中国藏族人群CYP2D6基因多态性分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
药物基因组学是研究与药物代谢相关基因的多态性与药物反应关系的学科。细胞色素P450超家族是人体重要的I相药物代谢酶,参与很多种内源性和外源性物质的代谢反应。CYP2D6是一种重要的药物代谢酶,主要在肝脏中表达,虽然含量比其他亚家族低,但是参与了市场上20%-25%药物的代谢,包括精神安定药、抗心律失常药、镇痛药、抗抑郁药、止吐药以及一些抗癌药等。
     CYP2D6的酶活性会受到很多因素的影响,比如遗传因素、年龄、身体状况、饮食习惯等,CYP2D6具有多态性,可以导致酶活性的丧失、降低或者增高,从而影响药物的代谢,目前有70多种不同的CYP2D6基因突变被报道,常见的很大程度降低酶活性的等位基因有CYP2D6*10、CYP2D6*17和CYP2D6*41。CYP2D6*10有两个点突变,主要存在于亚洲人群中,是造成黄种人为中间代谢者(IMs)的主要因素,而在高加索人群中比较少见,频率低于2%。所以,对于CYP2D6基因多态性的研究对于临床用药,提高药物的疗效及用药安全性有重要意义,进而可以为药物基因组学研究提供理论依据。
     目前,对于中国汉族人群CYP2D6多态性研究已有报道,中国是一个地域辽阔、多民族的国家,而藏族是人数较多的少数民族之一,一些重要基因的多态性可能与汉族人群有所不同。所以,本实验的研究对象是西藏自治区95例藏族健康人,用DNA直接测序的方法,对CYP2D6基因的启动区、外显子、内含子及3'-UTR测序。
     研究结果主要有以下几个方面:在藏族人群中,一共检测到了51个单核苷酸突变位点,其中有12个新位点;分析统计了西藏自治区藏族人群CYP2D6等位基因,主要类型是CYP2D6*1、CYP2D6*2、CYP2D6*10、CYP2D6*34和CYP2D6*41,频率较高是等位基因是*1(野生型)、*2和*10,分别为31.4%,30.4%和33.6%;通过Haploview分析了主要SNPs间的连锁不平衡和单倍型;将本研究得到的我国西藏自治区藏族人群CYP2D6基因多态性和其他民族种族进行对比,发现存在较大的差异。
     本实验对我国西藏藏族人群CYP2D6基因多态性的研究,是首次对藏族人群CYP2D6基因遗传多态性的全面检测和分析,对于建立我国少数民族CYP2D6基因多态性数据库,为药物基因组学研究最终实现个体化治疗提供了理论依据。
Pharmacogenetics is a study of how genetic polymorphism related to drug metabolism works with drug efficacy. Cytochrome P450 super family is the important phasel drug metabolizing enzyme which involves in the metabolism of many endogenous and exogenous substrates. CYP2D6 exists in the liver, metabolizes up to 20%-25% of the prescribed drugs including many neuroleptic, anti-arrhythmic, analgesics, antidepressants, antiemetics and anticancer drugs.
     The enzyme activity of C YP2D6 would be influenced by a lot of factors, such as genetic differences, ages, physical conditions and life style, ect. Polymorphism of the gene coding CYP2D6 can lead to different levels expressions of enzyme activity, completely loss, decrease or increase which affects the metabolism of drugs. More than 70 different alleles of CYP2D6 have been described up to date, the common alleles decreasing the enzyme activity greatly are CYP2D6*10, CYP2D6* and CYP2D6*41. For the Asian groups, allele CYP2D6*10 is the most common one which contains two point mutations explaining the main cause of intermediate metabolizers among the yellow-skinned people, while it is rarely found in the Caucasians. Therefore, studying of CYP2D6 polymorphism is clinically helpful to evaluate drug safety and efficacy, and then provide a theory basis for pharmcogenetic research.
     There have been some studies on the polymorphism of CYP2D6 in the Chinese Han population. China is a nation of great land mass and large population. Tibetan, as one of the minorities, some of the important gene polymorphic sites may vary with Chinese Han population. In this study, we systematically screened the polymorphisms of the whole CYP2D6 gene, including the 5'flanking region, all exons, and all introns, in the Chinese Tibetan, sample of 95 healthy subjects from the Tibet autonomous region.
     The results of this study:In Chinese Tibetan population, a total of 51 different genetic polymorphisms were detected in the CYP2D6 gene, including 12 novle ones; We analyzed the CYP2D6 alleles and genotype frequencies, the main alleles were CYP2D6*1, CYP2D6*2, CYP2D6*10, CYP2D6*34 and CYP2D6*41, the most frequent alleles were the allele*1,*2 and*10, occur at frequencies of 31.4,30.4and 33.6%, respectively; We investigated the LD pattern and haplotype construction of this gene in this population by Haploview; We also compared frequencies of CYP2D6 alleles and genotypes with those of other national and ethnic populations, the results indicate significant differences in different populations.
     This study is the first one which takes a fully analysis on the genetic polymorphism of CYP2D6 in the Chinese Tibetan and helps build a database of CYP2D6 alleles and genotype frequency among minorities as well as provides a theory basis for eventually individualized therapy.
引文
[1]Eichelbaum, M., Ingelman-Sundberg, M.,& Evans, W. E. Pharmacogenomics and individualized drug therapy[J]. Annu Rev Med,2006; 57:119-137
    [2]Martin A., Karen F., Idle J R., et al. The cytochrome P450 2D6 allelic variant and related polymorphisms in a European population[J]. Pharmacogenetics,1994; 4(2):73-81
    [3]Jason L., S Bruce H.P., Paul N.C. Incidence of adverse drug reactions in hospitalized patients:a meta-analysis of prospective studies[J].JAMA,1998; 279:1200-1205
    [4]Spear BB, Heath-Chiozzi M, Huff J. Clinical application of pharmacogenetics[J]. Trends Mol Med,2001; 7:201-204
    [5]张迎辉.药物基因组学及其应用.国外医学·药学分册,2002,29(1):18
    [6]华允芬,明镇寰,张铭.药物基因组学研究进展.药学学报,2002,37(8):668
    [7]吴理茂译.药物基因组学降低不良药物反应的潜在作用.美国医学会杂志(中文版),2002,21(5):252
    [8]Meyer UA, Zang UM. Molecular mechanism of genetic polymorphisms of drug metabolism[J]. Annu Rev Phamaool Toxicol,1997; 37:269-296
    [9]Ford G A., Wood SM, Day A K. CYP2D6 and CYP2C19 genotypes of patients[J]. Br J Clin Pharmacol,2000; 50 (1):77
    [10]蒋良华,钟扬,陈国强,等译.药物基因组学[M].科学出版社,2005
    [11]Kruglyak L., Nickerson DA. Variation is the spice of life[J]. Nature Genet,2001; 27:234-236
    [12]The International SNP Map Working Group. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms[J]. Natuer,2001; 409:928-933
    [13]Przeworski M, Hudson RR, DiRienzo A. Adjusting the focus on human variation[J]. Trends Genet,2000; 16:296-302
    [14]Halushka MK, Fan JB, Bentley K, et al. Patterns of single-nucleotide polymorphisms in candidate genes for blood-pressure homeostasis[J]. Nature,1999; 22:231-238
    [15]Muller-Myhsok B, Abel L. Genetic analysis of complex diseases[J]. Science,1997; 275:1328-1330
    [16]Hartl DI, Clark AG. Principle of Population Genetics. Sinauer Associates[J]. Sunderland, MA,1990
    [17]Wrighton S.A., Vandenbranden M., Stevens J.C., et al. Invitro methods for assessing human hepatic drug metabolism:their use in drug development[J]. Drug Metab Rev,1993; 25(4):453-484
    [18]Magnus Ingelman-Sundberg, Sarah C. Sim, Alvin Gomez, et al. Influence of cytochrome P450 polymorphisms on drug therapies:Pharmacogenetic, pharmacoepigenetic and clinical aspects[J]. Pharmacology & Therapeutics,2007; 116:496-526
    [19]Krichheiner J, Nickchen K, Bauer M, et al. pharmacogenetics of antidepressants and antipsychotics:the contribution of allelic variations to the phenotype of drug response[J]. Mol Psychiatr,2004,9:442-473
    [20]Lee S, Kim JM, Chung CS, Cho KJ, Kim JH. Polymorphism in CYP2C9 as a non-critical factor ofwarfarin dosage adjustment in Korean patients[J]. Arch Pharm Res,2003; 26(11):967-72
    [21]Nelson D. R., Koymans L., Kamataki T.et al. P450 superfamily:update on new sequences, gene mapping, accession numbers and nomenclature[J]. Pharmacogenetics,1996,6:1-42
    [22]Nelson D. R., Kamataki T., Waxman D.J., et al. The P450 ssuperfamily:update on new sequences, gene mapping, accession numbers, early trivial names of enzymes, and nomenclature[J]. DNA and Cell Biology,1993; 12(1):1-51
    [23]苏成业,韩国柱主编.临床药物代谢动力学[M].科学出版社.2003
    [24]Wrighton SA, Stevens JC. The human hepatic cytochromes P450 involved in drug metaolism[J].Crit Rev Toxicol,1992; 22(1):1-21
    [25]Slobodan Rendic. Summary of information on human CYP enzymes:human P450 metabolism data [J]. Drug Metab Rev,2002; 34(1-2):83-448
    [26]Sachse, C., Brockmoller, J., Bauer, S., et al. Functional significance of a C--NA polymorphism in intron 1 of the cytochrome P450 CYP1A2 gene tested with caffeine[J]. Br J Clin Pharmacol,1999; 47:445-449
    [27]Ghotbi, R., Christensen, M., Roh, H. K., et al. Comparisons of CYP1A2 genetic polymorphisms, enzyme activity and the genotype-phenotype relationship in Swedes and Koreans[J]. Eur J Clin Pharmacol,2007; 63(6):537-546
    [28]Han, X. M., Ouyang, D. S., Chen, X. P., et al. Inducibility of CYP1A2 by omeprazole in vivo related to the genetic polymorphism of CYP1A2[J]. Br J Clin Pharmacol,2002; 54:540-543
    [29]Aklillu, E., Carrillo, J. A., Makonnen, E., et al. Genetic polymorphism of CYP1A2 in Ethiopians affecting induction and expression:characterization of novel haplotypes with singlenucleotide polymorphisms in intron 1[J]..Mol Pharmacol,2003; 64:659-669
    [30]Xu, C., Goodz, S., Sellers, E. M., et al. CYP2A6 genetic variation and potential consequences [J]. Adv Drug Deliv Rev,2002; 54:1245-1256
    [31]Kamataki, T., Fujieda, M., Kiyotani, K., et al. Genetic polymorphism of CYP2A6 as one of the potential determinants of tobacco-related cancer risk[J]. Biochem Biophys Res Commun,2005; 338:306-310
    [32]Malaiyandi, V., Sellers, E. M.,& Tyndale, R. F. Implications of CYP2A6 genetic variation for smoking behaviors and nicotine dependence[J].Clin Pharmacol Ther, 2005;77:145-158
    [33]Nakajima, M., Kwon, J. T., Tanaka, N., et al. Yamamoto, H., et al. Relationship between interindividual differences in nicotine metabolism and CYP2A6 genetic polymorphism in humans[J]. Clin Pharmacol Ther,2001; 69:72-78
    [34]Mwenifumbo, J. C., Lessov-Schlaggar, C. N., Zhou, Q., et al. Identification of novel CYP2A6*1B variants:the CYP2A6*1B allele is associated with faster in vivo nicotine metabolism[J]. Clin Pharmacol Ther,2008; 83(1):115-21
    [35]Owen, A., Pirmohamed, M., Khoo, S. H., et al. Pharmacogenetics of HIV therapy[J]. Pharmacogenet Genomics,2006; 16(10):693-703
    [36]Hodgson, E., Rose, R. L. The importance of cytochrome P450 2B6 in the human metabolism of environmental chemicals[J]. Pharmacol Ther,2007; 113(2):420-428
    [37]Rotger, M., Tegude, H., Colombo, S., et al. Predictive value of known and novel alleles of CYP2B6 for efavirenz plasma concentrations in HIV-infected individuals[J]. Clin Pharmacol Ther,2007;81:557-566
    [38]Tsuchiya, K., Gatanaga, H., Tachikawa, N., et al. Homozygous CYP2B6*6 (Q172H and K262R) correlates with high plasma efavirenz concentrations in HIV-1 patients treated with standard efavirenz-containing regimens[J]. Biochem Biophys Res Commun,2004; 3 19(4):1322-1326
    [39]Wang, J., Sonnerborg, A., Rane, A., et al. Identification of a novel specific CYP2B6 allele in Africans causing impaired metabolism of the HIV drug efavirenz[J]. Pharmacogenet Genomics,2006;16(3):191-198
    [40]Jinno H., Tanaka-Kagawa T., Ohno A., et al. Functional characterization of cytochrome P450 2B6 allelic variants[J]. Drug Metabolism Disposition,2003;31:398-403
    [41]Kirchheiner, J., Klein,C., Meineke, I., et al. Bupropion and 4-OH-bupropion pharmacokinetics in relation to genetic polymorphisms in CYP2B6[J]. Pharmacogenetics, 2003; 13:619-626
    [42]Guan S., Huang M., Chan E., et al. Genetic polymorphisms of cytochrome P450 2B6 gene in Han Chinese[J]. Eur J Pharm Sci,2006;29(1):14-21
    [43]UmitY, StefanL, ErikE, et al. Linkage between the CYP2C8 and CYP2C9 genetic polymorphisms [J].Biochemical Biophysical Research Communications,2002;299:25-28
    [44]Soyama, A., Saito, Y., Komamura, K., et al. Five novel single nucleotide polymorphisms in the CYP2C8 gene, one of which induces a frame-shift[J]. Drug Metab Pharmacokinet,2002; 17(4):374-377
    [45]Weise, A., Grundler, S., Zaumsegel, D., et al. Development and evaluation of a rapid and reliable method for cytochrome P450 2C8 gcnotyping[J]. Clin Lab,2004; 50:141-148
    [46]Cavaco, I., Stromberg-Norklit, J., Kaneko, A., et al. CYP2C8 polymorphism frequencies among malaria patients in Zanzibar[J]. Eur J Clin Pharmacol,2005;61:15-18
    [47]Taniguchi, R., Kumai, T., Matsumoto, N., et al. Utilization of human liver microsomes to explain individual differences in paclitaxel metabolism by CYP2C8 and CYP3A4[J]. J Pharmacol Sci,2005;97:83-90
    [48]Daly, A. K., Aithal, G. P., Leathart, J. B., et al. Genetic susceptibility to diclofenac-induced hepatotoxicity:contribution of UGT2B7, CYP2C8, and ABCC2 genotypes[J]. Gastroenterology,2007; 132:272-281
    [49]Dai, D., Zeldin, D. C., Blaisdell, J. A., et al. Polymorphisms in human CYP2C8 decrease metabolism of the anticancer drug paclitaxel and arachidonic acid[J]. Pharmacogenetics, 2001;11:597-607
    [50]Parikh, S., Ouedraogo, J. B., Goldstein, J. A., et al. Amodiaquine metabolism is impaired by common polymorphisms in CYP2C8:implications for malaria treatment in Africa[J]. Clin Pharmacol Ther,2007;82(2):197-203
    [51]Yasar, U., Forslund-Bergengren, C., Tybring, G., et al. Pharmacokinetics of losartan and its metabolite E-3174 in relation to the CYP2C9 genotype[J]. Clin Pharmacol Ther, 2002;71:89-98
    [52]Schwarz, U. I. Clinical relevance of genetic polymorphisms in the human CYP2C9 gene[J]. Eur J Clin Invest,2003;33 Suppl 2:23-30
    [53]Thijssen, H. H.,& Ritzen, B. Acenocoumarol pharmacokinetics in relation to cytochrome P450 2C9 genotype[J]. Clin Pharmacol Ther,2003;74:61-68
    [54]Kirchheiner, J.,& Brockmoller, J. Clinical consequences of cytochrome P450 2C9 polymorphisms[J]. Clin Pharmacol Ther,2005;77:1-16
    [55]Desta, Z., Zhao, X., Shin, J. G., et al. Clinical significance of the cytochrome P450 2C19 genetic polymorphism[J]. Clin Pharmacokinet,2002;41:913-958
    [56]Xie, H. G., Kim, R. B., Wood, A. J.,.et al. Molecular basis of ethnic differences in drug disposition and response[J]. Annu Rev Pharmacol Toxicol,2001;41:815-850
    [57]Klotz, U. Clinical impact of CYP2C19 polymorphism on the action of proton pump inhibitors:a review of a special problem[J]. Int J Clin Pharmacol Ther,2006;44:297-302
    [58]Furuta, T., Shirai, N., Watanabe, F., et al. Effect of cytochrome P4502C19 genotypic differences on cure rates for gastroesophageal reflux disease by lansoprazole[J]. Clin Pharmacol Ther,2002;72:453-460
    [59]Zanger UM, Raimundo S, Eichelbaum M. Cytochrome P450 2D6:Overview and update on pharmacology, genetics, biochemistry[J]. Naunyn Schmiedebergs Arch Pharmacol,2004; 369:23-37
    [60]Ethnic differences in CYP450 alleles influencing antiretroviral drugs Margalida Rotger University of Lausannne.www.hiv-pharmacogenomics.org,2006
    [61]Finta, C., Zaphiropoulos, P. G. The human cytochrome P450 3A locus. Gene evolution by capture of downstream exons[J]. Gene,2000;260:13-23
    [62]Gellner, K., Eiselt, R., Hustert, E., et al. Genomic organization of the human CYP3A locus:identification of a new, inducible CYP3A gene[J]. Pharmacogenetics,2001; 11:111-121
    [63]Bertz, R. J., Granneman, G. R. Use of in vitro and in vivo data to estimate the likelihood of metabolic pharmacokinetic interactions[J]. Clin Pharmacokinet,1997; 32:210-258
    [64]Williams, J. A., Ring, B. J., Cantrell,V. E., et al. Comparative metabolic capabilities of CYP3A4, CYP3A5,and CYP3A7[J]. Drug Metab Dispos,2002;30:883-891
    [65]Lacroix, D., Sonnier, M., Moncion, A., et al. Expression of CYP3A in the human liver-evidence that the shift between CYP3A7 and CYP3A4 occurs immediately after birth[J]. Eur J Biochem,1997;247:625-634
    [66]Venkatakrishnan K., von Moltke L. L., Greenblatt D. J. Effects of the antifungal agents on oxidative drug metabolism[J]. Clin. Pharmacokinet,2000,38:111-180
    [67]Hustert, E., Haberl, M., Burk, O., et al. The genetic determinants of the CYP3A5 polymorphism [J]. Pharmacogenetics,2001;11:73-779
    [68]Kuehl, P., Zhang, J., Lin, Y., et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression[J]. Nat Genet, 2001;27:383-391
    [69]Lee, S. J., Usmani, K. A., Chanas, B., et al. Genetic findings and functional studies of human CYP3A5 single nucleotide polymorphisms in different ethnic groups[J]. Pharmacogenetics,2003;13:461-472
    [70]Paul Rowland, Frank E. Blaney, Martin G. Smyth, et al. Crystal of Human Cytochrome P450 2D6[J]. Biol. Chem,2005,281(11):7614-7622
    [71]Ingelman-Sundberg, M. Genetic polymorphisms of cytochrome P450 2D6 (CYP2D6): clinical consequences, evolutionary aspects and functional diversity[J]. Pharmacogenomics J, 2005;5:6-13
    [72]Ingelman-Sundberg, M. Pharmacogenetics of cytochrome P450 and its applications in drug therapy:the past, present and future[J]. Trends Pharmacol Sci,2004;25(4):193-200
    [73]Bogni, A., Monshouwer, M., Moscone, A., et al. Substrate specific metabolism by polymorphic cytochrome P450 2D6 alleles[J]. Toxicol In Vitro,2005;19(5):621-629
    [74]Daly A.K., Brockmo L.J., Broly F., et al. Nomenclature for human CYP2D6 alleles[J]. Pharmacogenetics,1996,6(3):193-201
    [75]Dick B., Kupfer A., Molnar J., et al. Drug hydroxylation disorders (debrisoquin type) in a random sample of the Swiss population[J]. Schweiz Med Wochenschr,1982; 112(30):1061-1067
    [76]Evans DA, Mahgoub A, Sloan TP, et al. A family and population study of the genetic polymorphism of debrisoquine oxidation in a white British population[J]. J Med Genet, 1980;17:102-105
    [77]Wanwimolruk S, Patamasucon P, Lee EJ. Evidence for the polymorphic oxidation of debrisoquine in the Thai population[J]. Br J Clin Pharmacol,1990;29:244-247
    [78]Lou YC, Ying L, Bertilsson L, et al. Low frequency of slow debrisoquine hydroxylation in a native Chinese population[J]. Lancet,1987;2:852-853
    [79]Nakamura K, Goto F, Ray WA, et al. Interethnic differences in genetic polymorphism of debrisoquin and mephenytoin hydroxylation between Japanese and Caucasian populations[J]. Clin Pharmacol Ther,1985;38:402-408
    [80]Abraham BK, Adithan C, Kiran PU, et al. Genetic polymorphism of CYP2D6 in Karnataka and Andhra Pradesh population in India[J]. Acta Pharmacol Sin,2000;21:494-498
    [81]Abraham B, Adithan C, Shashindran C, et al. Genetic polymorphism of CYP2D6 in a Keralite (South India) population[J]. Br J Clin Pharmacol,2000;49:285-286
    [82]Lamba V, Lamba JK, Dilawari JB, et al. Genetic polymorphism of CYP2D6 in North Indian subjects. Eur J Clin Pharmacol,1998;54:787-791
    [83]Mamidi RN, Satyavageeswaran S, Vakkalanka S, et al. Polymorphism of dextromethorphan oxidation in South Indian subjects[J]. Clin Pharmacol Ther, 1999;66:193-200
    [84]Garcia-Barcelo M, Chow LY, Chiu H, et al. Genetic analysis of the CYP2D6 locus in a Hong Kong Chinese population[J]. Clin Chem,2000;46:18-23
    [85]Wolf CR, Smith G. Cytochrome P450 CYP2D6[J]. IARC Sci Publ,1999;(148):209-229
    [86]Garcia-Barcelo M, Chow LY, Chiu H et al. Genetic analysis of the CYP2D6 locus in a Hong Kong Chinese population[J]. Clin Chem,2000;46:18-23
    [87]Aklillu E, Persson I, Bertilsson L, et al. Frequent distribution of ultrarapid metabolizers of debrisoquine in an Ethiopian population carrying duplicated and multiduplicated functional CYP2D6 alleles[J]. J Pharmacol Exp Ther,1996;278:441-446
    [88]McLellan RA, Oscarson M, Seidegard J, et al. Frequent occurrence of CYP2D6 gene duplication in Saudi Arabians[J]. Pharmacogenetics,1997;7:187-191
    [89]London SJ, Daly AK, Leathart JB, et al. Genetic polymorphism of CYP2D6 and lung cancer risk in African-Americans and Caucasians in Los Angeles County[J]. Carcinogenesis, 1997;18(6):1203-1214
    [90]Sistonen, J., Sajantila, A., Lao, O., et al. CYP2D6 worldwide genetic variation shows high frequency of altered activity variants and no continental structure[J]. Pharmacogenet Genomics,2007;17:93-101
    [91]Orita M, Suzuki Y, Sekiya T, et al. Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction [J]. Genomics,1989; 5:874-79
    [92]Qin SY, Lu S, Zhang AP, et al. Systematic polymorphism analysis of the CYP2D6 gene in four different geographical Han populations in mainland China[J]. Genomics, 2008;92:152-158
    [93]丁卫,李慎涛,廖晓萍译.遗传工作者的生物信息学[M].科学出版社,2009
    [94]Lewontin, R. C. The international of selection and linkage. Ⅰ. General considerations;heter models[J]. Genetics,1964;49:49-67
    [95]Schneider, S., Roessli, D. Excoffier, L. Arequin ver.2.000:a software for population genetics data analysis. Genetics and Biometry Laboratory, University of Geneva, Switerland.2000
    [96]Abecasis, G. R. Cookson, W.O. GOLD-graphical overview of linkage disequilibrium [J]. Bioinformatics,2000; 16(2):182-183
    [97]Barrett, J. C., Fry, B., Maller, J. et al. Haploview:analysis and visualization of LD and haplotype maps[J]. Bioinformatics,2005;21(2):263-265
    [98]International HapMap Consortium.A haplotype map of the human genome[J]. Nature, 2005;437:1299-1320
    [99]李颖.CYP2D6*14B酵母表达系统的构建、荧光药物筛选平台的建立和CYP2D6*10基因分型[D].西安:西北大学硕士学位论文.2010
    [100]陈玲玲.中国汉族人群CYP2C19基因遗传多态性分析[D].上海:上海交通大学硕士学位论文.2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700