人类基因SEC14L3、ACAD10和BBS4v2的克隆与功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本实验室大规模的cDNA克隆与测序工作积累了大量的全长基因库。借助大量的生物信息学手段,我们试图从这些库中去筛选与重要的生理途径及人类疾病可能密切相关的基因进行研究。在此基础上我们筛选到了三条新基因并首次通过SCI期刊报道了各自的克隆与初步功能研究。这三条基因分别为SEC14L3、ACAD10和BBS4v2。
     SEC14L3的cDNA全长2082bp,编码一个400个氨基酸的蛋白质。蛋白序列分析显示SEC14L3具有两个重要的功能结构域:CRAL-TRIO和GOLD结构域。信息学分析推测SEC14L3与SPF/TAP高度同源,可能为CRAL-TRIO蛋白家族的新成员。SPF/TAP在体内参与调节胆固醇合成与α生育酚代谢这两条重要的生理途径,提示SEC14L3可能具有类似的功能。组织表达谱分析显示SEC14L3主要在肝脏中表达,绿荧光融合蛋白表达显示其定位在细胞质内,初步实验表明α生育酚刺激不能引起与SPF/TAP类似的由胞质向细胞核的定位转移过程。三维结构模拟和氨基酸组成分析显示SEC14L3与SPF/TAP在疏水结合域存在关键氨基酸的差异和等电点的明显差异,提示两者之间在性质和功能上可能存在着差别。通过原核表达我们成功地分离得到了高纯度的SEC14L3蛋白CRAL-TRIO结构域部分的肽段,通过气相悬滴法对其进行了96种结晶条件的筛选,希望能够从晶体结构上对蛋白功能进行研究。
     脂肪酸是人体内重要的能量物质,人体内40%左右的能量来源于脂肪酸β氧化过程。脂酰辅酶A脱氢酶正是脂肪酸β氧化过程的第一步氧化反应的催化酶。迄今发现了9类不同的脂酰辅酶A脱氢酶,在蛋白水平上都具有一个保守的脱氢酶结构域。在基因筛选过程中我们找到了一条新的脂酰辅酶A脱氢酶候选基因ACAD10。cDNA全长3960bp,编码一个1059个氨基酸长度的蛋白。序列分析与结构模拟显示其具有典型的脂酰辅酶A脱氢酶结构域,提示其作为脂酰辅酶A脱氢酶家族成员的可能性。除了这个结构域之外在靠N端具有两个相对较小的结构域:Hydrolase和APH,显示其功能上的特殊性,可能为一种多功能的蛋白质。为从结构上分析蛋白的功能,我们尝试了ACAD10及其同源蛋白LCAD、VLCAD和ACAD9的功能结构域的克隆与表达工作。
     BBS4v2是我们在筛选过程中发现的一条与巴-比氏综合症可能相关的新基因,全长2530bp,编码一个527个氨基酸的蛋白质。序列比对发现其为BBS4基因的一个不同的剪接形式,两者具有不同的第一个外显子导致不同的ORF及不同的5’非翻译序列。表达谱比较发现BBS4和BBS4v2都是广谱表达,但是
A large full-length gene bank has been contructured through large-scale cDNA cloning and sequencing. With kinds of bioinformatical analysis, we try to select novel human genes that maybe related to crucial pathways or human diseases. Based on these works we selected three novel genes as SEC14L3, ACAD10 and BBS4v2 for further research.The cDNA sequece of SEC14L3 is 2082 base pairs in length with an open reading frame encoding a 400 amino acids protein. Analysis of protein sequece shows that SEC14L3 contains two important domains as CRAL-TRIO and GOLD. As SEC14L3 is highly homologous to human SPF/TAP, we think it maybe a new member of CRAL-TRIO protein family. The SPF/TAP can regulate the synthesization of cholesterol and the metabil metabolization of α -Tocophel in wVo.lt is predicted that SEC14L3 maybe have a similar function like SPF/TAP. Through pEGFP-fusion protein expression and tissue distrubition analysis, we find that SEC14L3 is a cytoplasmic protein and it mostly expressed in liver. We haven't found the transfer from cytoplasm to nucleolus in the existence of biophysical concentration of α -tocophel compared to SPF/TAP. By simulation of protein structure and amino-acids analysis we find there are significant difference in the key amino acid and
引文
1. Storch J and Thumser AE.The fatty acid transport function of fatty acid-binding proteins.Biochim Biophys Acta. 2000 Jun 26;1486(1):28-44.
    2. Veerkamp JH, Van Moerkerk And HT, Zimmerman AW.Effect of fatty acid-binding proteins on intermembrane fatty acid transport studies on different types and mutant proteins. Eur J Biochem. 2000 Oct;267(19):5959-66.
    3. Crabb JW, Goldflam S, Harris SE, Saari JC.Cloning of the cDNAs encoding the cellular retinaldehyde-binding protein from bovine and human retina and comparison of the protein structures.J Biol Chem. 1988 Dec 15;263(35):18688-92.
    4. Zimmer S, Stocker A, Sarbolouki MN, Spycher SE, Sassoon J, Azzi A.A novel human tocopherol-associated protein: cloning, in vitro expression, and characterization.J Biol Chem. 2000 Aug 18;275(33):25672-80.
    5. Arita M, Sato Y, Miyata A, Tanabe T, Takahashi E, Kayden H J, Arai H, Inoue K. Human alpha-tocopherol transfer protein: cDNA cloning, expression and chromosomal localization. Biochem J. 1995 Mar 1;306 (Pt 2):437-43
    6. Bateman A, Birney E, Cerruti L, Durbin R, Etwiller L,et al The Pfam protein families database.NucleicAcids Res. 2002 Jan 1;30(1):276-80.
    7. Debant A, Serra-Pages C, Seipel K, et al. The multidomain protein Trio binds the LAR transmembrane tyrosine phosphatase, contains a protein kinase domain, and has separate rac-specific and rho-specific guanine nucleotide exchange factor domains. Proc Natl Acad Sci U S A. 1996 May 28;93(11):5466-71.
    8. Crabb JW, Gaur VP, Garwin GG, Marx SV, Chapline C, Johnson CM, Saari JC. Topological and epitope mapping of the cellular retinaldehyde-binding protein from retina. J Biol Chem. 1991 Sep 5;266(25): 16674-83.
    9. H.B. Skinner, J.G. Alb, E.A. Whitters, G.M. Helmkamp,V.A Bankaitis, Phospholipid transfer activity is relevant to but not sufficient for the essential function of the yeast SEC14 gene product, EMBO J. 12 (1993) 4775-4784.
    10. B. Sha, S.E. Phillips, V.A. Bankaitis, M. Luo, Crystal structure of the S. cerevisiae phosphatidylinositol-transfer protein,Nature 391 (1998) 506-510.
    11. Stocker A, Tomizaki T, Schulze-Briese C, Baumann U.Crystal structure of the human supernatant protein factor.Structure (Camb). 2002 Nov; 10(11): 1533-40.
    12. Meier R, Tomizaki T, Schulze-Briese C, Baumann U, Stocker A. The molecular basis of vitamin E retention: structure of human alpha-tocopherol transfer protein.J Mol Biol. 2003 Aug 15;331 (3):725-34.
    13. Bankaitis, V. A., Malehorn, D. E., Emr, S. D. & Greene, R. The Saccharomyces cerevisiae SEC14 gene encodes a cytosolic factor that is required for transport of secretory proteins from the yeast Golgi complex. J. Cell Biol. 108, 1271-1281 (1989).
    14. B. Sha, S. E. Phillips, V. A. Bankaitis, M. Luo, Crystallization and preliminary X-ray diraction studies of the S. cerevisiae phospholipid-transfer protein Sec14p, Acta Crystallogr. D53 (1997) 784-786.
    15. B Sha, M. Luo, PI transfer protein: the specific recognition of phospholipids and its functions, Biochimica et Biophysica Acta 1441 (1999) 268-277.
    16. K.W.A. Wirtz, Phospholipid transfer proteins revisited, Biochem. J. 324 (1997) 353-360.
    17. B.G. Kearns, J.G. AIb, VoA. Bankaitis, Phosphatidylinositol transfer proteins: the long and winding road to physiological function, Trends Cell Biol. 8 (1998) 276-282.
    18. Novick P, Field C, Schekman R.Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell. 1980 Aug;21(1):205-15.
    19. Cleves AE, Novick PJ, Bankaitis VA.Mutations in the SAC1 gene suppress defects in yeast Golgi and yeast actin function.J Cell Biol. 1989 Dec;109(6 Pt 1):2939-50.
    20. Cleves AE, McGee TP, Whitters EA, Champion KM, et al. Mutations in the CDP-choline pathway for phospholipid biosynthesis bypass the requirement for an essential phospholipid transfer protein. Cell. 1991 Feb 22; 64(4): 789-800.
    21. McGee, T.P., Skinner, H.B., and Bankaitis, V.A. Functional redundancy of the CDP-ethanolamine and CDP-choline pathway enzymes in phospholipid biosynthesis: ethanolamine-dependent effects on steady-state membrane phospholipid composition in Saccharomyces cerevisiae. J. Bacteriol. (1994). 176, 6861-6868.
    22. Rivas, M.P., Kearns, B.G., Guo, S., Xie, Z., Sekar, C., Hosaka, K.et al. Pleiotropic alterations in lipid metabolism in yeast sac1 mutants: relationship to"bypass Sec14p" and inositol auxotrophy. Mol. Biol. Cell (1999). 10, 2235-2250.
    23. McGee TP, Skinner HB, Whitters EA, Henry SA, Bankaitis VA. A phosphatidylinositol transfer protein controls the phosphatidylcholine content of yeast Golgi membranes. J Cell Biol. 1994 Feb;124(3):273-87.
    24. Stock, S.D., Hama, H., DeWald, D.B., and Takemoto, J.Y. SEC14-dependent secretion in Saccharomyces cerevisiae. Nondependence on sphingolipid synthesis coupled diacylglycerol production. J. Biol. Chem. (1999). 274, 12979-12983.
    25. Skinner HB, McGee TP, McMaster CR, Fry MR, Bell RM, Bankaitis VA. The Saccharomyces cerevisiae phosphatidylinositol-transfer protein effects a ligand-dependent inhibition of choline-phosphate cytidylyltransferase activity.Proc Natl Acad Sci U S A. 1995 Jan 3;92(1):112-6.
    26. Patton-Vogt JL, Griac P, Sreenivas A, et al. Role of the yeast phosphatidylinositol or phosphatidylcholine transfer protein (Sec14p) in phosphatidylcholine turnover and INO1 regulation.J Biol Chem. 1997 Aug 15;272(33):20873-83.
    27. Kagiwada S, Kearns BG, McGee TP, Fang M, Hosaka K, Bankaitis VA. The yeast BSD2-1 mutation influences both the requirement for phosphatidylinositol transfer protein function and derepression of phospholipid biosynthetic gene expression in yeast. Genetics. 1996 Jun;143(2):685-97.
    28. Kearns, B.G., McGee, T.P., Mayinger, P., Gedvilaite, A., Phillips,S.E., Kagiwada, S., and Bankaitis, V.A. (1997). Essential role for diacylglycerol in protein transport from the yeast Golgi complex.Nature 387, 101-105.
    29. Phillips, S.E., et al. Yeast Sec14p deficient in phosphatidylinositol transfer activity is functional in vivo. Mol. Cell (1999). 4, 187-197.
    30. Crabb JW, Gaur VP, Garwin GG, Marx SV, Chapline C, Johnson CM, Saari JC.Topological and epitope mapping of the cellular retinaldehyde-binding protein from retina. J Biol Chem. 1991 Sep 5;266(25):16674-83.
    31. Intres R, Goldflam S, Cook JR, Crabb JW. Molecular cloning and structural analysis of the human gene encoding cellular retinaldehyde-binding protein. J Biol Chem. 1994 Oct 14;269(41):25411-8.
    32. Stecher H, Gelb MH, Saari JC, Palczewski K. Preferential release of 11-cis-retinol from retinal pigment epithelial cells in the presence of cellular retinaldehyde-binding protein. J Biol Chem. 1999 Mar 26;274(13):8577-85.
    33. Polans A, Baehr W, Palczewski K.Turned on by Ca2+! The physiology and pathology of Ca(2+)-binding proteins in the retina.Trends Neurosci. 1996 Dec; 19(12):547-54.
    34. McBee JK, Van Hooser JP, Jang GF, Palczewski K. Isomerization of 11-cis-retinoids to all-trans-retinoids in vitro and in vivo.J Biol Chem. 2001 Dec 21;276(51):48483-93. Epub 2001 Oct 16.
    35. Bernstein PS, Law WC, Rando RR. Isomerization of all-trans-retinoids to 11-cis-retinoids in vitro.Proc Natl Acad Sci U S A. 1987 Apr;84(7):1849-53.
    36. Saari JL, Huang J, Possin DE, Fariss RN, Leonard J, Garwin GG, Crabb JW, Milam AH. Cellular retinaldehyde-binding protein is expressed by oligodendrocytes in the optic nerve and brain. Glia 1997. 21:259-268.
    37. Golovleva I, Bhattacharya S, Wu Z, Shaw N, Yang Y, et al. Disease-causing mutations in the cellular retinaldehyde binding protein tighten and abolish ligand interactions. J Biol Chem. 2003 Apr 4;278(14):12397-402. Epub 2003 Jan 20.
    38. Eichers, E.R., Green, J.S., Stockton, D.W., Jackman, C.,et al. Newfoundland rod-cone dystrophy, an early onset, severe retinal dystrophy caused by splice junction mutations in RLBP1. Am. J. Hum. Genet. 2002. 70, 955-964.
    39. Kennedy BN, Li C, Ortego J, Coca-Prados M, Sarthy VP, Crabb JW. CRALBP transcriptional regulation in ciliary epithelial, retinal Muller and retinal pigment epithelial cells. Exp Eye Res. 2003 Feb;76(2):257-60.
    40. Nawrot M, West K, Huang J, Possin DE, Bretscher A, Crabb JW, Saari JC. Cellular retinaldehyde-binding protein interacts with ERM-binding phosphoprotein 50 in retinal pigment epithelium.Invest Ophthalmol Vis Sci. 2004 Feb;45(2):393-401
    41. Wu Z, Hasan A, Liu T, Teller DC, Crabb JW. Identification of CRALBP ligand interactions by photoaffinity labeling, hydrogen/deuterium exchange, and structural modeling. J Biol Chem. 2004 Jun 25;279(26):27357-64. Epub 2004 Apr 20.
    42. Chen, Y., Johnson, C., West, K., Goldflam, S., Bean, M. F., et al. (1994) in Techniques in Protein Chemistry V (Crabb, J. W., ed) pp. 371-378, Academic Press, San Diego
    43. Crabb JW, Nie Z, Chen Y, Hulmes JD, West KA, Kapron JT, Ruuska SE, Noy N, Saari JCo Cellular retinaldehyde-binding protein ligand interactions. Gin-210 and Lys-221 are in the retinoid binding pocket. J Biol Chem. 1998 Aug 14;273(33):20712-20.
    44. Crabb JW, Carlson A, Chen Y, Goldflam S, Intres R, West KA, Hulmes JD, Kapron JT, Luck LA, Horwitz J, Bok D. Structural and functional characterization of recombinant human cellular retinaldehyde-binding protein. Protein Sci. 1998 Mar;7(3):746-57.
    45. Wu Z, Yang Y, Shaw N, Bhattacharya S, Yan L, West K, Roth K, Noy N, Qin J, Crabb JW. Mapping the ligand binding pocket in the cellular retinaldehyde binding protein. J Biol Chem. 2003 Apr 4;278(14):12390-6. Epub 2003 Jan 20.
    46. Burton, G. W., Cheeseman, K. H., Doba, T., Ingold, K. U., and Slater, T. F. (1983) Vitamin E as an antioxidant in vitro and in vivo. Ciba Found. Symp. 101, 4-18.
    47. Burton, G. W., and Traber, M. G. (1990)Vitamin E: antioxidant activity, biokinetics, and bioavailability. Annu. ReV. Nutr. 10, 357-382.
    48. Horwitt, M. K., Elliott, W. H., Kanjananggulpan, P., and Fitch, C. D. (1984) Serum concentrations of alpha-tocopherol after ingestion of various vitamin E preparations. Am. J. Clin. Nutr. 40, 240-245.
    49. Leth, T., and Sondergaard, H. (1983) Biological activity of allrac-R-tocopherol and RRR-R-tocopherol determined by three different rat bioassays. Int. J. Vitam. Nutr. Res. 53, 297-311.
    50. Ames, S. R. (1979) Biopotencies in rats of several forms of alphatocopherol. J. Nutr. 109, 2198-2204.
    51. Burton, G. W., Traber, M. G., Acuff, R. V., Waiters, D. N., et al. Human plasma and tissue alpha-tocopherol concentrations in response to supple-mentation with deuterated natural and synthetic vitamin E. Am. J. Clin. Nutr. (1998) 67, 669-684.
    52. Behrens, W. A., and Madere, R. Alpha-and gamma tocopherol concentrations in human serum. J. Am. Coll. Nutr. (1986) 5, 91-96.
    53. Traber, M. G., and Kayden, H. J. Alpha-tocopherol as compared with gamma-tocopherol is preferentially secreted in human lipoproteins. Ann. N. Y. Acad. Sci. (1989) 570, 95-108.
    54. Kayden HJ. The genetic basis of vitamin E deficiency in humans. Nutrition. 2001 Oct; 17(10):797-8.
    55. Ben Hamida M, Belal S, Sirugo C, et al. Friedreich's ataxia phenotype not linked to chromosome 9 and associated with selective autosomal recessive vitamin E deficiency in two inbred Tunisian families. Neurology 1993;43:2179
    56. Traber, M. G., Sokol, R. J., Kohlschutter, A., Yokota, T., Muller, D. P., et al Impaired discrimination between stereoisomers of alpha-tocopherol in patients with familial isolated vitamin E deficiency. J. Lipid Res. (1993) 34, 201-210.
    57. Jishage, K., Arita, M., Igarashi, K., Iwata, T., et al. Alpha-tocopherol transfer protein is important for the normal development of placental labyrinthine trophoblasts in mice. J. Biol. Chem. (2001) 276, 1669-1672.
    58. Verdon, C. P., and Blumberg, J. B. An assay for the alphatocopherol binding protein mediated transfer of vitamin E between membranes. Anal. Biochem. (1988) 169, 109-120.
    59. Sato Y. Hagiwara K, Arai H, Inoue K. Purification and characterization of the alpha-tocopherol transfer protein from rat liver. 1991. FEBS Lett. 288: 41-45.
    60. Arita M, Sata Y, Miyata A, Tanabe T, Takahashi E, et al. 1Human alpha-tocophel transfer protein: cDNA cloning, expression and chromosomal localization. Biochem. J. 995, 306: 437-443.
    61. Hosomi A, Arita M, Sato Y, Kiyose C, Ueda T, et al. Affinity for alpha-tocopherol transfer protein protein as a determinant of the biological acticities of vitamin E analogs. FEBS Lett. 1997. 409: 105-108.
    62. Arita M, Npmura K, Arai H, Inoue K. α-Tocopherol transfer protein stimulates the secretion of the α-cocopherol from a cultured liver cell line through a brefeldin A-insecsitive pathway. Proc. Natl. Acad. Sci. USA 1997,94: 12437-41.
    63. Sato Y, Arai H, Miyata A, Tokita S, Yamamoto K, et al, Primary structure of alpha-tocopherol transfer protein from rat liver. Homology with cellular retinaldehyde-binding protein. J. Biol. Chem. 1993.268: 17705-10.
    64. Hosomi A, Goto K, Kondo H, Iwatsubo T, Yokota T, et al. Location of alpha-tocopherol transfer protein in rat brain. Neurosci. Lett. 1998.256: 159-162.
    65. Sokol RJ. Vitamin E deficiency and neurological disorders. In vitamin E in Health and Diease, ed. L Packer, J Fuchs, 1993 pp. 815-49. New York: Dekker.
    66. Traber MG, Sokol R J, Burton GW, et al. Impaired ability of patients with familial isolated vitamin E deficiency to incorporate alpha-tocopherol into lipoproteins secreted liver. J Clin Invest 1990;85:397
    67. Cavalier L, Ouahchi K, Kayden H J, Didonato S, Reutenauer L, et al. Ataxia with isolated vitamin E deficiency: heterogeneity of mutations and phenotypic variability in a large number of families. Am. J. Hum. Genet. 1998. 62: 301-10.
    68. Traber MG, Arai H. Molecular mechanisms of vitamin E transport. Annual Review of Nutrition, 1999. 19: 343-355.
    69. Min KC, Kovall RA, Hendrickson WA. Crystal structure of human alpha-tocopherol transfer protein bound to its ligand: implications for ataxia with vitamin E deficiency. Proc Natl Acad Sci U S A. 2003 Dec 9;100(25):14713-8. Epub 2003 Dec 1.
    70. Morley S, Panagabko C, Shineman D, et al. Molecular determinants of heritable vitamin E deficiency. Biochemistry. 2004 Apr 13;43(14):4143-9.
    71. Stocker A, Zimmer S, Spycher SE, Azzi A. Identification of a novel cytosolic tocopherol-binding protein: structure, specificity, and tissue distribution. IUBMB Life. 1999 Jul;48(1):49-55.
    72. Zimmer S, Stocker A, Sarbolouki MN, Spycher SE, Sassoon J, Azzi A. A novel human tocopherol-associated protein: cloning, in vitro expression, and characterization. J Biol Chem. 2000 Aug 18;275(33):25672-80.
    73. Yamamoto S, Bloch K. Studies on squalene epoxidase of rat liver. J Biol Chem 1970;245:1670-4.
    74. Tai HH, Bloch K. Squalene epoxidase of rat liver, J Biol Chem 1972;247:3767-73.
    75. Ferguson JB, Bloch K. Purification and properties of a soluble protein activator of rat liver squalene epoxidase, J Biol Chem 1977;252: 5381-5.
    76. Ono T, Bloch K. Solubilization and partial characterization of rat liver squalene epoxidase. J Biol Chem 1975;250:1571-9.
    77. Saat YA, Bloch KE. Effect of a supernatant protein on microsomal squalene epoxidase and 2,3-oxidosqualene-lanosterol cyclase. J Biol Chem 1976;251:5155-60.
    78. Srikantaiah MV, Hansbury E, Loughran ED, scallen TJ. Purification and properties of sterol carrier protein1. J Biol Chem 1976;251: 5496-5504.
    79. Caras IW, Bloch K. Effects of a supernatant protein activator on microsomal squalene-2,3-oxide-lanosterol cyclase. J Biol Chem 1979;254:11816-21.
    80. Porter TD. Supernatant protein factor and tocopherol-associated protein: an unexpected link between cholesterol synthesis and vitamin E (review). J Nutr Biochem. 2003 Jan;14(1):3-6.
    81. Shibata N, Arita M, Misaki Y, et al. Supernatant protein factor, which stimulates the conversion of squalene to lanosterol, is a cytosolic squalene transfer protein and enhances cholesterol biosynthesis Proc Natl Acad Sci U S A 2001; 98:2244-9.
    82. Mokashi V, Singh DK, Porter TD. Supernatant protein factor stimulates HMG-CoA reductase in cell culture and in vitro.Arch Biochem Biophys. 2005 Jan 15;433(2):474-80.
    83. Gil G, Brown MS, Goldstein JL. Cytoplasmic 3-hydroxy-3-methylglutaryl coenzyme A synthase from the hamster. Ⅱ. Isolation of the gene and characterization of the 5' flanking region. J Biol Chem. 1986 Mar 15;261(8):3717-24.
    84. Mokashi V, Porter TD.Supernatant protein factor requires phosphorylation and interaction with Golgi to stimulate cholesterol synthesis in hepatoma cells. Arch Biochem Biophys. 2005 Mar 1;435(1):175-81
    85. Yamauchi J, Iwamoto T, Kida S, Masushige K, Yamada K, Esashi T. Tocopherol-associated protein is a ligand-dependent transcriptional activator. Biochem Biophys Res Commun 2001;285:295-9.
    86. Stocker A, Tomizaki T, Schulze-Briese C, Baumann U. Crystal structure of the human supernatant protein factor. Structure 2002; 10:1533-40.
    87. Stocker A, Baumann U. Supernatant protein factor in complex with RRR-alpha-tocopherylquinone: a link between oxidized Vitamin E and cholesterol biosynthesis. J Mol Biol. 2003 Sep 26;332(4):759-65.
    88. Anantharaman V, Aravind L. The GOLD domain, a novel protein module involved in Golgi function and secretion. Genome Biol. 2002;3(5):research0023. Epub 2002.
    89. Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD: Molecular Biology of the Cell. New York and London: Garland Publishing: 1999.
    90. Hong W: Protein transport from the endoplasmic reticulum to the Golgi apparatus. J Cell Sci 1998, 111:2831-2839.
    91. Bannykh SI, Nishimura N, Balch WE: Getting into the Golgi. Trends Cell Biol 1998, 8:21-25.
    92. Bannykh SI, Rowe T, Balch WE: The organization of endoplasmic reticulum export complexes. J Cell Biol 1996, 135:19-35.
    93. Schimmoller F, Singer-Kruger B, Schroder S, Kruger U, Barlowe C, Riezman H: The absence of Emp24p, a component of ERderived COPⅡ-coated vesicles, causes a defect in transport of selected proteins to the Golgi. EMBO J 1995, 14:1329-1339.
    94. Fiedler K, Veit M, Stamnes MA, Rothman JE: Bimodal interaction of coatomer with the p24 family of putative cargo receptors. Science 1996, 273:1396-1399.
    95. Sohda M, Misumi Y, Yamamoto A, Yano A, Nakamura N, Ikehara Y: Identification and characterization of a novel Golgi protein, GCP60, that interacts with the integral membrane protein Giantin. J Biol Chem 2001, 276:45298-45306.
    96. Muniz M, Nuoffer C, Hauri HP, Riezman H: The Emp24 complex recruits a specific cargo molecule into endoplasmic reticulum-derived vesicles. J Cell Biol 2000, 148:925-930.
    97. Gayle MA, Slack JL, Bonnert TP, Renshaw BR, et al. Cloning of a putative ligand for the T1/ST2 receptor. J Biol Chem 1996, 271:5784-5789.
    98. Hayashi, T., Kanetoshi, A.,et al. Reduction of alpha-tocopherolquinone to alpha-tocopherolhydroquinone in rat hepatocytes. Biochem. Pharmacol. (1992). 44, 489-493.
    99. Kohar, I., Baca, M., Suarna, C., et al. Is alpha-tocopherol a reservoir for alpha-tocopheryl hydroquinone? Free Radic. Biol. Med. (1995). 19, 197-207.
    100. Neuzil, J., Witting, P. K. & Stocker, R. Alphatocopheryl hydroquinone is an efficient multifunctional inhibitor of radical-initiated oxidation of low density lipoprotein lipids. Proc. Natl Acad. Sci. USA, (1997). 94, 7885-7890.
    101. Kunjathoor, V. V., Febbraio, M., Podrez, E. A., et al. Scavenger receptors class A-Ⅰ/Ⅱ and CD36 are the principal receptors responsible for the uptake of modified low density lipoprotein leading to lipid loading in macrophages. J. Biol. Chem. (2002). 277, 49982-49988.
    102. Yang, T., Espenshade, P. J., Wright, M. E., Yabe, D., et al. Crucial step in cholesterol homeostasis: sterols promote binding of SCAP to INSIG-1, a membrane protein that facilitates retention of SREBPs in ER. Cell, (2002).110, 489-500.
    103. Bomar JM, Benke PJ, Slattery EL, et al. Mutations in a novel gene encoding a CRAL-TRIO domain cause human Cayman ataxia and ataxia/dystonia in the jittery mouse. 2003, 35:264-269
    104. Johnson W.G., Murphy Wl & Bollm AD. Recessive congenital cerebellar disorder in a genetic isolate: CPD type Ⅱ? 1978. Neurology 28: 352-353.
    105. Sheffield, V. C.; Weber, J. L.; Buetow, K. H.; Murray, J. C.et al. A collection of tri-and tetranucleotide repeat markers used to generate high quality, high resolution human genome-wide linkage maps. Hum. Molec. Genet. 1995.4: 1837-1844,
    106. Nystuen, A.; Benke, P. J.; Merren, J.; Stone, E. M.; Sheffield, V.C. A cerebellar ataxia locus identified by DNA pooling to search for linkage disequilibrium in an isolated population from the Cayman Islands. Hum. Molec. Genet. 1996.5: 525-531,
    107. Bomar, J. M.; Benke, P. J.; Slattery, E. L.; Puttagunta, R.; Taylor, L. P. et al, Mutations in a novel gene encoding a CRAL-TRIO domain cause human Cayman ataxia and ataxia/dystonia in the jittery mouse. Nature Genet. 2003. 35: 264-269,
    108. Vance DE, Vance JE. Biochemistry of lipids, Lipoproteins and Membranses. Elsevier Science Publishers, 1991.
    109. Eston S, Bartlett K, Pourfarzam M. Mammalian mitochondrial β-oxidation. Biochem. J. 1996, 320: 345-357.
    110.王镜岩,朱圣庚,徐长法等,《生物化学》第三版下,高等教育出版社2003 232-245
    111. Thorpe C, Kim J J, Structure and mechanism of action of the acyl-CoA dehydrogenases. FASEB J. 1995, 9:718-725.
    112. Ghisla S& Thorpe C., acyl-CoA dehydrogenases. Eur. J. Biochem. (2004) 271, 494-508
    113. Zhang, J., Zhang, W., Zou, D., Chen, G., Wan, T., Zhang, M. & Cao, X. (2002) Cloning and functional characterization of ACAD-9, a novel member of human acyl-CoA dehydrogenase family. Biochem. Biophys. Res. Commun. 297, 1033-1042.
    114. E.A.R. Telford, L.M. Moynihan, A.F. Markham, N.J. Lench, Isolation and characterization of a cDNA encoding the precursor for a novel member of the acyl-CoA dehydrogenases gene family, Biochim. Biophys. Acta 1446 (1999) 371-376.
    115. T. Aoyama, M. Souri, S. Ushikudi, T. Kamijo, S. Yamaguchi, R.I. Kelley, W.L. Rhead, K. Uetake, K. Tanaka, T. Hashimoto, Purification of human very-long-chain acyl-coenzyme A dehydrogenase and characterization of its deficiency in seven patients, J. Clin. Invest. 95 (1995) 2465-2473.
    116. K. Izai, Y. Uchida, S. Yamamoto, T. Hashimoto, Novelfatty acid b-oxidation enzymes in rat liver mitochondria. Ⅰ. Purification and properties of very-long-chain acyl-coenzyme A dehydrogenase, J. Biol. Chem. 267 (1992) 1027-1033.
    117. B.S. Avdresen, E. Christensen, T.J. Corydon, B. et al. Isolated 2-methylbutyryglycinuria caused by short/branched-chain acyl-CoA dehydrogenase deficiency: identification of a new enzyme defect, resolution of its molecular basis, and evidence for distinct acyl-CoA dehydrogenases in isoleucine and valine metabolism, Am. J. Hum. Genet. 67 (2000) 1095-1103.
    118. Matsubara Y, Indo Y, Naito E, Ozasa H, Glassberg R, Vockley J, Ikeda Y, Kraus J, Tanaka K. Molecular cloning and nucleotide sequence of cDNAs encoding the precursors of rat long chain acyl-coenzyme A, short chain acyl-coenzyme A, and isovaleryl-coenzyme A dehydrogenases. Sequence homology of four enzymes of the acyl-CoA dehydrogenase family. J Biol Chem. 1989 Sep 25;264(27):16321-31.
    119. Hall CL, Kamin H. The purification and some properties of electron transfer flavoprotein and general fatty acyl coenzyme A dehydrogenase from pig liver mitochondria. J Biol Chem. 1975 May 10;250(9):3476-86.
    120. Izai K, Uchida Y, Orii T, Yamamoto S, Hashimoto T. Novel fatty acid beta-oxidation enzymes in rat liver mitochondria. Ⅰ. Purification and properties of very-long-chain acyl-coenzyme A dehydrogenase. J Biol Chem. 1992 Jan 15;267(2):1027-33.
    121. Aoyama T, Souri M, Ushikubo S, Kamijo T, et al. Purification of human very-long-chain acyl-coenzyme A dehydrogenase and characterization of its deficiency in seven patients.J Clin Invest. 1995 Jun;95(6):2465-73.
    122. Kumar, N.R. & Srivastava, D.K. (1994) Reductive half-reaction of medium-chain fatty acyl-CoA dehydrogenase utilizing octanoyl-CoA/octenoyl-CoA as a physiological substrate/product pair: similarity in the microscopic pathways of octanoyl-CoA oxidation and octenoyl-CoA binding. Biochemistry 33,8833-8841.
    123. Kim, J.J.P., Wang, M. & Paschke, R. (1993) Crystal structures of medium-chain acyl-CoA dehydrogenase from pig liver mitochondria with and without substrate. Proc. Natl Acad. Sci. USA 90, 7523-7527.
    124. Lee, H.J., Wang, M., Paschke, R., Nandy, A., Ghisla, S. & Kim, J.J. (1996) Crystal structures of the wild type and the Glu376Gly/Thr255Glu mutant of human medium-chain acyl-CoA dehydrogenase: influence of the location of the catalytic base on substrate specificity. Biochemistry 35, 12412-12420.
    125. Fendrich, G. & Abeles, R.H. (1982) Mechanism of action of butyryl-CoA dehydrogenase: reactions with acetylenic, olefinic, and fluorinated substrate analogues. Biochemistry 21, 6685-6695.
    126. Bross, P., Engst, S., Strauss, A.W., Kelly, D.P., Rasched, I. & Ghisla, S. (1990) Characterization of wild type and an active site mutant of human medium chain acyl-CoA dehydrogenase after expression in E. coli. J. Biol. Chem. 265, 7116-7119.
    127. Kim J J, Miura R. Acyl-CoA dehydrogenases and acyl-CoA oxidases. Structural basis for mechanistic similarities and differences. Eur J Biochem. 2004 Feb;271(3):483-93.
    128. Battaile, K.P.,Molin-Case, J., Paschke, R.,Wang,M., et al. Crystal structure of rat short chain acyl-CoA dehydrogenase complexed with acetoacetyl-CoA: comparison with other acyl-CoA dehydrogenases. J. Biol. Chem. (2002) 277,12200-12207.
    129.Tiffany, K.A., Roberts, D.L., Wang, M., Paschke, R., Mohsen, A.W., Vockley, J. & Kim, J.J. Structure of human isovaleryl-CoA dehydrogenase at 2.6 A? resolution: structural basis for substrate specificity. Biochemistry (1997) 36, 8455-8464.
    130.Kim, J.J.P., Wang,M. & Paschke, R. The crystal structure of glutaryl-CoA dehydrogenase. In Flavins and Flavoproteins (Ghisla, S., Kroneck, P., Macheroux, P. & Sund, H., eds), (1999) pp. 539-542. Scientific Publications, Berlin.
    131.Battaile KP, Nguyen TV, Vockley J, Kim JJ.Structures of isobutyryl-CoA dehydrogenase and enzyme-product complex: comparison with isovaleryl-and short-chain acyl-CoA dehydrogenases. J Biol Chem. 2004 Apr 16;279(16):16526-34. Epub 2004 Jan 28.
    132.Lea W, Abbas AS, Sprecher H, Vockley J, Schulz H. Long-chain acyl-CoA dehydrogenase is a key enzyme in the mitochondrial beta-oxidation of unsaturated fatty acids.Biochim Biophys Acta. 2000 May 31 ;1485(2-3):121-8.
    133.Rudik, I., Ghisla, S. & Thorpe, C. Protonic equilibria in the reductive half-reaction of the medium chain acyl-CoA dehydrogenase. Biochemistry (1998) 37, 8437-8445.
    134.Vock, P., Engst, S., Eder, M. & Ghisla, S. Substrate activation by acyl-CoA dehydrogenases: transition-state stabilization and pKs of involved functional groups. Biochemistry (1998) 37, 1848-1860.
    135.Engst, S., Vock, P., Wang, M., Kim, J.J. & Ghisla, S. Mechanism of activation of acyl-CoA substrates by medium chain acyl-CoA dehydrogenase: interaction of the thioester carbonyl with the flavin adenine dinucleotide ribityl side chain. Biochemistry (1999) 38, 257-267.
    136.Ghisla, S., Braunwarth, A. & Vock, P. pH and substrate chain length dependence of the activity of short-chain-, medium-chain-and long-chain-acyl-CoA dehydrogenase. In Flavins and Flavoproteins (Stevenson, K.J., Massey, V. &Williams, C.H. Jr, eds), (1997) 629-632. University of Calgary Press, Calgary.
    137.Kuchler, B., Abdel-Ghany, A.G., Bross, P., Nandy, A., Rasched, I. & Ghisla, S. Biochemical characterization of a variant human medium-chain acyl-CoA dehydrogenase with a diseaseassociated mutation localized in the active site. Biochem. J. (1999) 337, 225-230.
    138.Kim, J.J., Wang, M. & Paschke, R. Crystal structures of medium-chain acyl-CoA dehydrogenase from pig liver mitochondda with and without substrate. Proc. Natl Acad. Sci. USA (1993) 90, 7523-7527.
    139.Murfin, W.W. Mechanism of the flavin reduction step in acyl-Coenzyme-A dehydrogenases. (1974) PhD Dissertation, Washington University, St. Louis, MO.
    140.Roberts, D.L., Frerman, F.E. & Kim, J.J. Three-dimensional structure of human electron transfer flavoprotein to 2.1-A? Resolution. Proc. Natl Acad. Sci. USA (1996) 93, 14355-14360.
    141.Beinert, H. (1963) Enzymes, 2nd Ed. 7, 447-476.
    142.Divry P, David M, Gregersen N, Kolvraa S, Christensen E, Collet JP, Dellamonica C, Cotte J. Dicarboxylic aciduria due to medium chain acyl CoA dehydrogenase defect. A cause of hypoglycemia in childhood. Acta Paediatr Scand. 1983 Nov;72(6):943-9.
    143.Stanley CA, Hale DE, Coates PM, Hall CL, Corkey BE, Yang W, Kelley RI, Gonzales EL, Williamson JR, Baker L. Medium-chain acyl-CoA dehydrogenase deficiency in children with non-ketotic hypoglycemia and low carnitine levels. Pediatr Res. 1983 Nov;17(11):877-84.
    144.B.S. Andresen, P. Bross, S. Udvari, J. Kirk, G. Gray, S. Kmoch, N. et al. The molecular basis of medium-chain acyl-CoA dehydrogenase (MCAD) deWciency in compound heterozygous patients: is there correlation between genotype and phenotype?, Hum. Mol. Genet. 6 (1997) 695-707.
    145.Korman SH, Gutman A, Brooks R, Sinnathamby T, Gregersen N, Andresen BS. Homozygosity for a severe novel medium-chain acyl-CoA dehydrogenase (MCAD) mutation IVS3-1G>C that leads to introduction of a premature termination codon by complete missplicing of the MCAD mRNA and is associated with phenotypic diversity ranging from sudden neonatal death to asymptomatic status.Mol Genet Metab. 2004 Jun;82(2):121-9.
    146.Gregersen N, Bross P, Andresen BS.Genetic defects in fatty acid beta-oxidation and acyl-CoA dehydrogenases. Molecular pathogenesis and genotype-phenotype relationships. Eur J Biochem. 2004 Feb;271(3):470-82.
    147.Leppert M, Baird L, Anderson KL, Otterud B, Lupski JR, Lewis RA Bardet-Biedl syndrome is linked to DNA markers on chromosome 11q and is genetically heterogeneous. Nat Genet 1994, 7:108-112.
    148.Kwitek-Black, A.E. et al. Linkage of Bardet-Biedl syndrome to chromosome 16q and evidence for non-allelic genetic heterogeneity. Nature Genet. (1993) 5, 392-396.
    149.Sheffield VC, Carmi R et al Identification of a Bardet-Biedl syndrome locus on chromosome 3 and evaluation of an efficient approach to homozygosity mapping. Hum Mol Genet 1994, 3:1331-1335.
    150.Carmi R, Rokhlina T et al Use of a DNA pooling strategy to identify a human obesity syndrome locus on chromosome 15. Mol Genet 1995, 4:9-13.
    151.Young T-L, Penney L, Woods MO, Parfrey PS, Green JS, Hefferton D, Davidson WS A fifth locus for Bardet-Biedl syndrome maps to chromosome 2q31. Am J Hum Genet 1999, 64:901-904.
    152.Katsanis N, Beales PL, Woods MO, Lewis RA, Green JS, et al. Mutations in MKKS cause obesity, retinal dystrophy and renal malformations associated with Bardet-Biedl syndrome. Nat Genet 2000, 26:67-70.
    153.Badano J Lo, Ansley S J., Leitch C C., Lewis R A, Lupski JR., and Nicholas K. Identification of a Novel Bardet-Biedl Syndrome Protein, BBS7,That Shares Structural Features with BBS1 and BBS2. Am. J. Hum. Genet. 2003 72:650-658,
    154.Ansley S J, Badano JL, Blacque OE, Hill J, Hoskins BE, et al. Basal body dysfunction is a likely cause of pleiotropic Bardet-Biedl syndrome. Nature. 2003 Oct 9;425(6958):628-33. Epub 2003 Sep 21
    155.Nicholas Katsanis, James R. Lupski,and Philip L. Beales.Exploring the molecular basis of Bardet-Biedl syndrome. Human Molecular Genetics, 2001, Vol. 10, No. 20 2293-2299
    156.Green, J.S., Parfrey, P.S., Harnett, J.D., Farid, N.R., et al. The cardinal manifestations of Bardet-Biedl syndrome, a form of Lawrence-Moon-Bardet-Biedl syndrome. N. Engl. J. Med., 321, 1002-1009,1989
    157.Farag TI, Teebi AS High incidence of Bardet-Biedl syndrome among the Bedouin. Clin Genet 1989, 36:463-465.
    158.Slavotinek AM, Biesecker LG Phenotypic overlap of McKusick-Kaufman syndrome with Bardet-Biedl syndrome: a literature review. Am J Med Genet 2000, 95:208-215.
    159.Beals PL, Katsanis EN, Lewis RA, Lupski JR Distribution of Bardet-Biedl syndrome loci among 51 North American/European, Kurdish and Pakistani pedigrees [abstract]. Am J Hum Genet 2000, 67(Suppl): 1224.
    160.Mykytyn K, Braun T, Carmi R, Haider NB, Searby CC, Shastri M, Beck G, Wright AF, lannaccone A, Elbedour K, Riise R, Baldi A, et al. Sheffield VC Identification of the gene that, when mutated, causes the human obesity syndrome BBS4. Nat Genet (2001) 28:188-191
    161.Nishimura DY, Searby CC, Carmi R, Elbedour K, Van Maldergem L, et al. Positional cloning of a novel gene on chromosome 16q causing Bardet-Biedl syndrome (BBS2). Hum Mol Genet 2001, 10:865-874.
    162.Stone, D.L., Slavotinek, A., Bouffard, G.G., Banerjee-Basu, S., Baxevanis, A.D., Barr, M. and Biesecker, L.G. Mutation in a gene encoding a putative chaperonin causes McKusick-Kaufman syndrome. Nat. Genet., 2000 25, 79-82.
    163.Agashe, V. and Hartl, F.-U. Roles of molecular chaperones in cytoplasmic protein folding. Cell Dev. Biol., 2000 11, 15-25.
    164.Wickner, S., Maurizi, M.R. and Gottesman, S. Posttranslational quality control: folding, refolding and degrading proteins. Science, 1999 286, 1889-1893.
    165.Cohen, C. and Parry, D.A. A conserved C-terminal assembly region in paramyosin and myosin rods. J. Struct. Biol., 1998 122, 180-187,
    166.Suzuki, K., Yamada, T. and Tanaka, T. Role of the buried glutamate in the alpha-helical coiled coil domain of the macrophage scavenger receptor. Biochemistry, 1999 38, 1751-1756.
    167.Y. Bruce Yu Coiled-coils: stability, specificity, and drug delivery potential. Advanced Drug Delivery Reviews 54 (2002) 1113-1129
    168.Wells, L., Vosseller, K. and Hart, G.W. Glycosylation of nucleocytoplasmic proteins: signal transduction and O-GIcNAc. Science, 2001 291,2376-2378,
    169.Luca D. D'Andrea and Lynne Regan TPR proteins: the versatile helix. TRENDS in Biochemical Sciences Vol.28 No. 12 December 2003
    170.Susan W. Gorman,Neena B. Haider, Uta Grieshammer, Ruth E. Swiderski, The Cloning and Developmental Expression of Unconventional Myosin IXA (MYO9A) a Gene in the Bardet-Biedl Syndrome (BBS4) Region at Chromosome 15q22-q23. Genomics 59,150-160 (1999)
    171.Jacobsen, S.E., Binkowski, K.A. & Olszewski, N.E. SPINDLY, a tetratricopeptide repeat protein involved in gibberellin signal transduction in Arabidopsis. Proc. Natl Acad. Sci. USA 93, 9292-9296 (1996).
    172.Lubas, W.A., Frank, D.W., Krause, M. & Hanover, J.A. O-Linked GIcNAc transferase is a conserved nucleocytoplasmic protein containing tetratricopeptide repeats. J. Biol. Chem. 272, 9316-9324 (1997).
    173.Blatch, G.L. & Lassie, M. The tetratricopeptide repeat: a structural motif mediating

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700