鼻咽癌氧化性DNA损伤及其作用机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的:
     运用双色免疫荧光组织化学方法以及酶联免疫吸附试验分别检测鼻咽癌鼻咽组织及血清中氧化性DNA损伤的情况,并且运用荧光原位杂交技术检测鼻咽癌组织中EB病毒感染的情况,初步探索鼻咽癌的发生和发展是否与氧化性DNA损伤有关及其损伤的可能原因和途径,以期寻找出能够辅助鼻咽癌诊断的生物标志物。
     方法:
     (1)选择57例鼻咽癌患者和39例慢性鼻咽炎患者鼻咽部组织,采用双色免疫荧光组织化学方法分别检测8-硝基鸟嘌呤(8-nitroguanine, 8-NitroG),8-羟基脱氧鸟苷(8-hydroxy-2'-deoxyguanosine,8-OHdG)和诱导型一氧化氮合酶(inducible nitric oxide synthase, iNOS)的免疫反应。秩和检验统计学方法分析鼻咽癌和慢性鼻咽炎鼻咽组织之间8-NitroG、8-OHdG和iNOS免疫反应强度的差异。
     (2)从57例鼻咽癌中随机选择36例鼻咽癌患者和36例健康人血清标本,采用酶联免疫吸附试验方法(enzyme-linked immunosorbent assay, ELISA)检测血清中8-羟基脱氧鸟苷(8-OHdG)的表达水平。采用成组t检验进行数据的统计学分析。
     (3)选择57例鼻咽癌患者和39例慢性鼻咽炎患者鼻咽部组织,采用双色免疫荧光组织化学方法分别检测磷酸化的信号转导及转录激活因子(phosphorylated signal transducers and activators of transcription, p-Stat3),表皮生长因子受体(epidermal growth factor receptor, EGFR)的免疫反应。秩和检验统计学方法分析鼻咽癌和慢性咽炎鼻咽组织之间p-Stat3.EGFR免疫反应强度的差异。
     (4)选择57例鼻咽癌患者和39例慢性鼻咽炎患者鼻咽部组织,采用双色免疫荧光组织化学方法分别检测鼻咽癌组织中巨噬细胞的表面抗原CD68及其表达产物IL-6的免疫反应。秩和检验统计学方法分析鼻咽癌和慢性鼻咽炎鼻咽组织之间CD68、IL-6免疫反应强度的差异。
     (5)选择57例鼻咽癌患者和39例慢性鼻咽炎患者鼻咽部组织,采用荧光原位杂交法(fluorescent in situ hybridization, FISH)检测鼻咽癌组织中EB病毒转录的核内小RNA(EBV encoded small RNAs, EBER)的免疫反应。秩和检验统计学方法分析鼻咽癌和慢性鼻咽炎鼻咽组织之间EB病毒免疫反应强度的差异。
     结果:
     (1)在鼻咽癌患者鼻咽部组织中观测到严重程度的DNA损伤。57例鼻咽癌组织细胞中8-NitroG、8-OHdG和iNOS均为强免疫反应,8-NitroG、8-OHdG阳性率100%,iNOS阳性率94.7%,与39例慢性鼻咽炎组织比较差异显著(P<0.05)。
     (2)36例鼻咽癌患者血清中8-OHdG的平均水平为0.538±0.336ng/ml,而对照组中36例健康人的血清中8-OHdG的平均水平为0.069±0.059ng/ml,鼻咽癌患者血清中8-OHdG水平与健康人比较差异显著(P<0.05)。
     (3)在鼻咽癌患者鼻咽部组织中观测到p-Stat3及EGFR强烈的免疫反应。鼻咽癌组织细胞中p-Stat3及EGFR观察到强免疫反应,p-Stat3、EGFR阳性率均为94.7%,与39例慢性鼻咽炎组织比较差异显著(P<0.05)。
     (4)在鼻咽癌患者鼻咽部组织中观测到CD68、IL-6强烈的免疫反应。57例鼻咽癌组织细胞中CD68、IL-6均为强免疫反应,CD68、IL-6阳性率100%,与39例慢性鼻咽炎组织比较差异显著(P<0.05)。
     (5)在鼻咽癌患者鼻咽部组织中观测到EBER强烈的反应。57例鼻咽癌组织细胞中EBER阳性率100%,均为EB病毒阳性,与39例慢性鼻咽炎组织比较差异显著(P<0.05)。
     结论:
     (1)鼻咽癌组织中有氧化性DNA损伤存在。
     (2)氧化性DNA损伤与iNOS的高表达有关。
     (3)鼻咽部组织中由于细菌、病毒及寄生虫等引起的炎症反应等病理性刺激,可能会导致诱导型一氧化氮合酶(iNOS)催化产生一氧化氮(nitric oxide, NO),进而产生硝基化及氧化性DNA损伤,导致鼻咽癌的发生和发展。iNOS的高表达可能是由于EB病毒LMP1通过TRAFs上调EGFR表达,EGFR与特定配体EGF或TGF-a结合后,导致细胞内受体区自我磷酸化,并利用其本身的酪氨酸激酶活性活化Stat3 (p-Stat3),从而促进iNOS基因表达。诱导iNOS高表达的另一通路还可能是由于EB病毒作为抗原存在于鼻咽上皮细胞,导致鼻咽部巨噬细胞、T和B淋巴细胞、血管平滑肌细胞和中性粒细胞的聚集并分泌炎性细胞因子如IL-6,通过IL-6/gp130/Jak途径激活Stat3 (p-Stat3),p-Stat3促进iNOS基因表达。由于iNOS的高表达,细胞内NO活性氧增加,通过NO引起DNA损伤,最后诱发癌变。
     (4) 8-NitroG、8-OHdG有望成为辅助诊断鼻咽癌的一个生物标志物。更好的理解鼻咽癌中氧化性DNA损伤的作用机制可以为通过分子水平调节炎症的过程以达到癌症预防的目的提供一个新的研究策略。
Purpose:
     The oxidative nucleotide bases in tissues and serum were examined separately using double immunofluorescent staining and ELISA method.The status of EB virus infections in the tissues of NPC was examined useing fluorescence in situ hybridization (FISH). Preliminarily to explore that whether the origination and development of the NPC are related to the oxidative DNA damage, in order to find out the potential biomarkers for the diagnose of NPC.
     Methods:
     (1) 57 cases of NPC and 39 cases of chronic nasopharyngitis were investigated to examine the expression of iNOS, the formation of 8-NitroG and 8-OHdG using double immunofluorescent staining. The statistical differences in immunoreactivities were analyzed using a Mann-Whitney test.
     (2) 36 patients from 57 cases with NPC and a group of 36 noncancer controls were investigated to examine the level of serum 8-OHdG using enzyme-linked immunosorbent assay (ELISA) method. The statistical differences were analyzed using a t test.
     (3) 57 cases of NPC and 39 cases of chronic nasopharyngitis were investigated to examine the expression of phosphorylated signal transducers and activators of transcription (p-Stat3) and epidermal growth factor receptor (EGFR), using double immunofluorescent staining. The statistical differences in immunoreactivities were analyzed using a Mann-Whitney test.
     (4) 57 cases of NPC and 39 cases of chronic nasopharyngitis were investigated to examine CD68, the surface antigen of macrophages and its expression product interleukin-6 (IL-6), using double immunofluorescent staining. The statistical differences in immunoreactivities were analyzed using a Mann-Whitney test.
     (5) 57 cases of NPC and 39 cases of chronic nasopharyngitis were investigated to examine EBV encoded small RNAs (EBER), using fluorescent in situ hybridization (FISH). The statistical differences in immunoreactivities were analyzed using a Mann-Whitney test.
     Results:
     (1) Strong DNA lesions were observed in cancer cells of NPC patients. 8-NitroG and 8-OHdG were positive, observed in all cases of NPC (100%). iNOS was observed in fifty-four cases of NPC (94.7%). Samples from NPC exhibited significantly more intense staining for 8-NitroG,8-OHdG and iNOS than those of chronic nasopharyngitis (P<0.05).
     (2) The mean value of serum 8-OHdG level of thirty-six NPC patients was 0.538±0.336ng/ml compared to 0.069±0.059ng/ml of thirty-six noncancer controls. The difference of 8-OHdG levels in serum of NPC patients and noncancer controls was statistically significant (P<0.05).
     (3) P-Stat3 and EGFR were positive, both observed in fifty-four cases of NPC (94.7%). Samples from NPC exhibited significantly more intense staining for P-State3 and EGFR than those of chronic nasopharyngitis (P<0.05).
     (4)CD68 and IL-6 were positive, observed in all cases of NPC (100%). Samples from NPC exhibited significantly more intense staining for CD68 and IL-6 than those of chronic nasopharyngitis (P<0.05).
     (5) EBER was positive, observed in all cases of NPC (100%). Samples from NPC exhibited significantly more intense staining for EBER than those of chronic nasopharyngitis (P<0.05).
     Conclusions:
     (1)The oxidative DNA damage exists in NPC.
     (2) The oxidative DNA damage was related to the up-regulation of iNOS.
     (3) The pathological stimulations, such as inflammations from the bacteria, virus and parasite in nasopharyngeal tissues, might lead to nitrative and oxidative DNA lesions by iNOS catalyzed NO, which contribute to the origination and development of NPC. The high expression of iNOS was possibly because of the up-regulation of EGFR owing to TRAFs expression by LMP1. Combining of EGFR and specific ligand EGF or TGF-a union causes the acceptor area self-phosphorylation in the cell and activates Stat3 using its tyrosine activating enzyme activeness. Another circuit of up-regulation of iNOS possibly was because the EB virus exists as the antigen in the nasopharynx epithelial cell, causing the accumulation of nasopharynx department macrophage, T and the B lymphocyte, the blood vessel smooth muscle cell and the neutral granular cell,which secretes inflammatory cell factor like IL-6. p-Stat3 was activated through IL-6/gp130/the Jak pathway. p-Stat3 promotes the iNOS gene expression. As a result of the iNOS high expression, in the cell the NO active oxygen increasing, causes the DNA damage through NO, which finally induces the cancer.
     (4) 8-NitroG and 8-OHdG could be suitable and promising biomarkers for evaluating the risk of NPC. Better understanding of the mechanisms and role of such nitrative and oxidative DNA damage in NPC is a necessary basis to develop new strategies for cancer prevention by modulating the process of inflammation.
引文
1. Parkin DM, Laara E, Muir CS. Estimates of the worldwide frequency of sixteen major cancers in 1980[J]. Int J Cancer,1988,41(2):184-97.
    2.黄光武.鼻咽癌研究现状与进展[J].广西医学,2004,26(1):3-5.
    3. Licitra L, Bernier J, Cvitkovic E, Grandi C, et al. Cancer of the nasopharynx[J]. Crit Rev Oncol Hematol,2003,45(2):199-213.
    4. Lo KW, Huang DP.Genetic and epigenetic changes in nasopharyngeal carcinoma[J]. Semin Cancer Biol,2002,12(6):451-62.
    5. IARC Working Group. Epstein-Barr virus IARC Monographs on the Evaluation of Carcinogenic Risks to Humans[M]. Lyon:IARC Press,1997, 70:347-373.
    6. Yu MC, Garabrant DH, Huang TB, et al. Occupational and other non-dietary risk factors for nasopharyngeal carcinoma in Guangzhou, China[J]. Int. J.Cancer,1990,45:1033-1039.
    7. Armstrong RW, Imrey PB, Lye MS, et al. Nasopharyngeal carcinoma in Malaysian Chinese:occupational exposures to particles, formaldehyde and heat[J]. Int. J. Epidemiol,2000,29:991-998.
    8. Hildesheim A, Dosemeci M, Chan CC, et al. Occupational exposure to wood, formaldehyde, and solvents and risk of nasopharyngeal carcinoma[J]. Cancer Epidemiol. Biomarkers Prev,2001,10:1145-1153.
    9. Adam BL, Vlahou A, Semmes J, et al. Proteomic approaches to biomarker discovery in prostate and bladder cancers[J]. Proteomics JT-Proteomics, 2001,1(10):1264-1270.
    10. Chen SH, Tsai SY, Yen KL, et al. Concomitant radiotherapy and chemotherapy for early-stage nasopharyngeal carcinoma[J]. J Clin Oncol, 2000,18(10):2040-2045.
    11. Twu CW, Wang WY, Liang WM, et al. Comparison of the prognostic impact of serum anti-EBV antibody and plasma EBV DNA assays in nasopharyngeal carcinoma[J]. Int J Radiat Oncol Biol Phys,2007, 67(1):130-137.
    12. Sheen TS, Ko JY, Chang YL, et al. Nasopharyngeal swab and PCR for the screening of nasopharyngeal carcinoma in the endemic area:a good supplement to the serologic screening[J]. Head Neck,1998,20(8):732-738.
    13. Chan KH, Gu YL, Ng F, et al. EBV specific antibody-based and DNA-based assays in serologic diagnosis of nasopharyngeal carcinoma [J]. Int J Cancer,2003,105(5):706-769.
    14.陈主初,梁宋平.肿瘤蛋白质组学[M].长沙:湖南科技出版社,2002:1-4.
    15.朱冬冬,姜舒,董震,等.诱发型一氧化氮合酶在人类鼻粘膜上皮细胞中的表达[J].中华耳鼻喉科杂志,2003,38(5):363-366.
    16.罗云敬,李芸,刘立亚,等.过亚硝酸根诱导的DNA损伤及其抑制剂的研究[J].化学通报.2006,69(7):514-518.
    17. Mary AP, David SS. DNA damage recognition and repair by the murine MutY homologue[J]. DNA Repair,2005,4(1):91-102.
    18.张海涛,祝其锋.细胞中特异识别 8-羟基鸟嘌呤的修复酶[J].癌变·畸变·突变,2001,1(13):217-220.
    19. P.C.Dedon.S.R. Tannenbaum. Reactive nitrogen species in the chemical biology of inflammation [J]. Arch.Biochem. Biophys,2004,423:12-22.
    20. Victoria Valinluck, Lawrence C. Sowers. Endogenous cytosine damage products alter the site selectivity of human DNA maintenance methyltransferase DNMT1[J]. Cancer Res,2007,67(3):946-950.
    21.刘胜林,8-羟基脱氧鸟苷检测方法的研究进展[J].医学综述,2006,
    12(7):1073-1074.
    22. Laft S, Fiecher-Nielsen A, Jeding IB, et al.8-hydroxy deoxyguanosine as a primary biomarker of oxidative DNA damage [J]. J Toxicol Environ Health,1993,40 (2-3):391-404.
    23. Kasai H. Analysis of a form of oxidative DNA damage,8-hydroxy-2'-deoxyguanosine, as a marker of cellular oxidative stress during carcinagenesus[J]. Mutal res,1997,387(3):147-163.
    24. Kasai H, Iwamoto-Tanaka N, Miyamoto T, et al. Life style and urinary 8-hydroxydeoxyguanosine, a marker of oxidative DNA damage:effects of exercise. working conditions. meat intake. body mass index. and smoking[J]. Jpn J Cancer Res,2001,92(1):9.
    25. Coussens M, Werb Z. Inflammation and cancer [J]. Nature,2002,420: 860-867.
    26. Hussain SP, Hofseth LJ, Harris CC. Radical causes of cancer[J]. Nat Rev Cancer,2003,3:276-285.
    27. Ohshima H, Tatemichi M, Sawa T. Chemical basis of inflammation-induced carcinogenesis[J]. Arch Biochem Biophys,2003, 417:3-11.
    28. Akaike T, Maeda H. Nitric oxide and virus infection[J]. Immunology,2000, 101:300-308.
    29. Nair J, Gansauge F, Beger H, et al. Increased etheno DNA adducts in affected tissues of patients suffering from Crohn's disease, ulcerative colitis, and chronic pancreatitis[J]. Antioxid Redox Signal,2006,8: 1003-1010.
    30. Majano PL, Garcia-Monzon C, Lopez-Cabrera M, et al. Inducible nitric oxide synthase expression in chronic viral hepatitis. Evidence for a
    virus-induced gene upregulation[J]. J. Clin. Invest,1998,101:1343-1352.
    31. Schweyer S, Mihm S, Radzun HJ, Hartmann H, et al. Liver infiltrating T lymphocytes express interferon gamma and inducible nitric oxide synthase in chronic hepatitis C virus infection[J]. Gut,2000,46:255-259.
    32. Brunet LR, Beall M, Dunne DW, et al. Nitric oxide and the Th2 response combine to prevent severe hepatic damage during Schistosoma mansoni infection[J]. J. Immunol,1999,163:4976-4984.
    33. Ohshima H, Bandaletova TY, Brouet I, et al. Increased nitrosamine and nitrate biosynthesis mediated by nitric oxide synthase induced in hamsters infected with liver fluke (Opisthorchis viverrini)[J]. Carcinogenesis,1994, 15:271-275.
    34. Tatemichi M, Ogura T, Nagata H, et al. Enhanced expression of inducible nitric oxide synthase in chronic gastritis with intestinal metaplasia[J]. J. Clin. Gastroenterol,1998,27:240-245.
    35. Wheeler MA, Smith SD, Garcia-Cardena G, et al. Bacterial infection induces nitric oxide synthase in human neutrophils[J]. J. Clin. Invest,1997, 99:110-116.
    36. Tanaka S, Choe N, Hemenway DR, et al. Asbestos inhalation induces reactive nitrogene species and nitrotyrosine formation in the lungs and pleura of the rat[J]. J. Clin. Invest,1998,102:445-454.
    37. Tanaka S, Choe N, Hemenway DR, et al. Asbestos inhalation induces reactive nitrogene species and nitrotyrosine formation in the lungs and pleura of the rat[J]. J. Clin. Invest,1998,102:445-454.
    38. Kawanishi S, Hiraku Y, Oxidative and nitrative DNA damage as biomarker for carcinogenesis with special reference to inflammation [J]. Antioxid. Redox. Signal,2006,8:1047-1058.
    39. Dizdaroglu M. Oxidative damage to DNA in mammalian chromatin[J]. Mutat. Res,1992,275:331-342.
    40. Grollman AP, Moriya M. Mutagenesis by 8-oxoguanine:an enemy within[J]. Trends Genet,1993,9:246-249.
    41.Somchai Pinlaor, Ning Ma,Yusuke Hiraku, Repeated infection with Opisthorchis viverrini induces accumulation of 8-nitroguanine and 8-oxo-7,8-dihydro-2H-deoxyguanine in the bile duct of hamsters via inducible nitric oxide synthase[J]. J. Carcinogenesis,2004,25(7):1-8.
    42. Ning Ma, Yukihiko Adachi, Yusuke Hiraku. Accumulation of 8-nitroguanine in human gastric epithelium induced by Helicobacter pylori infection[J]. Biochemical and biophysical Research Communications, 2004,319:506-510
    43. Wiseman H, Kaur H, Halliwell B. DNA damage and cancer:measurement and mechanism[J]. Cancer Lett,1995,93(1):113-120.
    44.王喆,李雪竹,严海东.终末期肾病中DNA氧化损伤标志物8-OHdG水平的研究[J].中国血液净化,2008,7(2):65-68.
    45. Wong LP, Lai KT, Tsui E, et al. Plasma Epstein-Barr virus (EBV) DNA: role as a screening test for nasopharyngeal carcinoma (NPC)[J]. Int J Cancer,2005,117(3):515-516.
    46. Shah SH, Soomro IN, Haroon S, et al. Association of Epstein Barr Virus (EBV) with nasopharyngeal carcinoma (NPC)[J]. J Pak Med Assoc,2000, 50(6):182-183.
    47. Wasinger VC, Cordwell SJ, Cerpa-Poljak A, et al. Progress with gene-product mapping of the mollicutes:mycoplas ma genitalium[J]. Electrophoresis,1995,16:1090-1094.
    48. Zong YS. An analysis of nasopharyngeal carcinoma (NPC) cases of failed
    and incoclusive pathologic diagnosis[J]. Zhonghua Zhongliu Za Zhi,1982, 4(2):140-142.
    49. Shah SH, Soomro IN, Haroon S, et al. Association of Epstein Barr Virus (EBV) with nasopharyngeal carcinoma (NPC)[J]. Pak Med Assoc, 2000,50(6):182-183.
    50. Tschugguel W, Schneeberger C, Unfried G, et al. Expression of inducible nitric oxide synthase in human breast cancer depends on tumor grade[J]. Breast Cancer Res. Treat,1999,56:145-151.
    51. Tanaka H, Kijima H, Tokunaga T, et al. Frequent expression of inducible nitric oxide synthase in esophageal squamous cell carcinomas [J]. Int. J.Oncol,1999,14:1069-1073.
    52. Liu CY, Wang CH, Chen TC, et al. Increased level exhaled nitric oxide and up-regulation of inducible nitric oxide synthase in patients with primary lung cancer[J]. Br. J. Cancer,1998,78:534-541.
    53. Ambs S, Merriam WG, Bennett WP, et al. Frequent nitric oxide synthase-2 expression in human colon adenomas:implication for tumor angiogenesis and colon cancer progression[J]. Cancer Res,1998,58:334-341.
    54. Klotz T, Bloch W, Volberg C, et al. Selective expression of inducible nitric oxide synthase in human prostate carcinoma[J]. Cancer,1998,82: 1897-1903.
    55. Gallo O, Masini E, Morbidelli L, et al. Role of nitric oxide in angiogenesis and tumor progression in head and neck cancer[J]. J. Natl Cancer Inst, 1998,90:587-596.
    56. M.Tatemichi, H. Tazawa, M. Masuda et al. Suppression of thymic lymphomas and increased nonthymic lymphomagenesis in Trp53-deficient mice lacking inducible nitric oxide synthase gene. Int[J]. J. Cancer,2004, 111:819-828.
    57.刘阳云,赵素萍,刘庚勋.诱导型一氧化氮合酶与血管内皮生长因子在鼻咽癌中的表达及意义[J].中国耳鼻咽喉颅底外科杂志,2008,14(3):181-184.
    58.刘阳云,赵素萍.诱导型一氧化氮合酶与环氧合酶-2在肿瘤组织中的共表达[J].国际病理科学与临床杂志,2007,27(1):19-24.
    59.刘阳云,赵素萍,刘庚勋,等.诱导型一氧化氮合酶在鼻咽癌中的表达及意义[J].中国癌症杂志,2007,17(2):97-100.
    60. C. Szabo, H. Ohahima. DNA damage induced by peroxynitrite:subsequent biological effects[J]. Nitric Oxide,1997,1:373-385.
    61. S. Burney, J.L. Caulfield, J.C. Niles, et al. The chemistry of DNA damage from nitric oxide and peroxynitrite[J]. Mutat. Res,1999,424:37-49.
    62. P.C. Dedon, S.R. Tannenbaum, Reactive nitrogen species in the chemical biology of inflammation[J]. Arch. Biochem. Biophys,2004,423:12-22.
    63.Puhakka AR, Harju TH, Paakko PK, et al. Nitric oxide synthases are associated with bronchial dysplasia[J]. Lung Cancer,2006,51:275-282.
    64. Anazawa T, Dimayuga PC, Li H, et al. Effect of exposure to cigarette smoke on carotid artery intimal thickening:the role of inducible NO synthase. Arterioscler[J]. Thromb. Vasc. Biol,2004,24:1652-1658.
    65.罗云敬,李芸,刘立亚,等.过亚硝酸根诱导的DNA损伤及其抑制剂的研究[J].化学通报,2006,69(7):514-518.
    66. Burney S., Niles J.C., Dedon P.C., et al. DNA damage in deoxynucleosides and oligonucleotides treated with peroxynitrite [J]. Chem. Res. Toxicol, 1999,12(1):513-520.
    67. Steenken,S. and Jovanovic,S.V. How easily oxidizable is DNA? One electron reduction potentials of adenosine and guanosine radicals in
    aqueous solution[J]. J. Am. Chem. Soc,1997,119(3):617-618.
    68. Yermilov V, Rubio J, Ohshima H, et al. Formation of 8-nitroguanine in DNA treated with peroxynitrite in vitro and its rapid removal from DNA by depurination[J]. FEBS Lett,1995,376(3):207-210.
    69. B Epe, D Ballmaier, L Roussyn, et al. DNA damage by peroxynitrite characterized with DNA repair enzymes[J]. Nucleic Acids. Res,1996, 24(21):4105-4110.
    70. C Szabo, H Ohshima, et al. DNA damage induced by peroxynitrite subse-quent biological effects[J]. Nitric Oxide:Biology and Chemistry, 1997,1(5):373-385.
    71.罗云敬,李芸,刘立亚,等.过亚硝酸根诱导的DNA损伤及其抑制剂的研究[J].化学通报,2006,69(7):514-518.
    72. Shang ZJ, Li ZB, Li JR. In vitro effects of nitric oxide synthase inhibitor L-NAME on oral squamous cell carcinoma:a preliminary study [J]. Int. J. Oral Maxillofac. Surg,2006,35:539-554.73.朱冬冬,姜舒,董震,等.诱发型一氧化氮合酶在人类鼻粘膜上皮细胞中的表达[J].中华耳鼻喉科杂志,2003,38(5):363-366.
    74.周卫东,李继红,杨代茂,等.慢性鼻炎鼻粘膜中一氧化氮合酶的表达[J].山东大学基础医学院学报,2003,12,17(6):333-335.
    75.王茂鑫,李志春,张榕,等.慢性鼻窦炎鼻息肉伴发嗅觉障碍患者iNOS在嗅粘膜中的表达[J].福州总医院学报,2004,12,11(4):267-269.76.孙家强,王明善,叶非常,等.鼻息肉中一氧化氮合酶表达及其意义[J].临床耳鼻喉科杂志,2004,2,18(2):77-79.
    77.Pinlaor S, Ma N, Hiraku Y, et al. Repeated infection with Opisthorchis viverrini induces accumulation of 8-nitroguanine and 8-oxo-7,8-dihydro-2'-deoxyguanine in the bile duct of hamsters via inducible nitric oxide synthase[J]. Carcinogenesis,2004,25(8):1535-1542.
    78. Pinlaor S, Yongvanit P, Hiraku Y, et al.8-nitroguanine formation in the liver of hamsters infected with Opisthorchis viverrini[J]. Biochem Biophys Res Commun,2003,309(3):567-571.
    79. Ponti D, Zaffaroni N, Capelli C et al. Breast cancer stem cells:an overview[J]. Eur. J. Cancer,2006,42:1219-1224.
    80. Alison MR, Lovell MJ. Liver cancer:the role of stem cells[J]. Cell Prolif, 2005,38:407-421.
    81.胡大林,廖建坤,吴校连,等.自由基与DNA的氧化损伤[J].国外医学卫生学分册,2002,29(5):261-263.
    82.张德莉,朱圣姬,罗光富,等.自由基与DNA氧化损伤的研究进展[J].三峡大学学报(自然科学版),2004,26(6):563-567.
    83.孙咏梅,戴树桂,袭著革.DNA加合物8-羟基脱氧鸟苷特性研究[J].上海环境科学,2001,20(9):409-413.
    84.赵燕,郝卫东.8-羟基-2′-脱氧鸟苷的生物学意义及其尿中含量的测定方法[J].癌变·畸变·突变,2007,19(5):418-420.
    85. P.C.Dedon. S.R. Tannenbaum. Reactive nitrogen species in the chemical biology of inflammation [J]. Arch.Biochem. Biophys,2004,423:12-22.
    86. Victoria Valinluck and Lawrence C. Sowers. Endogenous Cytosine Damage Products Alter the Site Selectivity of Human DNA Maintenance Methyltransferase DNMT1[J]. Cancer Res,2007,67(3):946-950.
    87.刘玉,孙钦峰,杨丕山.氧化损伤生物标志物8-羟基脱氧鸟苷与牙周炎的关系[J].国际口腔医学杂志,2006,33(4):267-269.
    88.林红,黄金瑛,刘继英,等.尿8-羟-2′-脱氧鸟苷与恶性肿瘤相关性的研究[J].上海医学检验杂志,2003,18(1):43-46.
    89. Lo KW, To KF, Huang DP. Focus on nasopharyngeal carcinoma[J]. Cancer
    Cell,2004,5:423-8.
    90.唐国全,周向阳.鼻咽癌患者发病前后EB病毒VCA-IgA和EA-IgA抗体滴度动态分析[J]..老年医学,2008,17(3-4):331,431,531,631.
    91.Chao TY, Chow KC, Chang JY, et al. Expression of Epstein-Barr virus-encoded RNAs as a marker formetustatic undifferentiated nasopharyngeal carcinoma[J]. Cancer,1996,78(1):24.
    92. Tsai ST, Jin YT, Su IJ. Expression of EBER1 in primary and metastatic nasopharyngeal carcinoma tissues using in situ hybridization.A correlation with WHO histologic sutypes [J]. Cancer,1996,77(2):231-236.
    93. YUAN Tai-Ze, LI Xiao-Xia, CAO Yun, Correlation of Epidermal Growth Factor Receptor Activation to Metastasis-free Survival of Nasopharyngeal Carcinoma Patients[J]. Chinese Journal of Cancer,2008,27(5):449-454.
    94.段朝军,陈主初,赵明伦.EB病毒LMP与EGF自分泌在鼻咽癌细胞生长中的作用及其相互关系[J].湖南医科大学学报,1997,22:483-486.
    95.WANG Chengxing, LI Xiaoyan, GU Huanhua, et al. Increase of EGFR expression by Epstein2Barr virus LMP1 in nasopharyngeal carcinoma cells[J]. Chin J Oncol,2001,23(4):269-272.
    96.姚运红,蔡懿庭,李飞虹,等.EB病毒及其多种因素的相互关系在鼻咽癌发生发展中的作用[J].中国临床康复,2005,9(2),148-149.
    97. LIU Qiu-Yu, HAN An-Jia, YOU Shu-Yuan. Correlation of Epstein-Barr Virus-encoded Latent Membrane Protein 1(LMP1) to Fascin and Phosphorylated Stat3 in Nasopharyngeal Carcinoma[J]. Chinese Journal of Cancer,2008,27(10):1070-1076.
    98.Raben D, Helfrich B A, Chan D, et al. ZD1839, a selective epidermal growth factor receptor tyrosine kinase inhibitor, alone and in combination with radiation and chemotherapy as a new therapeutic strategy in non-small cell lung cancer [J]. Semin Oncol,2002,29(Suppl 4):37-46.
    99. Cohen S. The epidermal growth factor (EGF) [J]. Cancer,1983,51(10): 1787-1791.
    100. Derynck R. Transforming growth factor alpha [J]. Cell,1988,54(5):593-595.
    101. Sadowski HB, Shuai K, Darnell JE, et al. A common nuclear signal transduction pathway activated by growth factor and cytokine receptors [J]. Science,1993,261(5129):1739-1744.
    102. Park OK, Schaefer TS, Nathans D. In vitro activation of STAT3 by epidermal growth factor receptor kinase [J]. Proc Natl Acad Sci USA,1996, 93(24):13704-13708.
    103..林丽艳,张慧云,何韶衡.IL-6及其受体与炎症性疾病关系的新进展[J].中国热带医学,2008,8(4):680-682.
    104. Monter-J ulian F A. The soluble IL-6 receptors:serum levels and biological function[J]. Cell Mol (Noisy-le-grand),2001,47(4):583-597.
    105. Marjan B, Sizhi P G, Simi A, et al. Stat3 is tyrosine-phosphorylated through the interleukin-6/glycoprotein 130/Janus kinase pathway in breast cancer[J]. Breast Cancer Res,2007,9(3):1-8.
    106.宋伦,沈倍奋.Jak/STAT信号转导途径研究新进展[J].免疫学杂志,2000,16(1):85-88.
    1 Rosbe KW, Prazma J, Petrusz P, et al. Immunohistochemical characterization of nitric oxide synthase activity in squamous cell carcinoma of the head and neck[J]. Otolaryngol Head Neck Surg,1995; 113(5):541.
    2 Thomsen LL, Miles DW, Happerfield L, et al. Nitric oxide synthase activity in human breast cancer[J]. Br J Cancer,1995:72(1):41.
    3 Fujimoto H, Ando Y, Yamashita T, et al. Nitric oxide synthase activity in human lung cancer[J]. Jpn J Cancer Res,1997:88(12):1190.
    4 LangrehrJM, Hoffman RA, Lancaster TR, et al. Nitric oxide a new endogenous immunomodulator[J].Transplantation,1993,55:1205.
    5 OhsimaH, Bartsch H. Chronic infections and inflammatory Processes as cancer risk factors; possible roles of nitric oxide in carcinogenesis. Mutat Res,1994,305 (2):253.
    6 孙恒芳,张旭东,罗源等.胃癌患者血清和组织一氧化氮水平变化及临床意义[J].中国肿瘤临床,1998,25(4):285.
    7 Mayer B, Wermer ER. In search of a function for tetrahydrobiopterin in the biosynthesis of nitric oxide[J]. Naungn-Schmiedeberg's Arch Pharmaco 1, 1995,351:453.
    8 Thomsen L L, Miles D W, Happerfield L, et al. Nitric oxide synthase activity in human breast cancer [J]. Br J Cancer,1995,72:41-44.
    9 Rosbe K W. Prazma J. Petrusz P, et al. Immunohistochemical characterization of nitric oxide synthase activity in squamous cell carcinoma of the head and neck[J]. Otolaryngology Head Neck Surg,1995,113: 541-549.
    10 Moncada S. Higgs A. The L-arginine-nitric oxide pathway [J]. N Eng J Med, 1993,329:2002
    11 Blanchette J, Jaramillo M. Olivier M. Signalling events involved interferon gamma inducible macrophage nitric oxide generation [J]. Immunology, 2003,108(4):513.
    12 Reveneau S, Amould L, Jolimoy G, et al. Nitric oxide synthase in human breast cancer is associated with tumor grade. Proliferation rate, and expression of progesterone receptors [J]. Lab Invest,1999,79:1215.
    13 Thomsen LL, Lawton FC, Knowles RG, et al. Nitric oxide synthase activity in human gynecological, cancer [J]. Cancer Res,1994,54(5):1352-1354.
    14 Xie K, Hung S, Dong Z, et al.Transfection with the inducible nitric oxide synthase gene spresses tumorigenicety and abrogates metastasis by K-1735 nurine melanoma cells[J]. Exp Med,1995,181(6):1333-1343.
    15 Gallo O, Masini E, Morbidelli L, et al. Role of nitric oxide in angiogenesis and tumor progression in head and neck cancer[J]. J Natl Cancer Inst,1998, 90:587-596
    16 Jenkins DC, Charles IG, Thomsen LL, et al. Roles of nitric oxide in tumor growth[J]. Proc Natl Acad Sci USA,1995; 92(10):4392.
    17 Takahashi M, Fukuda K, Ohata T, et al. Increased expression of inducible and endothelial constitutive nitric oxide synthases in rat colon tumors induced by azoxymethane [J]. Cancer Res,1997; 57(7):1233.
    18 Wang HH, McIntosh AR, Hasinoff BB, et al. Regulation of B16F1 melanoma cells metastasis by inducible functions of the hepatic microvascular[J]. Eur J Cancer,2002,38(9):1261.
    19 Yasushi Y.Akiva M, Takash R, et al. p27 in human lung cancer: differential in small cell and non small cell carcinoma[J]. Cancer Res,1998; 58(10):1042.
    20 Sagar SM, Singh G, Hodson DI, et al. Nitric oxide and anticancer therapy[J]. Cancer Treat Rev,1995; 21(2):159.
    21 Zhang J, Dawson VL, Dawson TM, et al. Nitric oxide activation of poly(ADP-ribose) synthetase in neurotoxicity[J].Science,1994:263(8):687.
    22 Ho YS, W ang YJ, Lin JK. Induction of p53 and p21/W AF1/CIP1 expression by nitric oxide and their association with apoptosis in human cancer cells[J]. Mol Carcinog,1996; 16(1):20.
    23 Harrison DJ, Howie SEM, Wyllie AH, et al. Lymphocyte death, p53 and the problem of the undead cell. In:Kroemer G, Martinez AC, ed. Apoptosis in immunology[M]. Berlin:Spring-Verlag,1995:123-128.
    24 菜桦,雷旦生,张顺,鼻咽癌患者血清一氧化氮水平的变化及临床意义[J].中国医学检验杂志,2000,12(1),2:82-84.
    25 Ohshima H, Tatemichi M, and Sawa T. Chemical basis of inflammation induced carcinogenesis [J]. Arch Biochem Boophys,2003,417:3-11.
    26 Somchai P, Ning M, Yusuke H. Repeated infection with opisthorchis viverrini induces accumulation of 8-nitroguanine and 8-oxod-7,8-dihydro-2H-deoxyguanine in the bile duct of hamsters viainducible nitric oxide synthase [J]. Carcinogenesis,2004,25(8):35-42.
    27 Somchai P. Mechanism of NO-mediated oxidative and nitrative DNA damage in hamsters infected with opisthorchis viverini:a model of inflammation mediated carcinogenesis. Nitric Oxide,2004,11:175-183.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700