础[M].北京:北京工业学院出版社,1985.
    [33]哈尔滨工业大学理论力学教研室.理论力学[M].高等教育出版社,2002.
    [34]Bhattacharya S., Agrawal S.K. Design, Experiments and Motion Planning of a Spherical Rolling Robot [A]. Proceeding of the 2000 IEEE International Conference on Robotics and Automation [C], San Francisco, and April,2000:1207-1212.
    [35]邱秉权.分析力学[M].北京:中国铁道出版社,1998.
    [36]Camicia C., Conticelli F., and Bicchi A.Nonholonomic Kinematics and Dynamics of the Sphericle [A]. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems [C], Takamatsu, Japan,2000,1:805-810.
    [37]李团结,严天宏,张学锋.一种全向滚动球形机器人的动力学建模与仿真[J].系统仿真学报,2007,19(18):4239-4242.
    [38]李团结,严天宏,张学锋.一种全向滚动球形机器人的动力学分析与仿真[J].西安电子科技大学学报(自然科学版),2007,34(3):414-417.
    [39]熊有伦.机器人学[M].北京:机械工业出版社,1992.
    [40]袁士杰,吕哲勤.多刚体系统动力学[M].北京:北京理工大学出版社,1992.
    [41]Kane T. R., Levinson D. A. The Use of Kane's Dynamical Equations in Robotics [J]. Inter-national Journal of Robotics Research,1983,2(3):3-21.
    [42]王亮清,孙汉旭,贾庆轩.球形机器人的圆周运动分析[J].机器人,2007,29(1) 56-6.
    [43]王亮清.球形移动机器人的动力学和静态稳定研究[D].北京:北京航天航空大学,2007.
    [44]刘正士,陈恩伟,干方建.机器人惯性参数辨识的若干方法及进展[J].合肥工业大学学报(自然科学版),2005,28(9):998-1003.
    [45]孙昌国,马香峰,谭吉林.机器人操作器惯性参数的计算[J].机器人,1990,12(2):19-24.
    [46]Tourassis V. D., Neuman C. P. The Inertial Characteristics of Dynamic Robot Models [J]. Mechanism and Machine Theory,1985,20(1):41-52.
    [47]Armstrong B., Khutib O., Burdick J. The Explicit Dynamic Model and Inertial Parameters of the PUMA560 Arm [A]. IEEE Conference on Robotics and Automation [C]. San Francisco, April,1986,510-518.
    [48]Da Lio M., Doria A., Lot R. A Spatial Mechanism for the Measurement of the Inertia Tensor: Theory and Experimental Results [J]. Journal of Dynamic Systems Measurement and Control, 1999,121:111-116.
    [49]Fregolent A., Sestieri A. Identification of Rigid Body Inertia Properties from Experimental Frequency Response [A].10th International Modal Analysis Conference [C]. San Diego,1992, 219-225.
    [50]Toivola J., Nuutila O. Comparison of Three Methods for Determining Rigid Body Inertia Properties from Frequency Response Function [A].11th International Modal Analysis Conference (Vol.2) [C], Kissimmee FL,1993,1126-1132.
    [51]曾庆华.结构惯性参数动态测试与识别[J].航空学报,1994,15(11):1315-1320.
    [52]Hu P. S. Determination of Rigid Body Characteristics from Time Domain Modal Analysis [J]. Journal of Sound and Vibration,1994,177(1):31-41.
    [53]Liu G. J., Iagnemma K., Dubowsky S., et al. A Base Force/Torque Sensor Approach to Robot Manipulator Inertial Parameter Estimation [A]. IEEE Conference on Robotics and Automation [C]. Leuven, Belgium, May,1998:3316-3321.
    [54]Olsen M. M., Peterson H. G. A New Method for Estimating of a Dynamic Robot Model[J]. Journal of Robotics and Automation,2001,17(1):95-100.
    [55]李杨民,刘又午,张大钧等.机器人的动力学参数辨识[J].组合机床与自动化加工技术,1995,(5):14-17.
    [56]武志云,付利民.机器人操作手惯性参数的有限元算法[J].内蒙古工业大学学报,1995,14(3):7-11.
    [57]王树新,张海根,黄铁球等.机器人动力学参数辨识方法的研究[J].机械工程学报,1999,35(1):23-26.
    [58]Atkeson C. G., An C. H., Hollerbuch J. M. Estimation of Inertial Parameters of Manipulator Loads and Links [J]. Journal of Robotics Research,1986,5(3):101-109.
    [59]Gautier M., Khalil W. Direct Calculation of Minimum Set of Inertial Parameters of Serial Robots [J]. Journal of Robotics and Automation,1990,6(3):368-372.
    [60]Khalil W., Bennis F. Comments on'Direct Calculation of Minimum Set of Inertial Parameters of Serial Robots'[J]. Journal of Robotics and Automation,1994,10(1):78-79.
    [61]Khalil W., Guegan S. Inverse and Direct Dynamic Modeling of Gough-Stewart Robots [J]. IEEE Transaction on Robotics,2004,20(4):754-762.
    [62]Lin S. K. Minimal Linear Combinations of the Inertial Parameters of a Manipulator [J]. Journal of Robotics and Automation,1995,11(3):360-373.
    [63]Yoshida K., Khalil W. Verification of the Positive Definiteness of the Inertial Matrix of Manipulators Using Base Inertial Parameters [J]. Journal of Robotics Research,2000,19(5): 498-510.
    [64]陈恩伟.机器人动态特性及动力学参数辨识研究[D].安徽:合肥工业大学,2005.
    [65]陈恩伟,刘正士,干方建.基于腕力传感器的机器人操作臂惯性参数辨识方法[J].机器人,2006,28(2):125-129.
    [66]杨建新,余跃庆.基于6维力/力矩传感器的并联机器人惯性参数辨识方法[J].机械科学与技术,2006,25(7):764-766.
    [67]黄用华,余跃庆,苏丽颖,杨建新.模块化机器人的惯性参数辨识研究[J].微计算机信息,2007,23(1):266-268.
    [68]Spong M. W. Modeling and Control of Elastic Joint Robots [J]. Transaction of the ASME: Journal of Dynamic Systems, Measurement, and Control,1987,109:310-319.
    [69]Spong M. W. Adaptive Control of Flexible Joint Manipulators [J]. Systems and Control Letters, 1989,13:15-21.
    [70]Khorasani K. Nonlinear Feedback Control of Flexible Joint Manipulators:A Single Link Case Study [J]. IEEE Transactions on Automatic Control,1990,35(10):1145-1149.
    [71]Ghorbel F., Hung J. Y., Spong M. W. Adaptive Control of Flexible-Joint Manipulators [J]. IEEE Control Systems Magazine,1989,9(7):9-13.
    [72]Slotine J. J. E., Li W. Adaptive Manipulator Control:A Case Study [J]. IEEE Transactions on Automatic Control,1988,33(11):995-1003.
    [73]Yang Z. J., Sadler J.P. Finite Element Analysis of Revolute Manipulator with Link and Joint Compliance by Joint-Beam Elements [A]. Robotics, Spatial robot and Mechanical System ASME Design Technical Conference [C],1992:619-630.
    [74]Beneallegue A., Msirdi N. Passive Control for Robot Manipulators with Elastic Joint [A]. Proceeding of IMACS MCTS 91, Modeling and Control of Technological Systems [C], Lille, France,1991,1:481-487.
    [75]Tomei P. Tracking Control of Flexible Joint Robots with Uncertain Parameters and Dis-turbances [J]. IEEE Transactions on Automatic Control,1994,39(5):1067-1072.
    [76]Erbarur K., Vinter R. B., Kaynak O. Feedback Linearization Control for a 3-DOF Flexible Joint Elbow Manipulator [A]. Proceedings of the 1994 IEEE International Conference on Robotics and Automation [C]. San Diego,1994:2979-2984.
    [77]Huang A. C., Chen Y. C. Adaptive Sliding Control for Single-Link Flexible-Joint Robot with Mismatched Uncertainties [J]. IEEE Transactions on Control Systems Technology,2004,12(5): 770-775.
    [78]Abdollahi F., Talebi H. A., Patel R. V. A Stable Neural Network-Based Observer with Appli-cation to Flexible-Joint Manipulators [J]. IEEE Transactions on Neural Networks,2006,17(1): 118-129.
    [79]Chien M. C., Huang A. C. Adaptive Control for Flexible-Joint Electrically Driven Robot with Time-Varying Uncertainties [J]. IEEE Transactions on Industrial Electronics,2007,54(2): 1032-1038.
    [80]Park C. W. Robust Stable Fuzzy Control via Fuzzy Modeling and Feedback Linearization with its Applications to Controlling Uncertain Single-Link Flexible Joint Manipulators[J]. Journal of Intelligent and Robotic Systems:Theory arid Applications,2004,39(2):131-147.
    [81]Chatlatanagulchai W., Meckl P. H. Intelligent Control of a Two-Link Flexible-Joint Robot, using Backstepping, Neural Networks, and Direct Method [A]. IEEE/RSJ International Confe-rence on Intelligent Robots and Systems [C],2005:1594-1599.
    [82]Patel A., Neelqund R, Wathore A., et al. Robust Control of Flexible Joint Robot Manipulator [A]. Proceedings of the IEEE International Conference on Industrial Technology [C], ICIT, 2006:649-653.
    [83]Yim J. G., Yeon J. S., Park J. H., et al. Robust Control using Recursive Design Method for Flexible Joint Robot Manipulator[A]. Proceedings of the IEEE International Conference on Robotics and Automation [C], ICRA,2007:3805-3810
    [84]邱志成.基于特征模型的柔性关节机械臂的控制[J].系统仿真学报,2002,14(8):971-974.
    [85]彭济根,倪元华,乔红.柔性关节机操手的神经网络控制[J].自动化学报,2007,33(2):175-180.
    [86]刘金琨.机器人控制系统的设计与Matlab仿真[M].北京:清华大学出版社,2008.
    [87]张晓东,贾庆轩,孙汉旭,褚明.空间机器人柔性关节轨迹控制研究[J].宇航学报,2008,29(6):1865-1870.
    [88]刘业超,金明河,刘宏.柔性关节机器人基于柔性补偿的奇异摄动控制[J].机器人,2008,30(5):460-466.
    [89]刘业超,刘伊威,刘宏.柔性关节机器人奇异摄动控制[J].电机控制学报,2009,13(3):436-441.
    [90]刘国华,李亮玉,赵继学.考虑反向齿面啮合力的齿轮系统时变啮合刚度的研究[J].天津工业大学学报,2006,25(6):54-57.
    [91]刘晓平,李景湧,员超等.120kg点焊机器人运动状态下的动态特性分析[J].中国机械工程,2002,13(13):1137-1140.
    [92]刘晓平,彭朝阳,刘玉刚等.基于模糊优化辨识模块化机器人关节动力学参数[J].机械工程学报,2003(4):66-70.
    [93]刘晓平,彭朝阳.基于传递函数的机械结构结合面参数模糊辨识[J].西南交通大学学报,2003(5):521-525.
    [94]Li Yangmin, Liu Yugang, Liu Xiaoping, Peng Zhaoyang. Parameters Identification and Vibration Control in Modular [J]. IEEE/ASME Transactions on Mechatronics,2004,9(4):700-705.
    [95]静大海.机器人关节面时变物理参数在线识别方法的研究[D].北京:北京邮电大学,2007.
    [96]静大海,刘晓平.机器人关节面时变物理参数在线识别的谐波传播法[J].机械工程学报,2009,24(4):641-645.
    [97]静大海,刘晓平.运动状态下机器人关节面物理参数在线模糊辨识方法[J].北京邮电大学学报,2008,31(1):52-56.
    [98]Noiseux D. U. Measurement of Power Flow in Uniform Beams and Plates [J]. Journal of the Acoustical Society of America,1970,47(1):238-247.
    [99]Pavic G. Measurement of Structure Borne Wave Intensity, part Ⅰ:Formulation of the Methods [J]. Journal of Sound and Vibration,1976,49(2):221-230.
    [100]Verheij J. W. Cross Spectral Density Methods for Measuring Structure Borne Power Flow on Beams and Pipes [J]. Journal of Sound and Vibration,1980,70(1):133-138.
    [101]Pavic G. Determination of Sound Power-flow in Structures:Principles and Problems of Realization [A]. Proceedings of International Congress on Recent Development in Acoustic Intensity Measurement [C], Senlis, France,1981:209-215.
    [102]Taylor P. D. Measurement of Structure Intensity, Reflection Coefficient and Termination Impedance for Bending Waves in Beams [A]. Proceeding of the 3rd International Congress on Intensity Techniques [C], CETIM, Senlis, France,1990:249-256.
    [103]Trolle J. T., Luzzato E. Application of Structure Intensity for Diagnostic in One Dimension Problem [A]. Proceeding of the 3rd International Congress on Intensity Techniques [C], CETIM, Senlis, France,1990:397-404.
    [104]Honein B., Braga A. M. B., Barbone P., Herrmann G. Wave Propagation in Piezoelectric Layered Media with Some Applications [J]. Journal of Intelligent Material Systems and Structures,1991,2(4):542-557.
    [105]Hambric S. A., Taylor P. D. Comparison of Experimental and Finite Element Structure-Bome Flexural Power Measurements for a Straight Beam [J]. Journal of Sound and Vibration,1994, 170(5):595-605.
    [106]Pinnington R. J., Briscoe A. R. Externally Applied Sensor for Axisymmetric Waves in a Fluid Filled Pipe [J]. Journal of Sound and Vibration,1994,173(4):503-516.
    [107]Tso Y. K., Norwood C. J. Vibratory Power Transmission through Three Dimensional Beam Junctions [J]. Journal of Sound and Vibration,1995,185(4):595-607.
    [108]Briscoe A. R., Pinnington R. J. Axisymmetric Vibrational Power Measurement in Empty and Fluid Filled Pipes [J]. Journal of Sound and Vibration,1996,192(4):771-791.
    [109]Von Flotow A. H. Traveling Wave Control for Large Spacecraft Structures [J]. Journal of Guidance, Control and Dynamics,1986,9(4):462-468.
    [110]Miller D. W., Von Flotow A. H. A Traveling Wave Approach to Power Flow in Structural Networks [J]. Journal of Sound and Vibration,1989,128(1); 145-162.
    [111]Beale L. S., Accorsi M. L. Power Flow in Two-and Three-Dimensional Frame Structures [J]. Journal of Sound and Vibration,1995,185(4):685-702.
    [112]Muggleton J. M., Brennan M. J., Pinnington R. J. Wave Number Prediction of Waves in Buried Pipes for Water Leak Detection [J]. Journal of Sound and Vibration,2002,249(5):939-954.
    [113]朱桂东,崔祜涛,郑钢铁等.框架结构振动分析的行波方法[J].应用力学学报,1998,15(4):60-65.
    [114]任建亭,邓长华,姜节胜.基于行波方法的智能悬臂梁振动控制[J].振动工程学报,2006,19(1):98-103.
    [115]邓长华,任建亭,任兴民等.管道联接件参数识别的行波法[J].应用力学学报,2007,24(4):584-587.
    [116]洪善桃.高等动力学[M].上海:同济大学出版社,1996.
    [117]李增刚.ADAMS入门详解与实例[M].北京:国防工业出版社,2006.
    [118]郑凯,胡仁喜,陈鹿民.ADAMS 2005机械设计高级应用实例[M].北京:机械工业出版社,2006.
    [119]熊有伦.机器人技术基础[M].武汉:华中理工大学出版社,1996.
    [120]Khosla P. K. Categorization of Parameters in the Dynamic Robot Model [J]. IEEE Transaction on Robotics and Automation,1989,5(3):261-268.
    [121]Craig J. J.,负超等译.Introduction to Robotics Mechanics and Control (Third Edition) [M]. Beijing:China Machine Press,2005.
    [122]Khalil H. K.,朱义胜等译.Nonlinear Systems (Third Edition) [M]. Beijing:Publishing House of Electronics Industry,2005.
    [123]褚明,贾庆轩,孙汉旭等.空间柔性操作臂的动力学/控制耦合特性研究[J].北京邮电大学学报,2008,31(3):98-102.
    [124]Moody J., Darken C. Fast Learning in Networks of Locally-Tuned Process Units [J], Neural Computation,1989,1:281-294.
    [125]Onder Efe M., Kaynak O., Yu X. H., Wilamowski B. M. Sliding Mode Control of Nonlinear Systems Using Gaussian Radial Basis Function Neural Networks [A]. International Joint Conference on Neural Networks [C],2001,1:474-479.
    [126]Huang S. J., Huang K. S., Chiou K. C. Development and Application of a Novel Radial Basis Function Sliding Mode Controller [J]. Mechatronics,2003,13(4):313-329.
    [127]刘金琨.滑模变结构控制Matlab仿真[M].北京:清华大学出版社,2005.
    [128]朱大奇,史慧.人工神经网络原理及应用[M].北京:科学出版社,2006.
    [129]孙增圻,张再兴,邓志东.智能控制理论与技术[M].北京:清华大学出版社,1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700