植物顶端组织高效诱导型启动子的创建与表达调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,启动子的研究是国内外的一个研究热点,现已发现了大
    量组织特异性启动子和诱导型启动子。在仔细研究了这些特异性启
    动子的结构特点,以及其中起决定作用的顺式作用调控元件的基础
    上,本文从中选择了两个研究背景比较清楚、序列结构具有共性的
    植物顶端新生组织特异性调控元件B1元件和水杨酸诱导型调控元
    件as-1元件进行了进一步研究。
     以35S启动子的基本框架结构(-90至+1区间的序列)为基础,
    利用人工合成的这两个调控元件进行重新组装、构建了九个分别含
    有一个、两个、四个B1元件和as-1元件的系列启动子和带有gfp
    基因的质粒,将它们分别命名为pUC191B1a.GFP、pUC191B2a.GFP、
    pUC191B4a.GFP、pUC192B1a.GFP、pUC192B2a.GFP、pUC192B4a.GFP、
    PUC194B1a.GFP、pUC194B2a.GFP和pUC194B4a.GFP。并进一步
    分别构建出九个不同的植物表达载体,分别命名为pBI1B1a.GFP、
    pBI1B2a.GFP、pBI1B4a.GFP、pBI2B1a.GFP、pBI2B2a.GFP、pBI2B4a.GFP、
    PBI4B1a.GFP、PBI4B2a.GFP、pBI4B4a.GFP。利用农杆菌介导的叶
    盘转化法转化烟草,通过高浓度的卡那霉素连续筛选,最终获得186
    株转基因烟草植株。经过荧光显微镜初步筛选,获得含有1B1a启
    动子的植株9株、1B2a启动子的植株12株、1B4a启动子的植株14
    株、2B1a启动子植株8株、2B2a启动子的植株11株、2B4a启动子
    的植株9株、4B1a启动子的植株15株、4B2a启动子的植株15株
    和4B4a启动子的植株19株。经PCR扩增和Southern blot分析表明
    各种表达载体已分别整合进转基因烟草植株的基因组中。
     以每种启动子的转基因烟草植株为一个小群体,分别利用荧光
    显微镜在蓝色激发光下观察各种转基因烟草植株中各组织部位的
    GFP表达水平,并利用荧光分光光度计在460nm激发光和509nm
    发射光下对不同部位叶片中GFP的表达量进行了定量分析。两种不
    同的分析方法一致证明:(1)含有B1顺式作用元件的启动子具有在
    植株顶端叶片和茎尖中表达的组织特异性,其在茎中的表达也主要
    
     行 男 二
    集中在茎的外表皮和韧皮部组织。仅旧 元件具有累加效应,启动
    子中含有BI 元件越多,该启动子在顶端组织特异性表达就越强,
    含有四个 田 元件的启动子的顶端组织特异性最显著。在转基因烟
    草植株的同一部位,含有四个 * 元件启动子的表达水平是含有两
    个田元件启动子表达水平的2.9倍,是含有单个BI元件启动子表
    达水平的3.9倍,含有两个BI元件启动子的表达水平是含有单个BI
    元件启动子表达水平的 1.3倍。o)含有相同 BI元件而 asJ元件数
    目不同的三种启动子的表达水平没有明显差异,说明正常条件下含
    有 BI 元件和 as1元件启动子的表达水平主要由 BI 元件的多少决
    定,而不受asJ元件的影响。
     在应用ZmM、20mM和50mM水杨酸溶液喷洒转基因烟草植株
    叶片后,在不同时间段内选取同一部位的叶片,通过荧光显微镜观
    察和荧光分光光度计测量两种方法,定性、定量地分析了不同浓度
    的水杨酸诱导下含有不同启动子的转基因烟草植株中GFP表达水平
    的变化。两种方法一致证明:(1)as-1 元件能赋予启动子水杨酸诱
    导特性。(2)水杨酸的诱导效果与所喷洒水杨酸的浓度及 的值密切
    相关,供试溶液中以50mM PH6.8 的水杨酸溶液诱导效果最佳。(3)
    水杨酸诱导后基因表达水平的增长幅度与启动子中as-1元件的数目
    密切相关,含有单个asJ 元件的启动子在诱导后表达水平比诱导前
    提高2.2~2.8倍,含有两个asJ元件的启动子在诱导后表达水平比
    诱导前提高3~3.5倍,含有四个asA元件的启动子在诱导后表达水
    平比诱导前提高 13~17倍。O)增加 BI顺式作用元件数目有协同增
    强as八元件表达的作用,含有四个BI元件和四个as八元件的4B4a
    启动子,其不但具有很高的顶端叶片和茎尖组织特异性,而且在水
    杨酸诱导后 24小时左右,其表达水平比诱导前可提高 17.3倍。如
    此高效表达目前未见类似报道。
     本研究结果有力地证明了来自启动子中的组织特异性BI元件
    和诱导性as1元件,可被直接用于改造或构建人工融合启动子,
    并赋予启动子组织特异性表达的特性和水杨酸诱导特性,这一研
    
     MK 3
     究结果为今后构建组织特异性或诱导型启动子提供了依据。
     将BI和as-1顺式作用调控元件串联叠加起来构建成新型的、
     既有顶端组织特异性又有水杨酸诱导性并能高效表达的启动子,
     目前尚未见到类似报道。
Based on the study of published cis-elements of tissue-specific
    and inducible
    promoters. Salicylic acid (SA) inducible as-I element and the
    green tissue-
    specific 81 element, derived from the cauliflower mosaic virus
    35S promoter,
    were selected. Because both of the two promoters have well-known
    research
    background and more commonness than other cis-elements.
    
    
    Based on a truncation of?0 355 promoter (-90 to +1), nine
    different promoters
    were constructed with artificially synthesized as-I sequence and
    BI sequence.
    Each one of them respectively has one copy, two copies or four
    copies of as-I
    sequence and 81 sequence, and were subsequently designated as
    IBIa promoter,
    182a promoter, lB4a promoter, 2BIa promoter, 2B2a promoter, 2B4a
    promoter,
    4Bta promoter, 4B2a promoter and 4B4a promoter. And all the
    constructs were
    confirmed by sequencing. Then nine plant expression vectors
    containing these
    corresponding promoters were constructed, in which the GFP gene
    was
    downstreamed as a reporter gene. These plant expression vectors
    were
    subsequently designated as p811 B 1 a.GFP, p811 B I a.GFP, p811 B
    I a.GFP.
    pBI2Bla.GFP, pBl4BIa.GFP, pBIIB2a.GFP, pBl2B2a.GFP, pBl4B2a.GFP,
    pBIlB4a.GFP, pBI2B4a.GFP and pBl4B4a.GFP. Tobacco leaf discs were
    transformed with Agrobacterium tumefaciences Conn LBA4404
    containing these
    expression vectors, and 186 trangenic plants were obtained. Among
    of them, 106
    pass muster transgenic plants were firstly screened out by
    Fluorescent
    Microscope.
    
    
    Results of testing transgenic plants with PCR, Southern blot
    methods confirmed
    the successful integration of exogenous gene into tobacco plants
    genome.
    
    
    The GFP expressing level of different tissues located on
    different parts of
    respective trangenic plants transformed by different promoters
    were observed by
    the Fluorescent Microscopy, and the expressing level of different
    leaves located
    5
    
    
    
    
    on different parts of transgenic plants were quantitatively
    analyzed by Fluorescent
    Spectrophotometer. The results of two methods were highly
    consistent with each
    other and confirmed following conclusions:
    
    
    ?The promoters containing B! element show a tissue-specific
    expression
    principally in new leaves and the stem apex.
    
    ?The B I element shows a accumulative characteristic when adding
    the its copy
    number in promoter. The expression level of promoters containing
    four
    copies of B! sequence is 2.9 fold the level of promoters
    containing two
    copies of B1 sequence, is 3.9 fold the level of promoters
    containing one
    copy of 81 sequence. The expression level of promoters containing
    two
    copies of B I sequence is I .3 fold the level of promoters
    containing one copy
    of 81 sequence.
    
    ?No difference has been observed between the different transgenic
    plants of
    three kinds of promoters that containing same copy number of BI
    element
    and different copy number of as-I element. The results mean that
    the
    expression level of promoter is principally dependent on the
    number of 81
    sequence contained in the promoter, and the number of as-I
    sequence has no
    obvious influence on it under the general condition.
    
    
    After sprayed by salicylic acid solutions at various
    concentration, such as 2mM,
    20mM and 50mM, the transgenic tobacco plants carrying different
    promoters were
    tested for their response to the SA treatment by Fluorescent
    Microscopy and
    Fluorescent Spectrophotometer both qualitatively and
    quantitatively. The results
    of two methods were highly consistent with each other and
    confirmed following
    conclusions:
    
    
    ?The as-I element shows a positive response to the SA signal
    transduction,
    and the promoter containing as-I element show a trait of
    transcription
    activation by SA inducement.
    6
    
    
    
    
    
    ?Inductive efficiency is closely dependent on concentration and
    pH value of
    SA solution. The results suggest that the inducti
引文
1. 贾士荣.郭三堆,安道昌。2001。《转基因棉花》,科学出版社. 北京。P71-91
    2. 王关林,方宏筠。1998。植物基因工程中常用的启动子及其对转 录的调控作用。《植物基因工程原理与技术》,王关林,方宏筠主 编,科学出版社,北京。P347-352
    3. 王泽宇,邱全胜。2000。绿色荧光蛋白基因mgfp4在水稻愈伤组 织中的瞬时表达。北京师范大学学报(自科版).36(3) :385-389
    4. 叶梁,李枞,宋艳茹。2000。双价、三价种子特异性表达载体的 构建及表达PHB合成相关基因的转基因油菜的获得。科学通报, 45(5) :516
    5. 华志华,黄大年。1999。转基因植物中外源基因的遗传学行为。 植物学报,41(1) :1-5
    6. 朱群,白永延,罗士韦。1989。双向启动子的分离及嵌合基因拼 接的优化研究。植物学报,31(8) :581-589
    7. 吴标,潘瑞琴,芦睿,田颍川。1999。竹节花黄斑驳病毒启动 子的缺失分析及功能。微生物学报。39(1) :15-21
    8. 李胜国,刘玉乐,康良仪,田波。1995。烟草花药特异性启动子 的克隆、活性测定及雄性不育基因和恢复基因的构建。农业生物 技术学报.3(3) :25-32
    9. 束春娥,孙洪武等。1998。转基因棉Bt毒性表达的时空动态及 对棉铃虫生存、繁殖的影响。棉花学报,10(3) :131-135
    10. 杨洪全,卫志明,许智宏。1996。Rch10启动子引导iaaL基因在 转基因烟草中的表达导致花器官发育的变异。植物学报.38(7) : 541-547
    11. 苟吉庆,张锐,郭三堆。2001。水杨酸诱导型启动子的构建与表 达。中国农业科学。已录用。
    
    
    12. 苟吉庆,李敏,张锐,郭三堆。2001。利用荧光分光光度计定量 分析GFP基因的表达水平。生物技术通报,第6期发表。
    13. 范惠琴,姚泉洪,黄晓敏,彭日荷。1998。矮牵牛查尔酮黄烷酮 异构酶(chiA)基因启动子的克隆和测序。上海农业学报。14(3) : 14-16
    14. 赵倩,梁华,马崇烈,敖光明。1999。玉米19KD醇溶储藏蛋白 基因启动子种子特异性表达控制区段的分析。植物学报,41(1) : 51-54
    15. 唐灿明,孙敬等,1999。我国现有的3类转Bt基因抗虫棉品系 棉铃虫抗性的遗传学发现。科学通报,44(19) :2064-2068
    16. 夏兰芹,郭三堆。2000。外源基因在转基因植物中的表达与稳定 性。生物技术通报,3:8-12
    17. 秦红敏,贾燕涛,郭宏年。2000。TMV-RNA非翻译区对外源基因 在整体植物中表达水平的影响。科学通报45:617-621
    18. 贾士荣,屈贤铭。1996。《马铃薯抗菌肽基因工程》,中国农业出 版社,北京。
    19. 郭殿京,傅荣昭,李文斌等.1999. 小麦中外源基因表达调控研究 及兔防御素(NP-1) 基因的转化.遗传学报,26(2) :168-173
    20. 黄国存,朱生伟,董越梅,等。1998。绿色荧光蛋白及其在植物 研究中的应用。植物学通报, 15:24
    21. 蒋浩,秦红敏,虞红梅。1999。笋瓜韧皮部蛋白基因启动子的克 隆及功能初探。农业生物技术学报,7(1) :63-68
    22. 陈大华,叶和春.李国风,刘本叶。1999。绿色荧光蛋白基因在 青蒿转基因芽中的表达。植物学报,41(5) :61-67
    23. Abeles F.B, Morgan P.W.and Saltvet M.E.1992. Ethylene inplant biology.2edn.San Diego,CA:Academic Press,Inc.
    24. Adilson L, Edson L.K,Marcio J.da S, Augusto D.L,Rodrigo M.P.S, Eric D.B, Hamza F.E-D.,Paulo A., 2000. Expression of correctly processed human growth hormone in seeds of transgenic tobacco plants.Molecular Breeding,6:47-53
    
    
    25. Ainswoth, C. , Clark, J. , Bajsdon, J., 1993. Expression, organosation and structure of the genes encoding the waxy protein (granule-bound starch synthase ) in wheat. Plant Mol. Biol. 22: 67-82
    26. Alan H. Christensen, Robert A. Sharrock and Peter H. Quail, 1992. Maize polyubquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol. Biol., 18:675-689
    27. Ann E B, Olion D A., 1996. Expression of a novel high-molecular-weight glutenin subunit gene in transgenic wheat. Nature Biotechnology, 14:875-879
    28. Baker SS, Wilhelm KS, Thomashow MF. 1994. The 5'-region of Arabidopsis thaliana corl5a has cis-acting elements that confer cold-, drought-and ABA-regulated gene expression. Plant Mol Biol. 24(5) :701-13
    29. Batanero E, Villaba M, Lopez-Otin C, Rodriguez R. 1994. Isolation and characterization of an olive allergen-like protein from lilac pollen. Sequence analysis of three cDNA encoding protein isoforms. Eur J Biochem, 221: 187-193
    30. Bate,N., Spurr, C., Forter,G.D. and Twell, D. 1996. Maturation-specific translational enhancement mediated by the 5'-UTR of a late pollen transcript. Plant J. 10: 613-623
    31. Baumann K, De Paolis A, Costantino P, Gualberti G. 1999. The DNA binding site of the Dof protein NtBBF1 is essential for tissue-specific and auxin-regulated expression of the rolB oncogene in plants. Plant Cell, 11 (3) : 323-334
    32. Benfay PN, Chua NH, 1990. The cauliflower mosaic virus 35S promoter: combinational regulation of transcription in plants. Science, 250: 959-966
    
    
    33. Benfey P. N. , Ling Ren, Chua N-H. 1989. The CaMV35S enhancer contains at least two domains which can confer different developmental and tissue-specific expression patterns. The EMBO J., 8(8) : 2195-2202
    34. Benfey P. N. , Ling Ren, Chua N-H. 1990a. Tissue-specific expression from CaMV35S subdomains in early stages of plant development. The EMBO J., 9(6) : 1677-1684
    35. Benfey P.N., Ling Ren, Chua N-H. 1990b. Combinational and Synergistic properties of CaMV35S enhancer subdomains. The EMBO J., 9(6) : 1685-1696
    36. Bolle, C. , Spory, S. , Lubberstedt, Th. , Herrmann, R. G. and Qelmuller.R. 1994. Segments encoding 5'-untrslated leaders of genes for thylakoid proteins contain cis-elements essential for transcription. Plant J. 6: 513-523
    37. Bruce WB, Deng XW, Quail PH.Monica Carabelli, Giorgio Morelli, Garry. 1991. A negatively acting DNA sequence element mediates phytochrome-directed repression of phyA gene transcription. EMBO J. 10 (10) :3015-3024
    38. C. L. Maria, N. U. Gabriele, P. Ingo and N. Gunther, 1994. An approach towards genetically engineered cell fate mapping in maize using the Lc gene as a visible marker: transactivation capacity of Lc vectors in differentiated maize cells and microinjection of Lc vectors into somatic embryos and shoot apical meristems. The Plant Joural, 5(4) : 571-582
    39. Callis J, Vierstra RD. 1989. Ubiquitin and ubiquitin genes in higher plants. Oxford Surv Plant Mol Cell Biol, 6: 1-30
    40. Chavez-Barcenas AT, Valdez-Alarcon JJ, Martinez-Trujillo M, Chen L, Xoconostle-Cazares B, Lucas WJ, Herrera-Estrella
    
    L. 2000. Tissue-specific and developmental pattern of expression of the rice spsl gene. Plant Physiol, 124(2) :641-54
    41. Chilton, M. D. , et al. , 1977. Cell, 11: 263-271
    42. Chilton,M.D., et al., 1977. Cell, 11: 263-271
    43. Choi YH, Lee JK, Cho SH. 2001. Structure and expression of a CTP : phosphocholine cytidylyltransferase gene from Arabidopsis thaliana. Mol Cells 11(1) :95-99
    44. Christense A H, Sharrock R A., 1992. Maize polyubiqauitin genes: struture, thermal perturbation of expression and transcript splicing and promoter activity following transfer to protoplasts by electroporation. Plant Mol Biol, 18:675-681
    45. Chung YT, Keller EB, 1990. Positive and negtive regulatory elements mediating transcription from the promoter of a constitutively active rice actin gene. Mol Cell Biol. 10(12) : 6172-6180
    46. Clark.G. W. , Register, J. C. , Nejidat.A. , Eichholtz,D. A., Sanders, P. R. , Fraley, R. T. , Beachy, R. N. , 1990. Tissue-specific expressing of the TMV coat protein in transgenic tobacco plants affects the level of coat-protein mediated virus protection. Virology, 179: 640-647
    47. Cris Kuhlemeier, Maria Cuozzo, P.J.Green, E.Goyvaerts, K.Ward, N-H Chua, 1988. Localization and conditional redundancy of regulatory elements in rbcS-3A, a pea gene encoding the small subunit of ribulose-bisphosphate carboxylase. Proc. Natl.Acad. Sci.USA, 85: 4662-4666
    48. D. Hatton, R.Sablowski, M-H Yung, G. Smith, W. Schuch and M.Bevan. 1995. Two classes of cis sequences contribute to tissue-specific expression of a PAL2 promoter in transgenic
    
    tobacco. The Plant J., 7(6) : 859-876
    49. Dennis ES, Gerlach WL, Pryor AJ, Bernetzen JL, Inglis A, Lewellyn D, Sachs MM, Ferl, RJ, Peacock WJ, 1984. Molecular analysis of the alcohol dehydrogenase (Adhl) gene of maize. Nucleic Acids Res., 12: 3983-4000
    50. Digeon JF, Guiderdoni E, Alary R, Michaux-Ferriere N, Joudrier P, Gautier MF. 1999. Cloning of a wheat puroindoline gene promoter by IPCR and analysis of promoter regions required for tissue-specific expression in transgenic rice seeds. Plant Mol Biol. 39 (6) :1101-12
    51. Eadl Y, Curie C, McCormick S. Pollen specificity elements reside in 30bp of the proximal promoters of two polloen expressed genes. Plant Cell, 7: 373-384
    52. Eady C, Lindsey K, Twell D. 1994. Differential activation and conserved vegetative cell-specific activity of a late pollen promoter in species with bi-and tricellular pollen. Plant J. 5: 543-550
    53. Edwards, J. W. , Walker, E. L. , Coruzzi, G. M. 1990. Cell-specific expression in transgenic plants reveals non-overlapping roles for chloroplast and cytosolic glutamine synthetase. Proc. Nrtl. Acad. Sci. USA, 87: 3459-3463
    54. F.A.Freitas, J. A. Yunes, M.J.Silva, P. Arruda, A.Leite, 1994. Structural characterization and promoter activity analysis of the γ-kafiringene from sorghum. Mol Gen Genet, 245: 177-186
    55. Firek S., Draper J., Owen MRL. Gandecha A., Cockburn W., Whitelam GC., 1993. Secretion of a functional single-chian Fv protein in transgenic tobacco plants and cell suspension cultures. Plant Mol. Biol., 23: 861-870
    56. Fromm ME, Morrish F, Armstrong C, Williams R, Thomas J, Klein
    
    TM, 1990. Inheritance and expression of chimeric genes in the progeny of transgenic maize plants. Bio/Technology, 8: 833-839
    57. Gabrielle, T. and Gloria M.C., 1994. A nnovel AT-rich DNA binding protein that combines an HMG1-like DNA binding domain with aputative transcription domain. The Plant Cell, 6: 107-118
    58. Gilmour DS, Thomas GH, Elgin SCR, 1989. Drosophila nuclear proteins bind to regions of alternating C and T residues in gene promoters. Science, 245:1487-1490
    59. Graham MW, Craig S, Waterhouse PM. 1997. Expression patterns of vascular-specific promoters RolC and Sh in transgenic potatoes and their use in engineering PLRV-resistant plants. Plant Mol Biol. 33(4) :729-35
    60. Green PJ.Yong MH Cuozzzo M, kano-Murakami Y,Silverstein P. , Chua N-H. 1988. Binding site requirements for pea nuclear protein factor GT-1 correlate with sequences required for ligft-dependent transcriptional activation of the rbcS-3A gene. EMBO J, 7: 4035-4044
    61. Greenplate J T. 1998. Factors potentially influencing the survival of Helicoverpa Zea on Bollgard R. Cotton Proceeding Beltwide Cotton Conferences, San Diego, California, USA, 2, 1030-1033
    62. Hanson DD, Hamilton DA, Travis JL, Bashe DM, Nascarenhas JP. 1989. Characterization of a poolen-specific cDNA c;one from Zea mays and its expression. Plant Cell, 1: 173-179.
    63. Haq TA, Mason H.S., Clements JD., Arntzen CJ., 1995. Oral immunization with a recombinant bacterial antigen produced in transgenic plants. Science, 268: 714-716
    64. Hiro-Yuki Hirano, Noriko Takayashi, Takeshi Matsumura,
    
    Masatoshi Ranida, Yoshibumi Komeda, and Yoshio Sano. 1995. Tieeuw-dependent expression of the rice wx gene promoter in transgenic rice and petunia. Plant Cell Physiol. 36(1) : 37-44
    65. Ito H, Hiraga S, Tsugawa H, Matsui H, Honma M, Otsuki Y, Murakami T, Ohashi Y. 2000. Xylem-specific expression of wound-inducible rice peroxidase genes in transgenic plants. Pant Science, 155(1) :85-100
    66. J. Rouster, Jan van Mechelen and V. Cameron-Mills. 1998. The untranslated leader sequence of the barley lipoxygenase 1(Loxl) gene confers embryo-specific expression. The Plant J. 15(3) : 435-440
    67. James S. K. , Miltos T., Pietro P., Rino Cella, Polydefkis H. , and Denis J. M. 1994. A seed-specific Brassica napus oleosin promoter interacts with a G-box-specific protein and may be bi-directional. Plant Mol Bio. 24: 327-340
    68. Janice W. E. , Gloria M.C. , 1990. Cell-specific gene expression in plants. Annu. Rev. Genet. 24: 275-303
    69. K. Datta, A. Vasquez, J. Tu, L. Torrizo, M. F. Alam, N. Oliva, E. Abrigo, G. S. Khush, S. K. Datta. 1998. Constitutive and tissue-specific differential expression of the cryIA (b) gene in transgenic rice plants conferring resistance to rice insect pest. Theor Appl Genet.97: 20-30
    70. K. E. Broglie, P. Biddle, R. Cressman, R. Broglie, 1989. Functional analysis of DNA sequences responsible for ethylene regulation of a bean chitinase gene in transgenic tobacco. Plant Cell, 1: 599-607
    71. Koziel M.G. , Beland G.L. , Bowman C. , N.B.Carozzi, R.Crenshaw, et al, 1993. Field performance of elitee transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Bio/Technology, 11: 194-200
    
    
    72. Kuhlemeier C, Cuozzo M, Green PJ, Goyvaerts E, Ward K, Chua N-H. 1988. Localition and conditional redundancy of regulatory elements in rbcS-3A, apea gene encoding thr small subunit of ribulose-bisphospgate carboxylase. Proc Natl Acad Sci USA, 85: 4662-4666
    73. Kumpatla S P, Chandransekharan M B, Iyer L M, et al. 1998. Genomic intruder scanning and modulation systems and transgenic silencing, Trends Plants Sci., 3: 97-104
    74. Kumpatla S P, Hall T C. 1998. Recurrent onset of epigenentic silencing in rice harbouring a multi-copy transgene. Plant J. , 14: 129-135
    75. Kyozuka J, Fujimoto H, Izawa T, Shimamoto K, 1991. Anaerobic induction and tissue specific expression of maize Adhl promoter in transgenic rice plants and their progeny. Mol. Gen. Genet
    76. Kyozuka J, Izawa M, Nakajima M, Shimamoto K, 1990. Effect of the promoter and thr first intron of maize Adhl on foreign gene expression in rice. Maydica, 35: 353-357
    77. Lam E, Benfey PN, Gilmartin PM, Fang RX, Chua NH. 1989. Site-specific mutations alter in vitro factor binding and change promoter expression pattern in transgenic plants. Proc Natl Acad Sci USA. 86 (20) :7890-7894
    78. Lam E. , Chua N-H. 1991. Tetramer of a 21 base pair synthetic element confers seed expression and transcriptional enhancement in response to water stress and abscisic acid. J.Biol Chem, 266: 17131-17135
    79. Lam, E. , Benfey, P. N. and Chua, N.-H. 1989. In Lamb, C. and Beachy,R. (eds), Plant Gene Transfer. UCLA Symp. Mol. Cell. Biol., New Series. Alan R.Liss, Inc., New York.
    80. Loiuse et al. 1999. Factors affecting the efficacy of Bt
    
    cotton. The Australian Cotton Grower,20 (3) : 28-30
    81. Lombardero M. , Barbas JA, Moscoso del Prado J, Carreira J, 1994. cDNA sequence analysis of the main olive allergen. Ole e I. Clin Exp Allergy, 24: 765-770
    82. M. Menossi, J. A. Martinez-Izquierdo, P. Puigdomenech, 1997. Promoter tissue specific activity and ethylene control of the gene coding for the maize hydroxyproline-rich glycoprotein in maize cells transformed by particle bombardment. Plant Science, 125: 189-200
    83. M. Ohme-Takagi, H. Shishi. 1995. Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell, 7:173-182
    84. Ma JK-C, Hiatt A. , Hein M. , Vine ND. , Wang F. , Stabila P. , van Dolleweerd C. , Mostov K. , Lehner T. , 1995. Generation and assembly of secretory antibodies in plants. Science, 268: 716-719
    85. Martini N, Egen M, Runtz I, et al. , 1993. Promoter sequences of a potato pathogenesis-related gene mediate transriptional activation selectively. Mol Gen Genet, 236: 179-186
    86. Masaru Ohme-Takagi, Suzuki K, Shishi H. 2000. Regulation of ethylene-induced transcription of defense genes. Plant Cell Physiol. 41(11) : 1187-1192
    87. Mason HS, Lam DM-K, Arntzen CJ. 1992. Express ion of hepatitis B surface antigen in transgenic plants. Proc Natl. Acad. Sci. USA, 89: 11745-11749
    88. Matsumoto S, Ikura K, Ueda M, Sasaki R. 1995. Characterization Of a human glycoprotein(erythropoietin) produced in Cultutred tobacco cells. Plant Mol. Biol. 27: 1163-1172
    89. Mauh F, Dudler R. , 1993. Differential induction of distinct
    
    glutathione-S-transferases of wheat by xenobiotics and by pathogen attack. Plant Physiol.102: 1193-1201
    90. McElroy D, Blowers A D. , 199 1. Construetion of expression vetors based on the rice actin (Act 1) 5' region for use in monocot transformation. Mol Gen Gen, 231: 150-160
    91. McElroy D, Brettell R I S., 1994,Foreign gene exoression in transgenic cereals. TIBTECH, 12: 62-69
    92. McElroy D, Rothenberg M, Wu R, 1990. Structural characterization of a rice actin gene. Plant Mol Biol. 14(2) : 163-171
    93. McElroy D, Zhang W, Cao J, Wu R., 1990. Isolation of an efficient actin promoter for use in rice transformation. Plant Cell, 2: 163-171
    94. McElroy D. , Brettell R I S., 1994. Foreign gene expression in transgenic cereals. TIBTECH, 12: 62-69
    95. Medina J, Catala R, Salinas J. 2001. Developmental and stress regulation of rci2a and rci2b, two cold-inducible genes of arabidopsis encoding highly conserved hydrophobic proteins. Plant Physiol 125(4) :1655-66
    96. Michael F. 1997. A promoter direting high expressing in pistils of transgenic plants. Plant Molecular Biology. 35:425-431
    97. Michael F., 1997. A promoter directing high expressing in pistils of transgenic plants. Plant Molecular Biology. 35: 425-431
    98. Mol, J. , Stuitje, A., van der Krpl, A., Jorgensen, R. 1989. Saying it with genes: Molecular flower breeding. Trebds Biotechnol. 7: 148-153
    99. Murphy DJ, Cummins I. 1989. Biosynthesis of seed storage products during embryogenesis in rapeseed, Brassica napus.
    
    J. Plant Pgysiol. 135: 63-69
    100. N. Bate & D.Twell. 1998. Functional architecture of a late pollen promoter: pollen-specific transcription is developmentaaly regulated by multiple stage specific and co-dependent activator elements. Plant Molecular Biology, 37: 859-869
    101. Ngai N, Tsai FY, Coruzzi G. 1997. Light-induced transcriptional repression of the pea AS1 gene: identification of cis-elements and trans factors. Plant J, 12(5) :1021-34
    102. Niggeweg R, Thurow C, Carsten Kegler, and Christiane Gatz. 2000a. Tobacco Transcription Factor TGA2. 2 Is the Main Component of as-1-binding Factor ASF-1 and is Involved in Salicylic Acid-and Auxin-inducible Expression of as-1-containing Target Promoters. J. Biol. Chem. 275(26) : h19897-19905
    103. Niggeweg R, Thurow C, Weigel R, Pfitzner U, Gatz C. 2000. Tobacco TGA factors differ with respect to interaction with NPR1, activation potential and DNA-binding properties. Plant Mol Biol 42(5) :775-88
    104. Nomura M, Katayama K, Nishimura A, Ishida Y, Ohta S, Komari T, Miyao-Tokutomi M, Tajima S, Matsuoka M. 2000. The promoter of rbcS in a C3 plant (rice) directs organ-specific, light-dependent expression in a C4 plant (maize), but does not confer bundle sheath cell-specific expression. Plant Mol Biol, 44(1) :99-106
    105. Ohme-Takagi M, Suzuki K, Shinshi H. 2000. Regulation of ethylene-induced transcription of defense genes. Plant Cell Physiol, 4 1 (11) : 1187-1192
    106. Ottoboni LMM, Leite A, Yunes JA, Targon MLPN, de Souza Filho
    
    GA, Arruda P. , 1993. Sequence analysis of 22kDa-like α-coixin and their comparison with homologous zein and kafirin genes reveals highly conserved protein structure and regulatory elements. Plant Mol Biol., 21: 765-778
    107. Ouellet F, Vazquez-Tello A, Sarhan F. 1998. The wheat wcs 120 promoter is cold-inducible in both monocotyledonous and dicotyledonous species. FEBS Lett. 423 (3) : 324-328
    108. Oxtoby, E. , Hughes, M. A. , 1990. Engineering herbicide tolerance into crops. Trends Biotechnol. 8: 61-65
    109. Pe ME, Frova C, Colombo L, Bineli G, Mastroianni N, Tarchini R, Visioli G. 1994. Molecular cloning of genes expressed in pollen of Sorghum bicolor. Maydica, 39: 107-113
    110. Peterhans A, Datta SK, Datta K, Goodall GJ, Potrykus I, Paszkowski J. 1990. Recognition efficiency of Dicotyledoneae-specific promoter and RNA processing signals in rice Mol. Gen. Genet. 22: 361-368
    111. Sablowsk i, R. W. M. , Moyano, E. , Culianez-Macia, F. A. , Schuch W. , Martin C. and Bevan M. , 1994. A flower-specific Myb protein activates transcription of phenylpropanoid biosynthetic genes. EMBO J. 13: 128-137
    112. Salome Prat, L.Willmitzer, and J.Sanchez-Serrano, 1989. Nuclear proteins binding to a cauliflower mosaic virus 35S truncated promoter. Mol. Gen. Genet., 217: 209-214
    113. Sato, T. , Theologis, A. 1989. Cloning the mRNA encoding 1-ammminocyclopropane-1-carboxylate synthase, the key enzyme for ethylene biosynthesis in plants. Proc. Natl. Acad. Sci.USA, 86: 6621-6625
    114. Schlesinger M, Bond U. 1987. Ubiquitin genes. Oxford Surv Eukaryotic Genes, 4: 77-89
    115. Schlesinger M, Bond U. 1987. Ubiquitin genes. Oxford Surv
    
    Eukaryotic Genes, 4: 77-89
    116. Schrauwen JAM, de Groot PFM, van Herpen MMA, van der Lee T, Reynen WH, Weterings KAP, Wullems GJ. 1990. Stage-related expression of mRNAs during pollen development in lily and tobacco. Planta, 182: 298-304
    117. Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, Carninci P, Hayashizaki Y, Shinozaki K. 2001. Monitoring the Expression Pattern of 1300 Arabidopsis Genes under Drought and Cold Stresses by Using a Full-Length cDNA Microarray. Plant Cell, 13 (1) :61-72
    118. Shen Q, Chen CN, Brands A, Pan SM, Ho TH. 2001. The stress-and abscisic acid-induced barley gene HVA22: developmental regulation and homologues in diverse organisms. Plant Mol Biol, 45 (3) :327-40
    119. Shinshi H., Usami S. , Ohme-Takagi. 1995. Plant Mol. Biol. 27: 923-932
    120. Smish, E. F. & Toensend,C.O. , 1907. Science, 25: 671-673
    121. Smish, E. F. & Toensend, C. O. , 1907. Science, 25: 671-673
    122. Spencer TM, Gordon-Kamm WJ, Start WG, Lemmaux PG, 1990. Bialaphos selection of stable transformants of maize cell culture. Theor. Appl. Genet. 79: 625-631
    123. Stoger E, William S, Christou P, et al. 1999. Expression of the insecticidal lectin from snowdrop ( Galanthus nivalis agglutintin; GNA) in transgenic wheat plants: effects on predation by the grain aphid sitobion avenae. Mo;ecu;ar Breeding, 5(1) : 65-73
    124. Takefumi Kawata, Atsunori Nakatsuka, Tetsuya Tabata and Masaki Iwabuchi, 1989. Function of the hexameric sequence in the cauliflower mosaic virus 35S RNA promoter region. Biochemical and Biophysical Research Communications, 164(1) :
    
    387-393
    125. Takefumi Kawata, Atsunori Nakatsuka, Tetsuya Tabata, Maski Iwabuchi. 1989. Function of the hexameric sequence in the cauliflower mosaic virus 35S RNA promoter region. Biochemical and Biophysical Research Communication, 164(1) : 387-393
    126. Takehito Inaba, Yukio Nagano, Toshihiro Sakakibara, and Yukiko Sasaki, 1999. Identification of a cis-Regulatory Element Involved in Phytochrome Down-Regulated Expression of the Pea Small GTPase Gene pra21 Plant Physiol. 120: 491-500
    127. Takumi Nishiuchi, Hiroaki Kodama, Shuichi Yanagisawa, and Koh Iba. 1999. Wound-Induced Expression of the FAD7 Gene Is Mediated by Different Regulatory Domains of Its Promoter in Leaves/Stems and Rootsl. Plant Physiol, 121: 1239-1246
    128. Taniguchi M, Izawa K, Ku MS, Lin JH, Saito H, Ishida Y, Ohta S, Komari T, Matsuoka M, Sugiyama T. 2000. The promoter for the maize C4 pyruvate, orthophosphate dikinase gene directs cell-and tissue-specific transcription in transgenic maize plants. Plant Cell Physiol. 41(1) :42-8
    129. Tom A. Pfeifer and Tom A. Grigliatti, 1996. Future perspectives on insect pest management: engineering the pest. J. Invertebrate Pathology, 67: 109-119
    130. Tunen A, Mur L, Mol JNM. 1990. Pollen-and anther-specific chi promoters from petunia: Tandem promoters regulation of the chia gene. The Plant Cell, 2: 393-401
    131. Twell D, Wing R, Yamaguchi J, McCormick S, 1989. Isolation and expression of an anther-specific gene from tomato. Mol Gen Genet, 217: 240-245
    132. Twell D, Yamaguchi J, McCormick S, 1990. Pollen-specific
    
    gene expression in transgenic plants: Coordinate regulation of two different tomato gene promoters during microsporrgenesis. Development, 109: 705-713
    133. Twell D, Yamaguchi J, Wing R, McCormick S, 1991. Promoter analysis of three genes that are coordinately expressed during pollen development reveals pollen specific enhancer sequences and shared regulatory elements. Genes Devel., 5: 496-507
    134. Ulrich Reimann-Philipp and Roger N. Beachy, 1993. Coat protein-mediated resistance in transgeneic tobacco expressing the tobacco mosaic virus coat protein from tissue-specific promoters. Molecular Plant-Microbe Interactions, 6(3) : 323-330
    135. Vaeck, M. , A Reynaerts, H. Hofte, S. Jansens, M. De Beuckeleer, C. Dean, M. Zabeau, M. Van Montagu and J. Leemans, 1987. Transgenic plants protected from insect attack. Nature, 328: 33-37
    136. Vandekerckhove, J. , Damme, J. F. , Lijsebettens, M. , Botterman, J., De-Block, M., 1989. Enkephalins produced in trangenic plants using modified 2S seed storage proteins. Biotechnology, 7: 929-932
    137. Velten, J. , L. Veiten, R. Main, and J. Schell, 1984. Isolation of a dual plant promoter fragment from the Ti plasmid of Agrobacterium tumefaciens. The EMBO J. , 3: 2723-2730
    138. Wang Y, Zhang W, Cao J, McElroy D, Wu R, 1992. Characterization of cis-acting elements regulating transcription from the promoter of a constitutively active rice actin gene. Mol Cell Biol. 12(8) : 3399-3406
    139. Washida H, Wu CY, Suzuki A, Yamanouchi U, Akihama T, Harada
    
    K, Takaiwa F. 1999. Identification of cis-regulatory elements required for endosperm expression of the rice storage protein glutelin gene GluB-1. Plant Mol Biol. 40(1) :1-12
    140. Whitelam, and Ida Ruberti, 1996. Twilight-zone and canopy shade induction of the Athb-2 homeobox gene in green plants. Developmental Biology, 93(8) : 3530-3535
    141. Williams ME, Foster R. , Chua N-H. 1992. Sequences flank ing the hexameric G-box core CACGTG affect the specificity of protein binding. Plant Cell, 4: 485-496
    142. Wilmink A, Dons JM. 1993. Selective agents and marker genes for use in transformation of monocotyledonous plants. Plant Mol Biol Rep. 11;165-185
    143. WM Leu, XL Cao, TJ Wilson, DP Snustad and NH Chua, 1995. Phytochrome A and phytochrome B mediate the hypocotyl-specific downregulation of TUB1 by light in arabidopsis. The Plant Cell, 7: 2187-2196
    144. Yin Y, Chen L, Beachy R. 1997. Promoter elements required for phloem-specific gene expression from the RTBV promoter in rice. Plant J. 12(5) : 1179-88
    145. Zaenen, I. , et al. , 1974. J. Mol. Biol. ,86: 109-127
    146. Zaenen, I. , et al. , 1974. J. Mol. Biol. ,86: 109-127
    147. Zhand W, Wu R, 1988. Efficient regeneration of transgenic plants from rice protoplasts and correctly regulated expression of the foreign gene in the plants. Plant Physiol, 91: 1575-1579
    148. Zhang W. , 1991. Analysis of rice (Act 1) 5' region activity in transgenic rice plants. Plant Cell, 3: 1155-1165
    149. Zhou D, Qian D, Cramer CL, Yang Z. 1997. Developmental and environmental regulation of tissue-and cell-specific
    
    expression for a pea protein farnesyltransferase gene in transgenic plants. Plant J. 12 (4) :921-930Goldberg, R. B. 1988. Plants: Novel developmental processes. Sciencs, 240: 1460-1467
    150. Zou J-T, Zhan X-Y, Wu H-M, Wang H, Chueng AY. 1994. Characterization of a rice pollen-specific gene and its expression. American Journal of Botany, 81: 552-561

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700