松节油催化歧化反应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以松节油为原料进行催化歧化反应的研究,在线跟踪分析松节油催化歧化反应过程中主要化学组成随时间和温度变化的关系,分析歧化反应产物的组成,寻找最佳歧化反应工艺条件,建立松节油催化歧化反应动力学模型。主要研究成果如下:
     采用美国Varian CP-3380型气相色谱仪分析松节油歧化产物的组成,色谱条件为BP×5毛细管色谱柱;氮气流速45mL·min~(-1);氢气流速30mL·min~(-1);空气流速300mL·min~(-1);载气柱前压0.07MPa;检测器温度523.15K;汽化室温度523.15K;分流比50:1;进样量0.01μL;灵敏度10;柱温为五阶程序升温
     通过均匀设计安排实验,考察搅拌转速、催化剂用量、松节油与硫酸的配比、反应温度、反应时间五个因素对松节油催化歧化反应的影响,获得了Pd/C催化歧化松节油的最佳工艺条件为:催化剂用量为0.2%(以松节油重量计)、松节油和硫酸体积比为1.0、反应温度393.15K、反应时间10h、搅拌转速500r·min~(-1)、N_2保护气,蒎烯平均转化率达98.03%、对伞花烃评产率达61.02%。
     以Pd/C和20%H_2SO_4为催化剂,在353.15K-393.15K五个水平下,对松节油催化歧化反应动力学进行研究,根据Arrhenius方程,经线性回归得到双环单萜开环异构反应、双环单萜加氢反应和单环单萜脱氢反应的指前因子k_0以及反应活化能E_a,其值分别为k_(01)=6.49×10~9 h~(-1),k_(03)=3.41×10~8h~(-1),k_(04)=6.35×10~(10) h~(-1);E_(α1)=77.86kJ·mol~(-1),E_(α3)=71.33 kJ·mol~(-1),E_(α4)=80.18kJ·mol~(-1),同时得到它们的反应速率常数分别为k_1=6.49×10~9 exp(-1126.4/T),k_3=3.41×10~8 exp(-1031.9/T),k_4=6.35×10~(10)exp(-1159.9/T)。结果表明,k值随着温度的升高而增大,在所考察温度范围内,单萜烯反应可近似看作一级反应(α_1≈α_3≈α4≈1)。根据建立的动力学方程及关联出的各参数进行模型检验,模型计算值与实验数据吻合良好。
The reaction kinetics of catalytic disproportionation of turpentine as raw material was investigated, and on-line tracking analysis for the changes of major chemical components during catalytic disproportionation of turpentine was studied. Meanwhile, the optimal process conditions for preparation of p-cymene from turpentine were searched. After main chemical components of disproportionated products were determined, we discussed the reaction kinetic model of catalytic disproportionation of turpentine. The main contents as follows.
     CP-3380 gas chromatography of Varian in America was chosen to analyze the components of disproportionated turpentine. The settled conditions of chromatogram used were: BP×5 capeillary column of chromatogram, the flow rate of nitrogen as carrier gas 45mL·min~(-1), the flow rate of hydrogen 30mL·min~(-1), the flow rate of air 300mL·min~(-1), pressure before columniation 0.07MPa, temperature of check machine 523.15K, temperature of boil room 523.15K, split stream ratio 50:1, sample volume 0.01μL, range 10, and raising temperature by five steps program
     The results showed that the materials ratio, the amounts of catalyst, stirring rate, reaction temperature and reaction time were the main influencing factors.
     By uniform design method, the influence of those five factors above on the disproportionation of turpentine were studied further. So the optimal reaction conditions have been determined by uniform design software as follows: materials ratio of turpentine to sulfate 1.0, the amounts of catalyst 0.2%, stirring rate 500r·min~(-1), reaction temperature 393.15K, reaction time 10h. Under the best processing condition, optimized result was demonstrated by three parallel experiments. Quantity of the disproportionated products were analyzed by capillary column GC Analyse Method, in which the average yield of pinene was 98.03% (mass percent), and the average yield of p-cymene was 61.02% (mass percent).
     The reaction kinetics of catalytic disproportionation of turpentine over Pd/C catalyst and 20% H_2SO_4 were investigated at temperature 353.15K-393.15K. The kinetic model parameters in Arrhenims equation were also determined, and pre-exponential factors were k_(01)=6.49×10~9h~(-1), k_(03)=3.41×10~8h~(-1), k_(04)=6.35×10~(10)h~(-1), and the activation energies were E_(a1)=77.86kJ·mol~(-1), E_(a3)=71.33kJ·mol~(-1), E_(a4)=80.18kJ·mor~(-1) separately, while the reaction rate constants were confirmed as k_1=6.49×l0~9exp(-1126.4/T),k_3=3.41×10~8exp(-1031.9/T),k_4=6.35×10~(10)exp(-1159.9/T) for opening-ring reaction of bicyclic monoterpene, hydrogenation reaction of bicyclic monoterpene, and dehydrogenation reaction of momocyclic monoterpene respectively. The final results demonstrated that kincrease with temperature increasing. In the scope of the above temperatures monoterpene hydrogenation and dehydrogenation can be regarded as the first order reactions(α_1≈α_3≈α_4≈1). Through proof-tested using the kinetic models and parameters, it was showed that the calculated results were agreed well with the experimental data.
引文
[1]黄知清,覃勇,杨春波.松节油的研究进展及广西发展前景[J].广西化纤通讯,2001, (1):37-41
    
    [2]赵振东,刘先章.松节油的精细化学利用Ⅷ[J].林产化工通讯,2002,36(2):37-42
    
    [3]刘全志.对异丙基甲苯的制备[J].现代应用药学,1996,13(5):39-40
    
    [4] Bledsoe J O J. Kirk-Othmer encyclopedia of chemical technology (4th Edition)[M]. New York: Wiley, 2003. 1249-1258
    
    [5]宋湛谦.中国松香松节油的研究概况[J].林产化学与工业,2004,24(8):7-11
    
    [6]王宗德,宋湛谦.松节油合成香料的研究现状(一)[J].精细与专用化学品,2003,(12): 3-5
    
    [7]李佶辉,哈成勇.对异丙基甲苯的合成研究进展[J].化学通报,2004,(12):21-25
    
    [8]胡贵贤,刘宪章.对伞花烃氢过氧反应及合成高纯度对甲酚的研究[J].林产化学与 工业,1998,18(1):35-39
    
    [9] Wichterlovi B, Cejka J, Zilkovt N. Selective synthesis of cumene and p-cymene over Aland Fe silicates with large and medium pore structures[J]. Microporous Materials, 1996,(6): 405-414
    
    [10] Philis J G The S_1←So specturm of jet-cooled p-cymene[J]. Spectrochimica Acta Part A,2005,61:1239-1241
    
    [11] Binitha N N, Sugunan S. p-Cymene preparation over modified montmorillonite clays[J].Catalysis Communications, 2007, (8): 1793-1797
    
    [12] Weyricha P A, Trevifio H, Holderich W F. Characterization of Ce promoted, zeolitesupported Pd catalysts [J]. Applied Catalysis A General, 1997,163: 31-44
    
    [13] Buhl D, Weyricha P A, Sachtlerb W M H, et al. Support effects in the Pd catalyzeddehydrogenation of terpene mixtures to p-cymene[J]. Applied Catalysis A General,1998,171:1-11
    
    [14] Buhl D, Roberge D M, Holdericha W F. Production of p-cymene from a-limonene oversilica supported Pd catalysts[J]. Applied Catalysis A General, 1999,188:287-299
    
    [15] Martin-Luengo M A, Yates M, Marti'nez-Domingo M J, et al. Synthesis of p-cymenefrom limonene, a renewable feedstock[J]. Applied Catalysis B Environmental, 2008, 81:??218-224
    
    [16] Zhao C, Gan W J, Fan X B, et al. Aqueous-phase biphasic dehydroaromatization ofbio-derived limonene into p-cymene by soluble Pd nanocluster catalysts[J]. Journal ofCatalysis, 2008,254:244-250
    
    [17] Hoelderich W, Fischer R, Mross W D. Preparation of alkyl benzenes[P]. USP: 4665252,1987
    
    [18] Martin R, Gramlich W. Preparation of p-cymene and homologous alkylbenzenes[P]. USP:4720603,1988
    
    [19] Dieter B, Peter W, Wolfgang H. Preparation of paracymene from mixture of terpenes asrenewable feed stock[J]. Science and Technology in Catalysis, 1998,121:191-196
    
    [20] Lesage P, Candy J P, Hirigoyen C, et al.Selective dehydrogenation ofdipentene(R-(+)-limonene)into paracymene on silica supported palladium assisted byα-olefms as hydrogen acceptor[J]. Journal of Molecular Catalysis A, 1996,112:431-435
    
    [21] Du J M, Xu H, Shen J, Huang J J, Shen W. Catalytic dehydrogenation and cracking ofindustrial dipentene over M/SBA-15 [J]. Applied Catalysis A General, 2005, 296(2):186-193
    
    [22]胡贵贤,刘先章.双戊烯加工利用的研究[J].林产化学与工业,1993,13(4):305-310
    
    [23]刘德臣,孙志强,郭清华.工业双戊烯气相催化脱氢制对伞花烃的研究[J].精细化 工,1998,15(6):42-45
    
    [24]刘德臣,孙志强,郭清华.工业双戊烯气相催化脱氢制对伞花烃机理初探[J].烟台 大学学报,1999,12(1):50-56
    
    [25]张庆,任艳惠.对-异丙基甲苯的实验室制备研究[J].林产化工通讯,2001,35(2): 14-17
    
    [26]吴志平,杨国恩.双戊烯合成对伞花烃的工艺研究[J].中南林学院学报,2001,21(1): 48-49
    
    [27] Roberge D M, Buhl D, Niederer J P M, et al. Catalytic aspects in the transformation of pinenes to p-cymene[J]. Applied Catalysis A General, 2001,215: 111 -124
    
    [28]王廖沙.由α-蒎烯制取对伞花烃液相反应条件的确定及催化剂的选择[J].化学世界, 2001,39(3):131-133,165
    
    [29]李凝.以松节油为原料合成对异丙基甲苯[J].精细化工,2002,19(8):477-481
    
    [30]袁渭康,朱开宏.化学反应工程分析[M].上海:华东理工大学出版社,1995.88-97
    
    [31] Ranzi E, Dente M, Goldaniga A, et al. Lumping procedures in detailed kinetic modelingof gasification, pyrolysis, partial oxidation and combustion of hydrocarbon mixtures [J].Progress in Energy and Combustion Science, 2001, 27: 99-139
    
    [32] Nieto O, Nino M, Martinez R, et al. Simulation of a spouted bed reactor for solid catalystalkylation[J]. Fuel, 2007, 86: 1313-1324
    
    [33] Valla J A, Lappas A A, Vasalos I A. Catalytic cracking of thiophene and benzothiophene:Mechanism and kinetics[J]. Applied Catalysis A General, 2006, 297: 90-101
    
    [34]王建平,许先煜,翁惠新,等.加氢渣油催化裂化14集总动力学模型的建立[J].化 工学报,2007,58(1):86-74
    
    [35] Singh J, Kumar M M, Saxena A K, et al. Reaction pathways and product yields in mildthermal cracking of vacuum residues:A multi-lump kinetic model[J]. Journal ofChemical Engineering, 2005,108: 239-248
    
    [36] Meng X H, Xu C M, Gao J S, et al. Catalytic pyrolysis of heavy oils:8-lump kineticmodel[J]. Applied Catalysis A:General, 2006, 301(1): 32-38
    
    [37] Jimenez G, Aguilar R, Leon E, et al. Scaling-up of instantaneous data of complexkinetics[J]. Fuel, 2007, 86: 1278-1281
    
    [38]周良模.气相色谱新技术(第1版)[M].北京:科学出版社,1994.3-8
    
    [39]王宇成.最新色谱分析检测方法及应用技术实用手册[M].吉林:吉林省出版发行 集团,2004.11-17
    
    [40]傅若农.色谱分析概率[M].北京:化学工业出版社,2000.6-8
    
    [41]中国科学院大连化学物理研究所编.气相色谱法[M].北京:科学出版社,1978. 166-168
    
    [42]汪正范.色谱定性与定量[M].北京:化学工业出版社,2000.12-15
    
    [43]麦克法登W H.气相色谱-质谱联用技术在有机分析中的应用[M].北京:科学出版 社,1983.72-76
    
    [44]何华,倪坤仪.现代色谱分析[M].北京:化学工业出版社,2004.167-168
    
    [45]汪正范,杨树民,吴伸天,等.色谱联用技术[M].北京:化学工业出版社,2001. 63-64
    
    [46]杜斌,张振中.现代色谱技术[M].郑州:河南医科大学出版社,2001.49-50
    
    [47]金鑫荣.气相色谱法[M].北京:高等教育出版社,1987.281-286
    
    [48]许国旺.现代实用气相色谱法[M].北京:化学工业出版社.2004.216-217
    
    [49]邓正龙.化工中的优化方法[M].北京:化学工业出版社,2003.132-135
    
    [50]江体乾.化工数据处理[M].北京:化学工业出版社,1984.89-93
    
    [51]史建公,洪定一,韩春国.均匀设计及其在化工中的应用[J].石油化工.1995,24(4): 264-267
    
    [52]夏之宁,湛其亭,穆小静.正交设计与均匀设计的初步比较[J].重庆大学学报.1999, 22(5):112-116
    
    [53]方开泰.均匀设计——数论方法在实验设计的应用[J].应用数学学报,1980,3(4): 363
    
    [54]方开泰,马长兴.正交与均匀实验设计[M].北京:科学出版社,2001.107
    
    [55] Brahme P H, Doralswamy L K. Modeling of slurry reaction, hydrogenation of glucose on raney nickel[J]. Industrial and Engineering Chemistry Process Design and Development. 1976,15(1): 130-137
    
    [56]王琳琳,李丽明,陈小鹏,等.Pd/C上松香催化歧化反应集总动力学[J].化工学报, 2007,58(2):371-377
    
    [57] Portugal I, Vital J, Lobo L S. Resin acids isomerization: a kinetic study [J]. Chemical Engineering Science. 1992,47(9): 2671-2676

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700