中国牛亚科家畜4个结构基因的遗传分化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
牛亚科是一个巨大的分类学群体,动物学上分类有不同观点。属的划分影响我国牛亚科家畜遗传资源评价、保护和利用实践的问题之一。一种观点认为牛亚科家畜包括家牛属(Bos)、牦牛属(Poephagus)、野牛属(Bison)、准野牛属(Bibos)、水牛属(Bubalus)、非洲野水牛属(Syncerina)。牛属主要包括普通牛(Bos taurus)和瘤牛(Bos indicus),牦牛属仅包含牦牛(Poephagus grunniens)一个种,准野牛属(Bibos)主要包括大额牛(Bibos frontalis)、爪哇牛(Bibos javanicus)和印度野牛(Bibos gaurus)。野牛属(Bison)包括美洲野牛(Bison bison)和欧洲野牛(Bison bonasus)。水牛属包括亚洲水牛(Bubalus bulalus)、菲律宾水牛(Bubalus mindorensis)和印尼水牛(Bubalus depressicornis)等,亚洲水牛又包括沼泽型(Swamp)和河流型(River)两种。非洲野水牛属(Syncerus)包括克鲁斯水牛(Syncerus caffer)和非洲野水牛(Syncerus nanus)两个种。另一种观点认为牦牛、大额牛列为牛属(Bos)。众多专家学者对牛亚科内不同物种的起源及分化也存在各种观点。一般认为中国水牛品种完全属于沼泽型,有专家学者认为沼泽型水牛应划分为两个支系,另有专家学者认为沼泽型水牛和江河型水牛相互独立地分别在中国和印度次大陆进化和驯化,两者在驯化后分别传播至东南亚地区;一般认为雷琼牛可能起源于与印度瘤牛(Bos indicus),另有专家学者认为雷琼牛可能起源于与印度瘤牛不同的其他肩峰牛的祖先,同时混有一定的爪哇牛(Bos javanicus)血缘,并推断海南可能是世界的一个牛属的发源地之一;还有专家学者认为中国牦牛在母缘遗传上分为两大支系;等等。这些不同观点反映了国内学术界对牛亚科内家畜物种的起源及分化问题认识不够透彻,因此在牛亚科物种的遗传资源保护工作中缺乏足够理论指导,不利于遗传资源保护工作的及时有效的开展。为了解牛亚科家畜的遗传变异信息,进一步解决我国牛亚科家畜的宏观进化与分类问题,开展了本项研究工作。
     本研究以中心产区典型群内随机抽样方法,采集6个中国牛亚科物种的代表性群体,蒙古牛(MG, Bos taurus),雷琼牛(LQ, Bos indicus),巴音郭楞州牦牛(MN, Bos grunniens),独龙牛(DL, Bos frontalis),海子水牛(HZ, Swamp Bubalus bubalis)和尼里-拉菲水牛(NR, River Bubalus bubalis),的血液样本共计103份,提取各样本基因组DNA;以各样本基因组DNA为模板,采用PCR分段扩增和测序方法,测定该6个牛种群体的4个结构基因(MSTN、GH、ADH和Cyt b)的编码基因序列,采用相关软件比较分析了6个牛亚科物种的代表性群体的4个结构基因的碱基组成上的差异以及核苷酸序列上的差异,并分别以4个结构基因座上核苷酸序列差异为基础,进行群体间基因分化和基因流分析,并重建中国牛亚科种群的系统发生树,以探讨中国牛亚科种群的遗传分化和系统起源。结果显示:
     1.各基因碱基组成上,Cyt b基因的G含量远低于其它3个基因(低约8.3%-13.6%);GH基因的G+C含量约为60%,远远高于其它3个基因;6个牛种群体内核基因的核苷酸歧异度较小,表示多样性水平低;6个牛种群体内Cyt b基因分化水平不一,以独龙大额牛最高(0.03807),蒙古牛最低(0-0.00019),蒙古牛和雷琼牛群体各自具有比较单一的母缘血统。从基因多样性上看,综合6个牛种群体,以Cyt b基因多样性水平最高,其它3个核基因的多样性水平均较低。研究结果符合公认的关于核基因和线粒体基因进化速率的认识。
     2.水牛属和传统的牛属各物种群体间基因分化水平普遍较高,基因流水平很低,或无基因交流,例外的是,独龙大额牛和水牛群体间存在中等水平的基因分化和微弱的基因流,总体研究结果符合两者传统的属分类地位;蒙古牛群体未受其它母缘血统的混杂;独龙大额牛和雷琼牛群体间在Cyt b、GH和ADH基因上的基因流水平较高;独龙大额牛和蒙古牛群体间仅在Cyt b基因上有较高的基因流水平;独龙大额牛和巴音郭楞州牦牛在MSTN基因上有较高的基因流水平;牦牛和其它牛属物种群体间存在中等水平的基因分化和微弱的基因流;本研究中基因流对不同基因的影响力存在差异,其中MSTN基因可能对基因流的影响不敏感。
     3.牦牛在母缘遗传上分为野生牦牛与家养牦牛两大支;牦牛在母缘遗传上与美洲野牛的关系近于欧洲野牛;传统的牛属各物种与欧洲野牛亲缘关系近于水牛属或其它牛亚科属分类群体;单一的瘤牛母缘血统不支持雷琼牛群体中含有爪哇牛或者巴厘牛血缘的观点,支持雷琼牛与印度瘤牛亲缘关系较近的观点;独龙大额牛群体与普通牛或瘤牛群体在母系血缘上关系很近;海子水牛分为两支的结果支持了沼泽型水牛划分为两个支系的论点,也同时支持了沼泽型水牛独立驯化的观点;所有海子水牛与菲律宾水牛亲源关系近于印尼水牛的结果部分支持了沼泽型水牛通过两条路线传播的推测。
     4.依据进化速率适中的基因座位上分离位点在群体间的差异,可以采用PCR技术对不同牛种产品进行鉴别,且所采用的基因座位无特别要求。
     研究结果一方面获得了所检测群体的遗传多样性水平,为认识种间分化提供有价值的信息,为保护及其开发利用牛种资源提供了部分遗传学依据;另一方面探讨了所检6个牛种群体以及与近缘物种之间的遗传分化关系,为中国牛亚科家畜的起源和进化的宏观研究提供了客观的参考资料。
Different taxonomic systems in Bovinae in China have long coexisted in explaining the divergence of Bovinae species. The key problem that affected the evaluation, protection and utilization of genetic resources in Bovinae livestock was the decision of each genus. One opinion prones to classify domestic animals in Bovinae into 6 genuses, Bos, Poephagus, Bison, Bibos, Bubalus and Syncerina. The genus Bos includes species normal cattle (Bos taurus) and zebu (Bos indicus); The genus Poephagus contains only yak (Poephagus grunniens); The genus Bibos includes species gayal(Bibos frontalis), banteng (Bibos javanicus) and India gayal(Bibos gaurus). The genus Bison includes species American bison (Bison bison) and European bison (Bison bonasus). The genus Bubalus includes species Asiatic water buffalo (Bubalus bulalus), tamaraw(Bubalus mindorensis)and the lowland anoa(Bubalus depressicornis), and sometimes the mountain anoa(Bubalus quarlesi), Asiatic water buffalo contains two types, swamp and river type. The genus Syncerina includes species Syncerus caffer and Syncerus nanus. Another opinion proposes that the genuses Poephagus and Bibos be combined into the Bos genus. Moreover, many scholars have different viewpoints on the origins and divergences of some Bovinae species. Chinese water buffalo breeds are generally regarded as swamp type, while some scholars suggested two subbranches in swamp-type water buffalo in China, and others demonstrated that swamp- and river-type water buffaloes independently evoluted and domesticated in China and Indian subcontinentant, and spread to southeast Asia;It is generally thought that Leiqiong cattle originates from Indian zebu (Bos indicus), while some scholars suggested another probable ancient humped cattle origin and a mixture of certain Banteng (Bos javanicus) blood, and deduced that Hainan region in China was probably one of the centers for early origination of Bos species; some scholars suggested that Chinese yak has two subbranches in maternal kinship; to name a few. These different opinions reflect a partial understanding of the issue on the origination and divergence in Bovinae, which leads to a lack of correct theoretical guide for protection of Bovinae genetic resources and an obstacle for effective execution of protection. To collect the information of genetic variations in domestical animals in Bovinae and explore the issue of their evolution and classification, we conducted this research.
     In the research, by applying simple random sampling in typical colony methods in the central area of habitat, blood samples of 6 typical bovinae species, Mongolia cattle (MG, Bos taurus), Leiqiong cattle (LQ, Bos indicus), Bayingolin yak (MN, Bos grunniens), Dulong gayal (DL, Bos frontalis) , Haizi water buffalo(HZ, Swamp Bubalus bubalis) , Nili-Ravi water buffalo (NR, River Bubalus bubalis), were collected. The genome DNA templates were then extracted from these samples by the regular method in literature. Using the methods of PCR amplification and sequencing, sequences of 4 structural genes, MSTN, GH, ADH and Cyt b, were detected in these 6 populations, and variations of base composition and nucleotides were analyzed by DnaSP and MEGA3.1 softwares, based on which, interpopulational gene flow was analyzed and phylogenic relations among Bovinae were reconstructed to explore the genetic divergence and phylogeny of Bovinae species. The results showed that:
     1. For the base composition of each gene, G content of Cyt b gene was far (8.3%-13.6%) lower than any of the other three genes; the G+C content of GH gene was about 60%, which was far higher than any of the other three genes; the nucleotide diversities of the three nuclear genes were relatively low among the 6 bovine populations, showing a low genetic diversity;
     The gene diversities of Cyt b gene were uneven among the 6 bovine populations, highest in Dulong gayal population(0.03807), lowest in Mongolia and Leiqiong cattle populations (0-0.00019), indicating both Mongolia and Leiqiong cattle had relatively a single maternal kinship. For the gene diversities of the 4 genes, Cyt b gene had a highest diversity, the gene diversities of the three nuclear genes were relatively low. These findings were identical with the general knowledge of the evolutionary rate of nuclear and mitochondrial genes.
     2. The gene diversities between the Bubalus populations and the traditional Bos populations were commonly high, with a low or no gene flow. An exception was that a moderate gene diversity and a faint gene flow were observed. The overall results were in agreement with the traditional taxonomic positions of Bubalus and Bos; Mongolia cattle had not been affected by other maternal kinship; Only in Cyt b gene, a high gene flow level was observed between Dulong gayal and Leiqiong cattle population; a high gene flow level was observed in MSTN gene between Dulong gayal and Bayingolin yak population; a moderate gene diversity and a faint gene flow were observed between the traditional Bos populations and Bayingolin yak population; the gene flow had different effect on these 4 genes, MSTN gene probably insensitive to the pressure of gene flow.
     3. the yak population was maternally grouped into two subbranches, wild yak and domestic yak; yak was more closely related with American bison than European bison, while the traditional Bos populations were more closely related with European bison than the Bubalus populations or other bovinae populations; the single maternal kinship of the zebu population would not support the supposition of Leiqiong cattle population containing blood of Banteng cattle or Bali cattle, but supported the close relationship between Leiqiong cattle and Indian zebu; Dulong gayal population had maternally close relationships with normal cattle and zebu cattle; the results of two subbranches in Haizi water buffalo population supported the supposition of dividing swamp-type water buffalo into two subbranches, and meanwhile, supported the supposition of its independent domestication; the closer relationship between Haizi water buffalo and tamaraw(Bubalus mindorensis)than the lowland anoa(Bubalus depressicornis)supported partially the supposition of swamp-type water buffalo spreading through two different routes to Southeast Asia.
     4. on the basis of interpopulational differences at separating sites of genes with moderate evolutionary rate, PCR technique could be used to identify products from diffent bovinae populations, with no special requirements for target gene loci. The overall findings aquired the genetic diversity of these target populations, providing important information for a further understanding of interspecies divergence and partial genetic evidence for the protection and utilization of genetic resources in Bovinae livestock; meanwhile, the study explored the genetic divergence of these 6 target Bovinae populations and species with near relationships, providing objective genetic data for overall researches on the origination and evolution of Bovinae livestocks.
引文
1 Antonio Lazcano. Chemical Evolution and the Primitive Soup:Did Oparin Get It All Right?J. theor. Biol.(1997)184:219-223
    2 Zeder MA, Emshwiller E, Smith BD, Bradley DG. Documenting domestication: the intersection of genetics and archaeology.Trends Genet. 2006 Mar;22(3):139-55
    3 FAO.the state of the world’s animal genetic resources for food and agriculture(in Chinese). Beijing: China agriculture press. 2007
    4 Kingdon, J. 1997. The Kingdon Field Guide to African Mammals. London and New York: Academic Press, NaturalWorld.
    5张兆群.牛羊类的演化历史.化石, 2004,(01):30-31
    6 Diamond J. Evolution, consequences and future of plant and animal domestication. Nature. 2002 Aug 8;418(6898):700-7
    7 Diamond J, Bellwood P.Farmers and their languages: the first expansions. Science. 2003 Apr 25;300(5619):597-603.
    8 Bruford MW, Bradley DG, Luikart G. DNA markers reveal the complexity of livestock domestication. Nat Rev Genet. 2003 Nov;4(11):900-10
    9 Loftus RT, MacHugh DE, Bradley DG, Sharp PM, Cunningham P. Evidence for two independent domestications of cattle. Proc Natl Acad Sci U S A. 1994 Mar 29;91(7):2757-61.
    10 Wendorf F, Schild R (1994) Are the early Holocene cattle in the Eastern Sahara domestic or wild? Evol Anthropol, 3:118–128
    11 Mannen H, Kohno M, Nagata Y, Tsuji S, Bradley DG, Yeo JS, Nyamsamba D, Zagdsuren Y, Yokohama M, Nomura K, Amano T. Independent mitochondrial origin and historical genetic differentiation in North Eastern Asian cattle. Mol Phylogenet Evol. 2004 Aug;32(2):539-44
    12 Lei CZ, Zhang W, Chen H, Lu F, Liu RY, Yang XY, Zhang HC, Liu ZG, Yao LB, Lu ZF, Zhao ZL. Independent maternal origin of Chinese swamp buffalo (Bubalus bubalis).Anim Genet. 2007 Apr;38(2):97-102
    13 Guo S, Savolainen P, Su J, Zhang Q, Qi D, Zhou J, Zhong Y, Zhao X, Liu J. Origin of mitochondrial DNA diversity of domestic yaks. BMC Evol Biol. 2006 Sep 22;6:73
    14 Lai SJ, Chen SY, Liu YP, Yao YG. Mitochondrial DNA sequence diversity and origin of Chinese domestic yak.Anim Genet. 2007 Feb;38(1):77-80
    15 David Caramelli.The Origins of Domesticated Cattle. Human Evolution (2006) 21: 107–122
    16 G?therstr?m A, Anderung C, Hellborg L, Elburg R, Smith C, Bradley DG, Ellegren H. Cattle domestication in the Near East was followed by hybridization with aurochs bulls in Europe. Proc Biol Sci. 2005 Nov 22;272(1579):2345-50.
    17常洪,苗泽荣.黄牛育种.北京:中国环境科学出版社. 1988
    18 Laura L. Janecek, Rodney L. Honeycutt, Ronald M. Adkins, And Scott K. Davis. Mitochondrial Gene Sequences and the Molecular Systematics of the Artiodactyl Subfamily Bovinae. Molecular Phylogenetics And Evolution,6(1):107-119
    19 Wilson, D. E. and D. M. Reeder. 1993. Mammal Species of the World (Second Edition). Washington: Smithsonian Institution Press.
    20 Nowak, RM. 1991. Walker's Mammals of the World (Fifth Edition). Baltimore: The Johns Hopkins University Press.
    21李齐发,赵兴波,刘红林,李宁,谢庄.牦牛分类地位研究概述.动物分类学报,31(3):520-524
    22郭松长,刘建全,祁得林,杨洁,赵新全.牦牛的分类学地位及起源研究:mtDNA D-loop序列的分析.兽类学报, 2006, 26 (4): 325-330
    23 Walker EP, Warnick F, Hamle ST. Mammals of the world.The Johns Hopkins press,Baltimore.1968.
    24 Namikawa T, Amano T, Mostafa K G and Hasnath M A. Karyotyke analysis of Bangladesh native cattle and gayals. Rep. Soc. Res. Native Livestock, 1988,12:89-95
    25中国牛品种志编写组.中国牛品种志.上海:上海科学技术出版社,1988.
    26 Dung, V. V, P. M. Giao, N. N. Chinh, D. Tuoc, and J. MacKinnon. 1993. A new species of living bovid from Vietnam. Nature 363: 443-445.
    27 Kemp, N., M. Dilger, N. Burgess, and Chu Van Dung. 1997. The saola Pseudoryx nghetinhensis in Vietnam: new information on distribution and habitat preferences and conservation needs. Oryx 31(1): 37-45
    28耿社民,刘小林.中国家畜品种资源纲要.北京:中国农业出版社,2003
    29邱怀.牛生产学.北京:中国农业出版社, 1995.
    30陈幼春,曹红鹤.中国黄牛品种多样性及其保护.生物多样性,2001,9(3):275-283
    31常洪,耿社民.中国黄牛源流考之一.北京:中国农业出版社,1990.
    32薄吾成.试论中国黄牛的起源.农业考古, 1993,(01): 214-217
    33许文博,朱静,刘舜才.云南黄牛品种分类的研究.云南农业大学学报,1994,9(1):28-33
    34陈幼春.中国黄牛生态种持征及其利用方向.北京:中国农业出版社,1990,3-7.
    35郑不留.中国家畜品种及其形态特征.北京:农业出版社,1980.
    36陈幼春,曹红鹤.中国黄牛品种多样性及其保护.生物多样性,2001,9(3):275-283
    37武彬.秦川、晋南和南阳黄牛血清乳酸脱氢酶谱型的初步研究.畜牧兽医学报.1988,19(1): 18-22
    38栾桂龙.四种水牛血清LDH同工酶谱型的分析研究.广西农学院学报,1989,8(4):61-65
    39邱怀.中国黄牛血液蛋白多态性与其遗传关系.西北农业大学学报,1987,(4):1-5.
    40常洪.秦岭两侧黄牛群体遗传检测报告.畜牧兽医学报.1994,25(2):116-12
    41聂龙.独龙牛遗传多样性及其种群遗传结构的等位酶分析.遗传学报,1995,22(3):185-19
    42刘又清.鲁西黄牛同工酶研究.内蒙古农牧学院学报,1995,16(4):29-32
    43杨关福.徐闻黄牛和海南黄牛血液蛋白的遗传多样性.华南农业大学学报,1996,17(2): 23-27.
    44俞英.云南文山黄牛和迪庆黄牛遗传多样性的蛋白电泳研究,动物学研究.1997,18(3):333- 339.
    45刘若余.中国山羊、黄牛线粒体DNA遗传多样性与起源进化.西北农林科技大学,2005,博士学位论文
    46陈宏,邱怀,詹铁生.黄牛品种银染核仁组织区(Ag-NORs)多态性的研究.西北农业大学学报,1994,22(4):18-22
    47张西锋;耿社民;陈宏;张建勤;张丽娟;顾玉兰;沈伟.秦川牛及其杂种牛肉用性能的RAPD标记.西北农林科技大学学报(自然科学版),2003,31(1):113-116
    48魏亚萍;张周平.牦牛、黑白花牛及其远缘杂种RAPD标记的初步研究.黄牛杂志,1999,25(5):16-18
    49梁子安,鲁云风,王庆林.南阳牛遗传多样性的RAPD分析.河南农业科学,2007,9:99-101
    50杜立新;万海伟;王爱华;李宏滨;用RAPD技术筛选中国荷斯坦牛产奶量性状遗传标记.畜牧兽医学报,2005,36(9),882-886
    51李荣岭;张桂香;王志刚;王慧;韩旭;王冬蕾;王均辉.微卫星标记对12个中外牛品种群体遗传结构的研究.遗传,2007,29(12):1463―1470
    52曾强成;张吉清;赵宗胜;李大全.新疆褐牛中4种微卫星DNA标记的初步研究.生物技术通讯,17(2):186-188
    53杨国忠;张嘉保;任文陟;赵玉民;胡成华.草原红牛及其杂种牛群体遗传变异与肉用性能的微卫星标记研究.畜牧兽医学报,2006,37(2),128-133
    54鲁玉霞;王洪梅;李建斌;李秋玲;安利国.微卫星DNA在牛亲子鉴定方面的研究进展.中国畜牧兽医,2008,35(1):67-69
    55蔡欣;陈宏;雷初朝;王珊;胡沈荣.中国17个黄牛品种mtDNA变异特征与多态性分析.中国生物化学与分子生物学报,2007,23(8):666-67
    56房兴堂;周艳;陈宏;蔡欣;方南洙.中国黄牛mtDNA D-loop遗传多样性及起源.动物学报,2007,53(5): 928-933,
    57童恩正,冷键.西藏昌都卡若新石器时代遗址的发掘及其相关问题.民族研究,1983,(01)
    58钟金城,陈智华,字向东,文勇立,马力.牦牛品种的聚类分析.西南民族学院学报(自然科学版), 2001,27(1):92-94.
    59涂正超,张亚平,邱怀.中国牦牛线粒体DNA多态性及遗传分化.遗传学报,1998,25:205-212.
    60钟金城,赵素君,陈智华,马志杰.牦牛品种的遗传多样性及其分类研究.中国农业科学, 2006, 39(2):389-397
    61 Winter H, B.Mayer, Schleger, et.al. Karyotyping, red blood cell and haemoglobin typing of the mithun(Bos frontalis), its wild ancestor and its hybrids. Research in Veterinary Science. 1984, 36(3):276-283.
    62兰宏,雄习昆,林世英等.云南黄牛和大额牛mtDNA多态性研究.遗传学报, 1993,20(5):419-425
    63云南省家畜家禽品种志编写委员会.云南省家畜家禽品种志.昆明:云南科技出版社,1987.
    64毛华明等.大额牛的生物学特征及研究开发利用潜力.云南农业大学学报,2005,20(2):258-261
    65单祥年,陈宜峰,罗华丽等.大额牛核型分析.遗传,1980,2(5):25-27
    66聂龙,施立明,和向东,等.独龙牛遗传多样性及其种群结构的等位酶分析.遗传学报,1995,22(5):185-191.
    67瓦格勒著,王建新译.中国农书(下册).商务印书馆,1936.
    68徐旺生.中国家水牛的起源问题研究(下).四川畜牧兽医,2005,5:58
    69胡文平.中国水牛的遗传多样性.中国草食动物,1998,2:1-3.
    70史荣仙,付茂忠,赖松家等.长江流域水牛血液蛋白多态性研究.遗传,1995,17(1):7-11.
    71郑维明,赖松家,史荣仙.中国水牛血清白蛋白多态性研究.中国畜牧杂志,1995,31(1):3-6.
    72 HU WP, XU BM, LIAN LS. Polymorphism of mitochondrial DNAs of Yunnan domestic water buffaloes (Bubalus bubalus) . Biochemical Genetics,1997, 35: 225-231
    73雷初朝.中国四个畜种(黄牛、水牛、牦牛、家驴)线粒体DNA遗传多样性研究.西北农林科技大学,2002,博士学位论文
    74齐国强等.中国部分地方水牛品种mtDNA D-loop区遗传多样性与起源研究.畜牧兽医学报2008,39(1):7-11
    75 F. Bibi. Origin, paleoecology, and paleobiogeography of early Bovini,Palaeogeography, Palaeoclimatology, Palaeoecology 248 (2007): 60–72
    76 Basrur PK, Gilman JP, Mcsherry BJ. Cytological observations on a bovine lymphosarcoma. Nature. 1964, 201:368-371.
    77 Kieffer NM, Cartwright TC. Sex chromosome polymorphism in domestic cattle. J Hered. 1968, 59 (1):34-36
    78 Pathak S. Cytogenetic research techniques in humans and laboratory animals that can be applied most profitably to livestock. J Dairy Sci. 1979, 62:836-843
    79 Wurster DH, Benirschke K. Chromosome studies in the super-family Bovoidea . Chromosoma. 1968, 25:152-71
    80钟金城,欧江涛,陈智华,字向东.牦牛遗传标记的研究.西南民族学院学报(自然科学版),2003,29(2):179-182
    81雷初朝,陈宏,胡沈荣.Y染色体多态性与中国黄牛起源和分类研究.西北农业学报2000,9(4):43-47
    82陈幼春.中国黄牛生态种持征及其利用方向.中国农业科学院畜牧研究所编,中国农业出版社,1990,3-7.
    83常洪,苗泽荣,耿社民等.中亚以东南家牛亲缘系统研究.江苏农业研究.1999,20(1):42-47
    84涂正超.中国牦牛遗传多样性及其遗传分化研究.西北农业大学博士论文,1996
    85陶世信.甘肃牦牛血液蛋白遗传多样性的研究.甘肃农业大学硕士论文,2001
    86祁学斌.甘肃牦牛乳蛋白遗传多样性的研究.甘肃农业大学硕士论文,2000
    87 L Nie, Y Yu, XQ Zhang, GF Yang, JK Wen, YP Zhang. Genetic diversity of cattle in south China as revealed by blood protein electrophoresis. Biochemical Genetics,1999,37:7-8
    88史荣仙,赖松家,郑维明,左福元,周江宁.中国水牛血红蛋白多态性及命名研究.南京农业大学学报, 1995, 18(3):94-99.
    89 Rider CC,Tylor CB.范培昌译,同工酶.北京:科学出版社,1987.
    90钱迎倩,马克平主编.生物多样性研究的原理和方法.北京:中国科学技术出版社,1994.
    91 Mortiz C.Defining evolutionarily significant units for conservation. Trends Ecol.Evol.,1994, 373-375.
    92 Moore SS, Sargeant LL, King TJ, Mattick JS, Georges M, Hetzel DJ. The conservation of dinucleotide microsatellites among mammalian genomes allows the use of heterologous PCR primer pairs in closely related species. Genomics. 1991 Jul;10(3):654-60.
    93 Goldstein DB, Ruiz Linares A, Cavalli-Sforza LL, Feldman MW. An evaluation of genetic distances for use with microsatellite loci. Genetics. 1995 Jan;139(1):463-71.
    94 Takezaki N, Nei M. Genetic distances and reconstruction of phylogenetic trees from microsatellite DNA. Genetics. 1996 Sep;144(1):389-99.
    95 Wang M Q, Weigend S, Barre-Dirie A et al, Analysis of two Chinese yak(Bos grunniens) populations using bovine microsatellite primers. Journal of Animal Breeding and Genetics. 2003,120:237-244
    96马月辉,曹红鹤,陈幼春,王栋.部分黄牛品种(群体)遗传多样性分析.中国农业科学,2003,36(6):696-699
    97钟金城,赵素君,陈智华,马志杰.牦牛品种的遗传多样性及其分类研究,中国农业科学. 2006,39(2):389-397
    98张争锋,陈宏,李秋玲,雷初朝,张春雷,王新庄,王居强,王轶敏.南阳牛DGAT2基因PCR-RFLP多态性及其与生长性状相关性研究.遗传,2007, 29(8): 945―950
    99陈智华,顾磊,钟金城,胡汉僳,李子良.大额牛Bola-DRB3基因第2外显子的PCR-RFLP多态性分析.中国牛业科学,2007,33(2):4-8
    100禹文海,刘红文,鲁绍雄,连林生,陆润峰.云南高峰黄牛BoLA-DRB3基因外显子2的PCR-RFLP多态性分析.云南农业大学学报, 22(5):694-698
    101 Ajmone-Marsan P, Negrini R, Milanesi E, Bozzi R, Nijman IJ, Buntjer JB, Valentini A, Lenstra JA. Genetic distances within and across cattle breeds as indicated by biallelic AFLP markers. Anim Genet. 2002 Aug;33(4):280-6.
    102 Nielsen R, Signorovitch J. Correcting for ascertainment biases when analyzing SNP data: applications to the estimation of linkage disequilibrium. Theor Popul Biol. 2003 May;63(3):245-55.
    103 Clark AG, Hubisz MJ, Bustamante CD, Williamson SH, Nielsen R. Ascertainment bias in studies of human genome-wide polymorphism. Genome Res. 2005 Nov;15(11):1496-502
    104 Halanych, K.M., 1998. Lagomorphs misplaced by more characters and fewer taxa. Syst. Biol. 47, 138–146.
    105 Huchon, D., Madsen, O., Sibbald, M.J., Ament, K., Stanhope, M.J.,Catzeflis, F., de Jong, W.W., Douzery, E.J., 2002. Rodent phylogeny and a timescale for the evolution of Glires: evidence from an extensive taxon sampling using three nuclear genes. Mol. Biol. Evol. 19, 1053–1065.
    106 Murphy, W.J., Eizirik, E., Johnson, W.E., Zhang, Y.P., Ryder, O.A., O_Brien, S.J., 2001a. Molecular Phylogenetics and the origins of placental mammals. Nature 409, 614–618.
    107 Nijman IJ, Otsen M, Verkaar EL, de Ruijter C, Hanekamp E, Ochieng JW, Shamshad S, Rege JE, Hanotte O, Barwegen MW, Sulawati T, Lenstra JA. Hybridization of banteng (Bos javanicus) and zebu (Bos indicus) revealed by mitochondrial DNA, satellite DNA, AFLP and microsatellites. Heredity. 2003 Jan;90(1):10-16.
    108 Anderson S A T,Bankier B O,Barrell M H L,et al.Sequence and organization of the human mitochondrial genome.Nature,1981,290:457-465.
    109 Anderson S,de Bruijn M H L,Coulson A B,et al.Complete sequence of bovine mitochondrialDNA conserved features of the mammalian mitochondrial genome.J Mol Biol,1982,156:683-717.
    110 Bibb M J,Van Etten R A,Wright C T,et al.Clayton:Sequence and organization of mouse mitochondrial DNA.Cell,1981,26:167-180.
    111 Brown W M.Evolution of animal mitochondrial DNA[A].In:Evolution of genes and proteins,Ed.by Nei M,Koehn R K.Sunderland,Mass:Sinauer Associates,1983, 62-88.
    112桂建芳.脊椎动物线粒体DNA的进化遗传学.动物学杂志,1990,25(1):50-55.
    113黄原著.分子系统学-原理、方法及应用.北京:中国农业出版社,1998.
    114 Kennedy P,Nachman M W.Deleterious mutations at the mitochondrial ND3 gene in South American Marsh Rats(Holochilus).Genetics,1998,150(1):359-368.
    115 Cann RL,Stoneking M,Wilson C.Mitochondrial DNA and Human volution. Nature, 1987, 325(1):31-36
    116 Templeton A.Out of Africa again and again.Nature,2002,416(6876):45-51
    117 Bruford MW, Bradley DG, Luikart G. DNA markers reveal the complexity of livestock domestication. Nat Rev Genet. 2003 Nov;4(11):900-10
    118 Luikart G, Gielly L, Excoffier L, Vigne JD, Bouvet J, Taberlet P. Multiple maternal origins and weak phylogeographic structure in domestic goats. Proc Natl Acad Sci U S A. 2001;98(10):5927-32.
    119 Guo J, Du LX, Ma YH, Guan WJ, Li HB, Zhao QJ, Li X, Rao SQ. A novel maternal lineage revealed in sheep (Ovis aries). Anim Genet. 2005 Aug;36(4):331-6.
    120 Chen SY, Su YH, Wu SF, Sha T, Zhang YP. Mitochondrial diversity and phylogeographic structure of Chinese domestic goats. Mol Phylogenet Evol. 2005 Dec;37(3):804-14.
    121 Lai SJ, Liu YP, Liu YX, Li XW, Yao YG. Genetic diversity and origin of Chinese cattle revealed by mtDNA D-loop sequence variation. Mol Phylogenet Evol. 2006 Jan;38(1):146-54.
    122 Eyre Walker A,Smith N H,Smith J M.Can mitochondrial clocks keep time?Proc R Sco lond B,1999,266:477.
    123 Arctander P.Mitochondrial recombination?Science,1999,284:2090-2091
    124 Thyagarajan B,Padua R A,Campell C.Mammalian mitochondrial possess homologous DNA recombination activity.J Biol Chem,1996,271:27536-27543.
    125 Zullo S,Sieu L C,Slightom J L, Hadler HI, Eisenstadt JM..Mitochondrial D-loop sequences are integrated in the rat nuclear gename.J Mo1 Biol,1991,221:1223-1235
    126 Rokas A,Williams B L,King L,et al.Genome-scale approaches to resolving incongruence in molecular phylogenies.Nature,2003,425:798-804.
    127 Asmussen MA, Arnold J, Avise JC. Definition and properties of disequilibrium statistics for associations between nuclear and cytoplasmic genotypes. Genetics. 1987 Apr;115(4):755-68.
    128 Asmussen MA, Basten CJ. Constraints and normalized measures for cytonuclear disequilibria. Heredity. 1996 Mar;76 (3):207-14.
    129 R.D.Overath and M.A.Asmussen.The Cytonuclear Effects of Facultative Apomixis. Theoretical Population Biology 58, 107-121 (2000)
    130 Kazuharu Misawa and Axel Janke. Revisiting the Glires concept—phylogenetic analysis of nuclear sequences. Molecular Phylogenetics and Evolution 28 (2003) 320–327
    131 Asta Audzijonyte, Mikhail E. Daneliya, Nikolai Mugue , Risto Vainola. Phylogeny of Paramysis (Crustacea: Mysida) and the origin of Ponto-Caspian endemic diversity: Resolving power from nuclear protein-coding genes. Molecular Phylogenetics and Evolution 46 (2008) 738–759
    132 Liu Q, Sommer S S. Restriction Endonuctease Fingerprinting ( REF ): a Sensive Method for Screening Mutation in Long Contiguous Segments of DNA. Bio Techniques, 1995,18(3):470
    133 Vidal-Puig A, Moller D E. Comparative Sensitivity of Altermative Single-Strand Conformation Polymorphism (SSCP) Methods. Bio Techniques, 1994,17(3):490
    134 Sheffield VC, Beck JS, Kwitek AE, Sandstrom DW, Stone EM.. The Sensitivity of Single-Strand Conformation Polymorphism Analysis for the Detection of Single Base Substitutions. Genomics, 1993,16(2):325
    135 El Mousadik A and Petit RJ. Chloroplast DNA phylogeography of the argan tree of Morocco. Mol Ecol. 1996 Aug;5(4):547-55.
    136 Leberg PL. Estimating allelic richness: effects of sample size and bottlenecks. Mol Ecol. 2002 Nov;11(11):2445-9.
    137 Nei M, Roychoudhury AK. Sampling variances of heterozygosity and genetic distance. Genetics. 1974 Feb;76(2):379-90.
    138 Botstein D. A theory of modular evolution for bacteriophages. Ann N Y Acad Sci. 1980;354:484-90.
    139 Louis EJ, Dempster ER. An exact test for Hardy-Weinberg and multiple alleles. Biometrics. 1987, 43(4): 805-11
    140 Guo SW and Thompson EA. Performing the exact test of Hardy-Weinberg proportions for multiple alleles. Biometrics, 1992, 48:361-372
    141张琼,吉亚杰,曾治高,宋延龄,张德兴.奠基者效应对海南坡鹿迁地保护种群遗传多样性的影响.动物学杂志, 2007,42(3):54-56
    142 Raymond M and Rousset, F. An exact test for population differentiation. Evolution. 1995,49: 1280-1283
    143 Weir,BS, Basten, CJ. Sampling strategies for distances between DNA sequences. Biometrics, 1990, 46:551-582
    144 Excoffier L, Smouse PE, Quattro JM. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics. 1992 Jun;131(2):479-91.
    145 Chakraborty and Danker-Hopfe. Analysis of population structure: a comparative study of different estimators of Wright's fixation indices. In: Handbook of statistics. (Rao C R, Chakraborty R eds.} Amsterdam: Elsevier. 1991, 203 -254
    146 Nei M, Tajima F, Tateno Y. Accuracy of estimated phylogenetic trees from molecular data. II. Gene frequency data. J Mol Evol. 1983;19(2):153-70.
    147 Goldstein DB, Ruiz Linares A, Cavalli-Sforza LL, Feldman MW. An evaluation of genetic distances for use with microsatellite loci. Genetics. 1995 Jan;139(1):463-71.
    148 Tomiuk J, Guldbrandtsen B, Loeschcke V. Population differentiation through mutation and drift--a comparison of genetic identity measures. Genetica. 1998;102-103(1-6):545-58.
    149 Nei M, Tajima F, Tateno Y. Accuracy of estimated phylogenetic trees from molecular data. II. Gene frequency data. J Mol Evol. 1983;19(2):153-70.
    150毛永江,常洪,杨章平,张柳,许明,常国斌,孙伟,宋光明,Henner Simianer.遗传距离与利用微卫星进行系统树构建初探.畜牧兽医学报, 2008,39(2):129-135
    151 Kimuar M. A simple method for estimating evolutionary rates of base substitutions throughComparative studies of nueleotide sequenees.J.Mol.Evol.,1980,16:111-120.
    152 Brown W.M.,E.M.prager,A.Wang and A.C.Wilson. Mitochondrial DNA sequenses of primates: Tempo and mode of evolution.J.Mol.Evol., 1982,18:225-239.
    153 Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987 Jul;4(4):406-25.
    154 Takahashi K, Nei M. Efficiencies of fast algorithms of phylogenetic inference under the criteria of maximum parsimony, minimum evolution, and maximum likelihood when a large number of sequences are used. Mol Biol Evol. 2000 Aug;17(8):1251-8.
    155 Takezaki N, Nei M. Genetic distances and reconstruction of phylogenetic trees from microsatellite DNA. Genetics. 1996, 144: 389-399
    156毛永江,常洪,杨章平,张柳,许明,常国斌,孙伟,宋光明,Henner Simianer.遗传距离与利用微卫星进行系统树构建初探.畜牧兽医学报, 2008,39(2):129-135
    157 Goloboff PA. Pasimony, likelihood, and simplicity, Cladistics, 2003,19: 91-103
    158黄秉周,徐公瑾,李相烈等.牛线粒体CYTB基因的序列分析及进化关系.延边大学农学学报, 2004, 26(3): 153-157.
    159 Irwin D M, Kocher T D, Wilson A C, et a1. Evolution of cytochrome b gene of mammals . Journal of Molecular Evolution, 1991, 32: 128-144
    160雷初朝.中国四个畜种(黄牛、水牛、牦牛、家驴)线粒体DNA遗传多样性研究.西北农林科技大学,2002,博士学位论文
    161齐国强,昝林森,张桂香,王志刚,王均辉,韩旭.中国部分地方水牛品种mtDNA D-loop区遗传多样性与起源研究.畜牧兽医学报,2008,39(1):7-11
    162 Lei CZ, Zhang W, Chen H, Lu F, Liu RY, Yang XY, Zhang HC, Liu ZG, Yao LB, Lu ZF, Zhao ZL. Independent maternal origin of Chinese swamp buffalo (Bubalus bubalis).Anim Genet. 2007 Apr;38(2):97-102
    163郭新红,刘少军,刘巧.鱼类线粒体DNA研究进展.遗传学报,2004,31(9):983-1000.
    164 Yu Y, Nie L, He Z Q, Wen J K, Jian C S, Zhang Y P. mitochondrial DNA variation cattle of South China: origin and intergression. Animal Genetics, 1999, 30: 245-250
    165雷初朝,陈宏,杨公社,宋林生,雷雪芹,孙维斌,李瑞彪,刘小林.中国部分黄牛品种mtDNA遗传多态性研究,遗传学报,2004,31(1):57-62
    166刘若余,夏先林,雷初朝,张明忠,陈宏,杨公社.贵州黄牛mtDNA D-loop遗传多样性研究,遗传,2006,28(3)::279-284
    167 Irwin DM, Kocher T D, Wilson A C. Evolution of the cytochrome b gene of mammals. Mol Evol.1991,32:128-144
    168 Kijas JM,Andersson L. A phylogenetic study of the origin of the domestic pig estimated from the near-complete mtDNA genome.J Mol Evol,2001,52(3):302-308
    169 Bataille M, Crainic K, Leterreux M, Durigon M, de Mazancourt P. Multiplex amplification of mitochondrial DNA for human and species identification in forensic evaluation. Forensic Sci Int. 1999, 99(3):165-70
    170 Irwin D M, Kocher T D, Wilson A C. Evolution of the cytochrome b gene of mammals. Journal of Molecular Evolution, 1991,32(2):128-144
    171黄秉周,徐公瑾,李相烈,李宁,金海国.牛线粒体cytb基因的序列分析及进化关系.延边大学农学学报, 2004, 26(3):153-157
    172蔡欣,陈宏.从Cyt b基因全序列分析中国10个黄牛品种的系统进化关系中国生物化学与分子生物学报2006 22 :168~171
    173 Takezaki, N., Gojobori, T., 1999. Correct and incorrect vertebrate phylogeny obtained by the entire DNA sequence data. Mol. Biol. Evol. 16: 590–601.
    174薛祥煦,李晓晨.陕西水牛化石及中国化石水牛的地理分布和种系发生.古脊椎动物学报,2000,38(3):218-231.
    175 Song-Jia Lai,Yi-Ping Liu,Yan-Xing Liu,et.al.Genetic diversity and origin of Chinese cattle revealed by mtDNA D-loop sequence variation.Molecular Phylogenetics and Evolution,2006,38:146-154.
    176 Yu Y,Lian LS,Wen JK,et.al.Genetic diversity and relationship of Yunnan native cattle breeds and introduced beef cattle breeds.Biochemecal Genetics,2004,42(1-2):1-9.
    177 Lei CZ, Zhang W, Chen H, Lu F, Liu RY, Yang XY, Zhang HC, Liu ZG, Yao LB, Lu ZF, Zhao ZL. Independent maternal origin of Chinese swamp buffalo (Bubalus bubalis).Anim Genet. 2007,38(2):97-102
    178 Kumar S, Tamura K and Nei M. MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Briefings in Bioinformatics, 2004, 5: 150-163.
    179 Felsenstein J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution,1985, 39: 783-791
    180 Kazuharu Misawa and Axel Janke. Revisiting the Glires concept—phylogenetic analysis of nuclear sequences.Molecular Phylogenetics and Evolution 28 (2003) 320–32
    181 Avise JC. Mitochondrial DNA and the evolutionary genetics of higher animals. Philos Trans R Soc Lond B Biol Sci. 1986 Jan 29;312(1154):325-42.
    182 Kocher TD, Thomas WK, Meyer A, Edwards SV, P??bo S, Villablanca FX, Wilson AC. Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc Natl Acad Sci U S A. 1989 Aug;86(16):6196-200.
    183 Zhang YP, Ryder OA. Non-invasive giant panda paternity exclusion. Zoo Biolog, 1994, 14: 569-573
    184 Kikkawa Y, Yonekawa H, Suzuki H, et al. Analysis of genetic diversity of domestic water buffaloes and anoas based on variations in the mitochondrial gene for cytochrome b. Animal Genetics, 1997, 28: 195-201.
    185 Kikkawa Y, Amano T, Suzuki H, et al. cattle in East and Southeast Asia in Analysis of genetic diversity of domestic terms of variation in restriction sites and sequences of mitochondrial DNA. Biochem Genet, 1995, 33:51-60
    186 Birungi J, Arctander P. Molecular systematics and phylogeny of the Reduncini (Artiodactyla: Bovidae) inferred from the analysis of mitochondrial cytochrome b gene sequences. Journal of Mammalian Evolution, 2001, 8: 125-147.
    187 Hassanin A, Ropiquet A. Molecular phylogeny of the tribe Bovini (Bovidae, Bovinae) and the taxonomic status of the Kouprey, Bos sauveli Urbain 1937. Molecular Phylogenetics and Evolution, 2004, 33: 896-907
    188陈幼春,王毓英,常洪.中国黄牛的分类。北京:农业出版社,1990,3-7
    189陈幼春,曹红鹤.中国黄牛品种多样性及其保护.生物多样性,2001, 9(3): 275-283
    190杨关福,吴显华.海南黄牛毛色的遗传.中国农业出版社, 1990,136-139
    191常洪,耿社民,武彬,陈幼春.中国黄牛考源——中国黄牛源流考之一(下).黄牛杂志, 1991,17(1):3-9
    192聂龙,陈永久,王文,宿兵;兰宏;张亚平;杨关福;张细权;李加琪.海南黄牛和徐闻黄牛线粒体DNA的多态性及其品种分化关系.动物学研究, 1996,17(3):269-274
    193杨关福,张细权,李加琪,聂龙;王文.徐闻黄牛和海南黄牛血液蛋白的遗传多样性.华南农业大学学报,1996,17(2):23-27
    194王朝锋,雷初朝,陈宏,蔡欣,党瑞华,欧江涛.雷琼牛mt DNA D-loop遗传多态性研究.黄牛杂志, 2005, 31(5): 14-15
    195陈幼春.中国黄牛生态种持征及其利用方向.中国农业科学院畜牧研究所编,中国农业出版社,1990
    196瓦格勒著,王建新译.中国农书(下册).商务印书馆,1936.
    197齐国强,昝林森,张桂香,王志刚,王均辉,韩旭.中国部分地方水牛品种mtDNA D-loop区遗传多样性与起源研究.畜牧兽医学报,2008,39(1):7-11
    198 Lau CH, Drinkwater RD, Yusoff K, Tan SG, Hetzel DJ, Barker JS. Genetic diversity of Asian water buffalo (Bubalus bubalis): mitochondrial DNA D-loop and cytochrome b sequence variation. Anim Genet. 1998 Aug;29(4):253-64.
    199 Lei CZ, Zhang W, Chen H, Lu F, Liu RY, Yang XY, Zhang HC, Liu ZG, Yao LB, Lu ZF, Zhao ZL. Independent maternal origin of Chinese swamp buffalo (Bubalus bubalis).
    200孟和等.蒙古牛肌肉生长抑制素基因编码序列检测分析.上海交通大学学报(农业科学版) ,2004,22(4):339-342
    201 Yokoyama S, Yokoyama R, Kinlaw CS, et al. Molecular Evolution of the Zinc-containing Long-Chain Alcohol Dehydrogenase Genes. Mol. Biol. Evol. 1990, 7(2): 143-154
    202中国家畜家禽品种志编委会.中国牛品种志.上海:上海科学技术出版社,1986
    203赖松家.中国三个牛种遗传多样性和分子系统进化研究.四川农业大学博士论文,2003.
    204常洪.家畜遗传资源学纲要.北京:中国农业出版社,1995.
    205 Hu Wenping, Xu Baoming, Lian Linsheng. Polymorphism of mitochondrial DNAs of Yunnan domestic water buffaloes, Bubalus bubalus, in China, based on restriction endonuclease cleavage patterns. Biochemical Genetics, 1997,35: 225-231

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700