HERG K~+通道参与急性白血病细胞迁移及黄连素的抑制作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分HERG K~+离子通道在急性髓细胞白血病中的表达及其对细胞功能的调控
     目的:herg(Human ether-a-go-go-related gene)基因编码HERG K~+离子通道常见于兴奋性细胞,但近来的研究显示herg也表达于各种肿瘤细胞,因此我们检测了急性髓细胞白血病中herg的表达,并进一步研究了herg对于白血病细胞的调控。
     方法:Ficoll分离急性髓细胞白血病标本骨髓单个核细胞,Trizol提取白血病细胞系和骨髓单个核细胞RNA,rt-PCR检测herg基因的表达,CCK-8法测定HL-60细胞增殖活性,流式细胞术检测HL-60细胞周期变化,Annexin V/PI双标法检测HL-60细胞凋亡。
     结果:herg在白血病细胞系HL-60,K562和Jurkat中均有表达,其中HL-60细胞表达最高。在我们检测的72%的白血病骨髓单个核细胞中表达但不表达于健康供体的骨髓单个核细胞,在CD34~+/CD38~-白血病干细胞中有微量表达。HERG K~+离子通道特异性抑制剂E-4031处理HL-60细胞后,使其增殖活性降低,细胞周期检测发现E-4031使G0/G1期细胞增多,但不影响HL-60细胞的凋亡。
     结论:herg在白血病干/祖细胞水平就已经被激活,HERG K~+通道与白血病进展相关且能调控细胞增殖和周期。
     第二部分黄连素抑制SDF-1诱导的急性髓细胞白血病细胞的迁移
     目的:黄连素(bererine,Ber)又名小檗碱,有报道显示黄连素能抑制肿瘤细胞浸润。SDF-1是由骨髓基质细胞分泌的衍生因子,通过其受体CXCR4作用诱导白血病细胞迁移从而导致白血病浸润到其他器官,这里我们试图探求黄连素是否能够抑制SDF-1诱导的白血病细胞迁移及其基本机制。
     方法:我们用了白血病细胞系HL-60,骨髓单个核细胞和白血病干细胞进行了实验。Ficoll分离白血病标本骨髓单个核细胞,8μm的transwell用于迁移实验来检测SDF-1诱导白血病细胞迁移及黄连素的抑制作用,应用流式细胞术来分析黄连素对白血病细胞CXCR4的表达和F-actin聚合能力的改变,用ELISA方法来检测骨髓基质细胞(BMMSCs)分泌的SDF-1的量,Akt和pAkt的表达用western blotting来检测。
     结果:黄连素能对SDF-1诱导的急性髓性白血病细胞系HL-60,骨髓单个核细胞和干细胞的迁移有显著的抑制作用,且黄连素能够减少骨髓基质细胞分泌SDF-1的量但是并不影响SDF-1受体CXCR4的表达,黄连素能影响F-actin的聚合且能使pAkt表达量减少,SDF-1诱导能激活Akt信号通路,Akt抑制剂LY2904002能抑制SDF-1诱导的HL-60细胞迁移,且呈剂量依赖性。
     结论:黄连素一方面能通过抑制F-actin聚合和减少Akt的磷酸化活化而抑制白血病细胞迁移,另一方面能减少骨髓微环境SDF-1的表达,因而从两个方面来抑制白血病细胞的迁移和浸润,因此黄连素可能是一种潜在有效的治疗的白血病药物。
     第三部分HERG K~+离子通道在细胞迁移中的作用及SDF-1对其生理活性的影响
     目的:基质细胞衍生因子(SDF-1)及其唯一的受体CXCR4调节骨髓中干/祖细胞的迁移和滞留是造血过程所必须的。前面的研究显示herg在白血病细胞中异常表达且黄连素能显著抑制SDF-1诱导的白血病细胞迁移,有研究显示黄连素是HERG K~+离子通道抑制剂。因此,我们试图探讨HERG K~+通道是否参与SDF-1诱导的细胞迁移过程。
     方法:HEK293T细胞用于来表达外源性的HERG K~+通道蛋白。8μm的transwell用于迁移实验来检测转染和未转染细胞迁移情况,应用流式细胞术来分析F-actin聚合,HERG K~+通道电流用全细胞膜片钳的方法检测。
     结果:我们成功的在HEK293T细胞中表达了HERG K~+离子通道。herg转染能使293T细胞迁移增加,但使细胞增殖减少。黄连素能抑制HERG K~+电流,且能显著的抑制herg-pEGFP转染的HEK293T细胞的迁移,SDF-1能使herg-pEGFP转染的HEK293T细胞HERG K~+尾电流增加。
     结论:HERG K~+离子通道的活性与细胞迁移有一定相关性,且SDF-1使HERG K~+电流增加,黄连素可能通过抑制HERG K~+电流来抑制SDF-1诱导的细胞迁移。
PartⅠHERG K~+ channels expression and analysis of itsregulation in leukemic cells
     Objective: The human ether-a-go-go-related (herg) gene encoding K~+ channels(HERG) belongs to an evolutionarily conserved multigene family of voltage activated K~+channels and their contribution to the repolarization of the cardiac action potential are wellunderstood. Recent studies revealed that HERG K~+ channels are preferentially expressed indifferent histogenesis of tumor cells. Here we tried to explore the expression of herg inleukemic cells and CD34~+/CD38~- LSCs and tried to explore its regulation of leukemic cellsactivities such as proliferation, cell cycle and apoptosis.
     Method: Ficoll was used to isolate the bone marrow mononuclear cells, total RNAwas extracted and its purity and integrity was checked by running an aliquot on a 1.5%agarose gel and rt-PCR was used to evaluate the herg expression of different samples,CCK-8 kit was used to study cell proliferation. Flow cytometry was used to analyze HL-60cell cycle and apoptosis.
     Result: herg was aberrantly expressed in leukemic cell lines, CD34~+/CD38~- LSCs andprimary leukemic cells but not expressed in normal bone marrow mononuclear cells. Inaddition, the expression of herg mRNA was not associated with the clinical and cytogeneticfeature of leukemia. Our results showed that HL-60 cell proliferation was dramaticallyinhibited by blocking HERG K~+ channels with E-4031, a HERG K~+ channels specificinhibitor. Moreover, E-4031could cause a marked reduction of the cell populations in Sphase along with significant increase in cell numbers in G1 phase but did not cause cellsapoptosis.
     Conclusion: These data provided evidence for the oncogenic potential of HERG K~+channels and it may be a novel, potential marker of leukemia diagnosis in the future.
     PartⅡBerberine inhibits SDF-1-induced AML cells and leukemicstem cells migration via regulation of SDF-1 level in bone marrowstromal cells
     Objective: Berberine is an isoquinoline derivative alkaloid isolated from manymedical herbs. Emerging evidences indicate the functional role of berberine on thedevelopment of cancer, berberine plays a prominent role in the control of tumor cellproliferation and invasion, but there is no report about berberine functional role onleukemia at present. SDF-1 is a homeostatic chemokine that signals through CXCR4 whichis expressed by hematopoietic tumor cells. The SDF-1/CXCR4 axis is involved in themigration process of leukemic cells. In this study, we investigated the effects of berberineon the SDF-1-induced HL-60 cells, primary AML cells and leukemic stem cells .(LSCs)migration.
     Method: Transwell migration chambers (8μm) were used to assess the role ofberberine on leukemic cell migration; Flow cytometry was used to analyze the role ofberberine on the CXCR4 expression and F-actin polymerlization; SDF-1 protein levelsecreted by bone marrow stromal cells (BMSCs) was evaluated by ELISA, western blottingwas used to detect the level of Akt and pAkt.
     Result: Our data demonstrated that berberine could partly inhibit SDF-1-inducedAML cells as well as LSCs migration. Berberine could reduce SDF-1 protein level secretedby BMSCs in the microenvironment but not affect CXCR4 expression on HL-60 cellmembrane. Berberine could inhibit F-actin polymerization and decrease the expression ofpAkt, SDF-lcould activate the Akt signal pathway and Akt inhibitor, LY2904002, couldinhibit the SDF-1 induced HL-60 cells migration as dose-dependent.
     Conclusion: Berberine could inhibit AML cells migration partly by reducing thesecreting of SDF-1 by BMSC and inhibiting HERG1 Kt channels of leukemic cells.Therefore, it is speculated that berberine might be a potentially effective agent forprevention of leukemia.
     PartⅢHERG K~+ channels role in cells migration anda functional link between HERG K~+ channels and SDF-1
     Objective: Stromal cell-derived factor-1 (SDF-1) and its unique receptor, CXCR4,regulate stem/progenitor cell migration and retention in the marrow and are required forhematopoiesis. Recent studies suggested that HERG K~+ channels were important regulatorsof non excitable cells migration and found in tumor cells. In this study, we investigatedwhether SDF-1-induced acute leukemic cell migration associated with HERG K~+ channels.
     Method: Transient transfected HEK293T was used to express HERG K~+ channels,transwell was used to acess cell migration, flow cytometry was used to F-actinpolymerization, HERG1 K~+ currents were measured by the standard two microelectrodevoltage clamp techniques.
     Result: Our data showed that berberine could specifically block HERG1 K~+ channelsand significantly blocked migration of HEK293T cells transfected with herg-pEGFP.Berberine could also decrease the F-actin polymerization in transient transfected HEK293T.SDF-1 increased HERG1 K~+ current expressed in HEK293T cells transfected withherg-pEGFP.
     Conclusion: The HERG K~+ current increased by SDF-1 might contribute to themechanism of SDF-1 induced cell migration and berberine which could be a specificHERG K~+ inhibitor decreased the cells migration induced by SDF-1. The data showed thatHERG K~+ channels were essential for cells migration induced by SDF-1.
引文
[1] Hope KJ, Jin L, Dick JE. Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat Immunol, 2004; 5:738-43.
    [2] Crazzolara R, Kreczy A, Mann G, et al. High expression of the chemokine receptor CXCR4 predicts extramedullary organ infiltration in childhood acute lymphoblastic leukemia. Br. J.Haematol, 2001; 115: 545-53.
    [3] Postovit LM, Seftor EA, Seftor RE, et al. Influence of the microenvironment on melanoma cell fate determination and phenotype. Cancer Res, 2006; 66(16): 7833-6.
    [4] van Golen CM, Schwab TS, Kim B, et al. Insulin-like growth factor-鈪?receptor expression regulates neuroblastoma metastasis to bone. Cancer Res, 2006; 66(13): 6570-8.
    [5] Elenbaas B, Weinberg RA. Heterotypic signaling between epithelial tumor cells and fibroblasts in carcinoma formation. Exp Cell Res, 2001; 264:169-84.
    [6] Moharita AL, Taborga M, Corcoran KE, et al. SDF-1 alpha regulation in breast cancer cells contacting bone marrow stroma is critical for normal hematopoiesis. Blood, 2006; 108:3245-52.
    [7] Burger JA, Kipps TJ. CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment. Blood, 2006; 107: 1761-7.
    [8] Spoo AC, L(?)bbert M, Wierda WG, et al. CXCR4 is a prognostic marker in acute myelogenous leukemia. Blood, 2007; 109: 786-91.
    [9] Spiege A, Kollet O, Peled A, et al. Unique SDF-1-induced activation of human precursor-B ALL cells as a result of altered CXCR4 expression and signaling. Blood, 2004;103:2900-7.
    [10] Burger JA, Burger M, Kipps TJ. Chronic lymphocytic Leukemia B cells express functional CXCR4 chemokine receptors that mediate spontaneous migration beneath bone marrow stromal cells. Blood, 1999; 94: 3658-67.
    [11] Iima K, Kobayashi M, Wang J et al. Selective transendothelial migration of hematopoietic progenitor cells: ARole in Homing of Progenitor Cells. Blood, 1999; 93:149-56.
    [12] Orimo A, Gupta PB, Sgroi DC, et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell, 2005; 121: 335-48.
    [13] Li H, Fan X, Houghton J. Tumor microenvironment: the role of the tumor stroma in cancer. J Cell Biochem, 2007; 101: 805-15.
    [14] Jantova S, Letasiova S, Brezova V, et al. Photochemical and phototoxic activity of berberine on murine fibroblast NIH-3T3 and Ehrlich ascites carcinoma cells. J. Photochem.Photobiol. B, 2006; 85: 163-76.
    [15] Letasiova S, Jantova S, Cipak L, et al. Berberine-antiproliferative activity in vitro and induction of apoptosis/necrosis of the U937 and B16 cells. Cancer Lett, 2006; 239: 254-62.
    [16] Lin CC, Yang JS, Chen JT, et al. Berberine induces apoptosis in human HSC-3 oral cancer cells via simultaneous activation of the death receptor-mediated and mitochondrial pathway. Anticancer Res, 2007; 27: 3371-8.
    [17] Lin JP, Yang JS, Lee JH, et al. Berberine induces cell cycle arrest and apoptosis in human gastric carcinoma SNU-5 cell line. World J. Gastroenterol, 2006; 12: 21-8.
    [18] Lin TH, Kuo HC, Chou FP, et al. Berberine enhances inhibition of glioma tumor cell migration and invasiveness mediated by arsenic trioxide. BMC Cancer, 2008; 25; 8: 58.
    [19] Peng PL, Hsieh YS, Wang CJ. Inhibitory effect of berberine on the invasion of human lung cancer cells via decreased productions of urokinase-plasminogen activator and matrix metalloproteinase-2. Toxicol App Pharmacol, 2005; 214: 8-15.
    [20] Lin JP, Yang JS, Wu CC, et al. Berberine induced down-regulation of matrix metalloproteinase-1, -2 and -9 in human gastric cancer cells (SNU-5) in vitro. In Vivo, 2008;22(2): 223-30.
    [21] Habela CW, Ernest NJ, Swindall AF, et al. Chloride accumulation drives volume dynamics underlying cell proliferation and migration. J Neurophysiol. 2009; 101(2): 750-7.
    [22] Morokuma J, Blackiston D, Adams DS, et al. Modulation of potassium channel function confers a hyperproliferative invasive phenotype on embryonic stem cells. Proc Natl Acad Sci U S A, 2008; 105(43): 16608-13.
    [23] Shi W, Wymore RS, Wang HS, et al. Identification of two nervous system-specific members of the erg potassium channel gene family. J Neurosci, 1997; 17: 9423-32.
    [24] Arcangeli, A. Expression and role of hERG channels in cancer cells.Novartis Found. Symp, 2005; 266: 225-32.
    [25] Masi A, Becchetti A, Restano-Cassulini R et al. hERG1 channels are overexpressed in glioblastoma multiforme and modulate VEGF secretion inglioblastoma cell lines. Br J Cancer, 2005; 93:781-92.
    [26] Lastraioli E, Guasti L, Crociani O, et al. Herg1 Gene and HERG1 protein are overexpressed in colorectal cancers and regulate cell invasion of tumor cells. Cancer Res, 2004; 64: 606-11.
    [27] Wang H, Zhang Y, Cao L, et al. HERG K~+ Channel, a Regulator of Tumor Cell Apoptosis and Proliferation. Cancer Res, 2002; 62: 4843-8.
    [28] Felipe A, Vicente R, Villalonga N, et al. Potassium channels: new targets in cancer therapy. Cancer Detect. Prev, 2006; 30:375-85.
    [29] Kunzelmann K. Ion channels and cancer.J. Membr. Biol, 2005; 205:159-73.
    [30] Li BX, Yang BF, Zhou J, et al. Inhibitory effects of berberine on IK1, IK, and HERG channels of cardiac myocytes. Acta Pharmacol Sin, 2001; 22:125-31.
    [1] Hatta S, Sakamoto J, Horio Y. Ion channels and disease. Med Electron Microsc, 2002;35:117-26.
    [2] Shi W, Wymore RS, Wang HS, et al. Identification of two nervous system-specific members of the erg potassium channel gene family. J Neurosci, 1997; 17: 9423-32.
    [3] CherubiniA, Taddei GL, CrocianiO, et al. HERG potassium channels are more frequently expressed in human endometrial cancer as compared to non-cancerous endometrium. Br J Cancer, 2000, 83(12): 1722-9.,
    [4] Bianchi L, Wible B, Arcangeli A, et al. Herg encodes a K~+ current highly conserved in tumors of different histogenesis: a selective advantage for cancer cells. Cancer Res, 1998,58(4):815-22.
    [5] Wang H, Zhang Y, Cao L, et al. HERG K~+ Channel, a Regulator of Tumor Cell Apoptosis and Proliferation. Cancer Res, 2002; 62: 4843-8.
    [6] Felipe A, Vicente R, Villalonga N, et al. Potassium channels: new targets in cancer therapy. Cancer Detect. Prev, 2006; 30:375-85.
    [7] Hope KJ, Jin L, Dick JE. Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat Immunol 2004; 5:738-43.
    [8] Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med, 1997; 3: 730-7.
    [9] Blair A, Hogge DE, Sutherland HJ. Most acute myeloid leukemia progenitor cells with long-term proliferative ability in vitro and in vivo have the phenotype CD34~((+))/CD1~((-))/HLA-DR. Blood, 1998; 92: 4325-35.
    [10] Lapidot T, Sirard C, Vormoor J, et al. A cell initiating human acute myeloid leukemia after transplantation into SCID mice. Nature, 1994; 367: 645-8.
    [11] Guzman ML, Upchurch D, Grimes B, et al. Expression of tumor suppressor genes interferon regulatory factor 1 and death-associated kinase in primitive acute myelogenus leukaemia cells. Blood 2001; 97: 2177-2179.
    [12] Guzman ML, Neering SJ, Upchurch D, et al. Nuclear factor-KB is constitutively activated in primitive human acute myelogenus leukaemia cells. Blood, 2001; 98: 2301-7.
    [13] Wonderlin WF, Strobl JS. Potassium channels, proliferation and G1 progression. J Membr Biol, 1996; 154: 91-107.
    [14] Wang S, Melkoumian Z, Woodfork KA, et al. Evidence for an early G1 ionic event necessary for cell cycle progression and survival in the MCF-7 human breast carcinoma cell line. J Cell Physiol, 1998; 176: 456-64.
    [15] Klimatcheva E, Wonderlin WF. An ATP-sensitive K~+ current that regulates progression through early G1 phase of the cell cycle in MCF-7 human breast cancer cells. J Membr Biol, 1999; 171: 35-46.
    [16] Rybalchenko V, Prevarskaya N, Van Coppenolle F, et al. Verapamil inhibits proliferation of LNCaP human prostate cancer cells influencing channel gating. Mol Pharmacol, 2001; 59: 1376-87.
    [17] Yao X, Kwan HY. Activity of voltage-gated K+ channels is associated with cell proliferation and Ca~(2+) influx in carcinoma cells of colon cancer. Life Sci, 1999; 65: 55-62.
    [18] Sanguinetti MC, Tristani-Firouzi M. hERG potassium channels and cardiac arrhythmia. Nature, 2006; 440: 463-9.
    [19] Lastraioli E, Guasti L, Crociani O, et al. A herg gene and HERG protein are overexpressed in colorectal cancers and regulate cell invasion of tumor cells. Cancer Res,2004; 64: 606-11.
    [20] Smith GA, Tsui HW, Newell EW, et al. Functional up-regulation of HERG K~+ channels in neoplastic hematopoietic cells. J Biol Chem, 2002; 277:18528-34.
    [21] D'Amico M, Biagiotti T, Fontana L, et al. A HERG current sustains a cardiac-type action potential in neuroblastoma S cells. Biochem Biophys Res Commun, 2003; 302(1):101-8.
    [22] Shao XD, Wu KC, Hao ZM, et al. The potent inhibitory effects of cisapride, a specific blocker for human ether-a-go-go related gene (HERG ) channel,on gastric cancer cells.Cancer Biol Ther, 2005, 4: 295-301.
    [23] Shirihai O, Merchav S, Attali B, et al. Kchannel antisense oligodeoxynucleotides inhibit cytokine-induced expansion of human haemopoietic progenitors. Eur J Physiol,1996; 431: 632-8.
    [24] Shirihai O, Attali B, Dagan D, et al. Expression of two inward rectifier potassium channels is essential for differentiation of primitive human hematopoietic progenitor cells. J Cell Physiol, 1998; 177: 197-205.
    [25] Preisler HD, Perambakam S, Li B, et al. Alterations in IRF1/IRF2 expression in acute myelogenous leukemia. Am J Hematol, 2001; 68: 23-31.
    [26] Wonderlin WF, Strobl JS. Potassium channels, proliferation and G1 progression. J Membr Biol, 1996; 154: 91-107.
    [27] Binggeli R, Weinstein RC. Membrane potentials and sodium channels: hypotheses for growth regulation and cancer formation based on changes in sodium channels and gap junctions. J Theor Biol, 1986; 123: 377-401.
    [28] Arcangeli A, Bianchi L, Becchetti A, et al. A novel inward-rectifying K~+ current with a cell-cycle dependence governs the resting potential of mammalian neuroblastoma cells. J Physiol (London), 1995; 489: 455-471.
    [29] Overholt JL, Ficker E, Yang T, et al. HERG-like potassium current regulates the resting membrane potential in glomus cells of the rabbit carotid body. J Neurophysiol, 2000;83:1150-7.
    [30] Bennet JM, Catovsky D, Daniel MT, et al. Proposals for the classification of the acute leukaemias. French-American-British (FAB) co-operative group. Br J Haematol, 1976; 33:451-8.
    [31] Hofmann G, Bernabei PA, Crociani O, et al. HERG K1 channels activation during b1 integrin-mediated adhesion to fibronectin induces an up-regulation of avb3 integrin in the preosteoclastic leukemia cell line FLG 29.1. J Biol Chem, 2001; 276:4923-31.
    [32] Wang L, Zhou P, Craig RW, et al. Protection from cell death by mcl-1 is mediated by membrane hyperpolarization induced by K~+ channel activation. J Membr Biol, 1999; 172:113-20.
    [33] Yu SP, Canzoniero L, Choi DW. Ion homeostasis and apoptosis. Curr Opin Cell Biol, 2001; 13: 405-11.
    [34] Olivotto M, Arcangeli A, Carla`M, et al. Electric fields at the plasma membrane level:a neglected element in the mechanism of cell signalling. Bioessays, 1996; 18: 495-504.
    [35] Arcangeli A, Carla` M, Del Bene MR, et al. Polar/apolar compounds induce leukemia cell differentiation by modulating cell surface potential. Proc Natl Acad Sci USA, 1993; 90:5858-62.
    [36] Arcangeli A, Fontana L, Crociani O, et al. A transient dephosphorylation of JAK1 and JAK2 characterises the early phase response of murine erytroleukemia cells to the differentiation inducer hexamethylenebisacetamide. Leukemia, 2000; 14: 2112-7.
    [37] Hille B. Ionic Channels of Excitable Membranes, 2nd edn. Sinauer: USA, 1992.
    [1] Kong W, Wei J, Abidi P, et al. Berberine is a novel cholesterol lowering drug working through a unique mechanism distinct from statins. Nat. Med, 2004; 10: 1344-51.
    [2] Lau CW, Yao XQ, Chen ZY, et al. Cardiovascular actions of berberine.Cardiovasc. Drug Rev, 2001; 19: 234-44.
    [3] Lee YS, Kim WS, Kim KH, et al. Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states. Diabetes, 2006; 55: 2256-64.
    [4] Lin S, Tsai SC, Lee CC, et al. Berberine inhibits HIF-1alpha expression via enhanced proteolysis. Mol. Pharmacol, 2004; 66: 612-9.
    [5] Iizuka N, Miyamoto K, Okita K, et al. Inhibitory effect of Coptidis Rhizoma and berberine on the proliferation of human esophageal cancer cell lines. Cancer Lett, 2000;148: 19-25.
    [6] Jantova S, Cipak L, Cernakova M, et al. Effect of berberine on proliferation, cell cycle and apoptosis in HeLa and L1210 cells. J. Pharm. Pharmacol, 2003; 55:1143-9.
    [7] Jantova S, Letasiova S, Brezova V, et al. Photochemical and phototoxic activity of berberine on murine fibroblast NIH-3T3 and Ehrlich ascites carcinoma cells. J. Photochem.Photobiol. B, 2006; 85:163-76.
    [8] Letasiova S, Jantova S, Cipak L, et al. Berberine-antiproliferative activity in vitro and induction of apoptosis/necrosis of the U937 and B16 cells. Cancer Lett, 2006; 239: 254-62.
    [9] Lin CC, Yang JS, Chen JT, et al. Berberine induces apoptosis in human HSC-3 oral cancer cells via simultaneous activation of the death receptor-mediated and mitochondrial pathway. Anticancer Res, 2007; 27: 3371-8.
    [10] Lin JP, Yang JS, Lee JH, et al. Berberine induces cell cycle arrest and apoptosis in human gastric carcinoma SNU-5 cell line. World J. Gastroenterol, 2006; 12: 21-8.
    [11] Piyanuch R, Sukhthankar M, Wandee G, et al. Berberine, a natural isoquinoline alkaloid, induces NAG-1 and ATF3 expression in human colorectal cancer cells. Cancer Lett, 2007; 258: 230-40.
    [12] Chung JG, Chen GW, Hung CF, et al, Effects of berberine on arylamine N-acetyltransferase activity and 2-aminofluorene-DNA adduct formation in human leukemia cells. Am J Chin Med, 2000; 28(2): 227-38
    [13] Mantena SK, Sharma SD, Katiyar SK, Berberine, a natural product, induces G1-phase cell cycle arrest and caspase-3-dependent apoptosis in human prostate carcinoma cells. Mol. Cancer Ther, 2006; 5: 296-308.
    [14] Mantena SK, Sharma SD, Katiyar SK, Berberine inhibits growth, induces G1 arrest and apoptosis in human epidermoid carcinoma A431 cells by regulating Cdki-Cdk-cyclin cascade, disruption of mitochondrial membrane potential and cleavage of caspase 3 and PARP. Carcinogenesis, 2006; 27: 2018-27.
    [15] Lin TH, Kuo HC, Chou FP, et al. Berberine enhances inhibition of glioma tumor cell migration and invasiveness mediated by arsenic trioxide. BMC Cancer, 2008; 25; 8: 58.
    [16] Peng PL, Hsieh YS, Wang CJ. Inhibitory effect of berberine on the invasion of human lung cancer cells via decreased productions of urokinase-plasminogen activator and matrix metalloproteinase-2. Toxicol App Pharmacol, 2005; 214: 8-15.
    [17] Lin JP, Yang JS, Wu CC, et al. Berberine induced down-regulation of matrix metalloproteinase-1, -2 and -9 in human gastric cancer cells (SNU-5) in vitro. In Vivo, 2008;22(2): 223-30.
    [18] Tashiro K, Tada H, Heilker R, et al Signal sequence trap: a cloning strategy for secreted proteins and type Ⅰ membrane proteins. Science, 1993; 261(5121): 600-3.
    [19] Nagasawa T, Kikutani H, Kishimoto T. Molecular cloning and structure of a pre-B-cell growth-stimulating factor. Proc. Natl. Acad. Sci. 1994, 91(6): 2305-9.
    [20] Burger JA, Kipps TJ. Chemokine receptors and stromal cells in the homing and homeostasis of chronic lymphocytic leukemia B cells. Leuk Lymphhoma, 2002; 43: 461-6.
    [21] Kucia M, Reca R, Miekus K, et al. Trafficking of normal stem cells and metastasis of cancer stem cells involve similar mechanisms: pivotal role of the SDF-1-CXCR4 axis.Stem Cells, 2005; 23 (7): 879-94.
    [22] Spiegel A , Kollet O , Peled A, et al. Unique SDF-12 induced activation of human precursor B ALL cells as a result of altered CXCR4 expression and signaling. Blood, 2004;103(8): 2900-7.
    [23] Voermans C, Anthony EC, Mul E, et al. SDF-1-induced actin polymerization and migration in human hematopoietic progenitor cells. Exp Hematol, 2001, 29(12): 1456-60.
    [24] Liesveld JL, Bechelli J, Rosell K, et al. Effects of AMD3100 on transmigration and survival of acute myelogenous leukemia cells. Leuk Res, 2007, 31(11): 1553-63.
    [25] Juarez J, Bradstock KF, Gottlieb DJ, et al. Effects of inhibitors of the chemokine receptor CXCR4 on acute lymphoblastic leukemia cells in vitro. Leukemia, 2003; 17:1294-300.
    [26] Ho YT, Yang JS, Li TC et al, Berberine suppresses in vitro migration and invasion of human SCC-4 tongue squamous cancer cells through the inhibitions of FAK, IKK,NF-kappaB, u-PAand MMP-2 and -9. Cancer Lett, 2009; 27, Epub ahead of print.
    [27] Mohle R, Bautz F, Rafii S. The chemokine receptor CXCR4 is expressed on CD34t hematopietic progenitors and leukemic cells and mediates transendothelial migration induced by stromal cellderived factor-1. Blood, 1998; 91: 4523-30.
    [28] Pollard TD, Borisy GG, Cellular motility driven by assembly and disassembly of actin filaments. Cell, 200; 112: 453-65.
    [29] Brazil DP, Yang ZZ, Hemmings BA, Advances in protein kinase B signalling: AKTion on multiple fronts. Trends Biochem. Sci, 2004; 29: 233-42.
    [30] Stambolic V, Woodgett J R, Functional distinctions of protein kinase B/Akt isoforms defined by their influence on cell migration. Trends Cell Biol, 200; 16: 461-6.
    [31] Irie HY, Pearline RV, Grueneber D et al, Distinct roles of Aktl and Akt2 in regulating cell migration and epithelial-mesenchymal transition. J. Cell Biol, 2005, 171: 1023-34.
    [32] Yiu GK, Toker A, NFAT induces breast cancer cell invasion by promoting the induction of cyclooxygenase-2. J. Biol. Chem, 2006; 281: 12210-7.
    [33] Yoeli-Lerner M, Yiu GK, Rabinovitz I et al, Akt blocks breast cancer cell motility and invasion through the transcription factor NFAT. Mol. Cell, 2005; 20: 539-50.
    [34] Lapidot T, Dar A, Kollet O. How do stem cells find their way home? Blood, 2005; 106:1901-10.
    [35] Burger JA, Kipps TJ. CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment. Blood, 2006; 107: 1761-7.
    [36] Kulbe H, Levinson NR, Balkwill F. The chemokine in cancer much more than directing cell movement. Int J Dev Biol, 2004; 48: 894-6.
    [37] Luker KE, Luker GD. Functions of CXCL12 and CXCR4 in breast cancer. Cancer Lett, 2006: 238.
    [38] Bertolini F, Dell'Agnola C, Mancuso P et al, CXCR4 neutralization, a novel therapeutic approach for non-Hodgkin's lymphoma. Cancer Res, 2002; 62(11): 3106-12.
    [39] Zeelenberg IS, Ruuls-Van Stalle L, Roos E, The chemokine receptor CXCR4 is required for outgrowth of colon carcinoma micrometastases. Cancer Res, 2003; 63(13):3833-9.
    [40] Jones GE. Cellular signaling in macrophage migration and chemotaxis. J Leukoc Biol,2000; 68: 593-602.
    [41] Ridley AJ, Schwartz MA, Burridge K, et al. Cell migration: integrating signals from front to back. Science, 2003; 302:1704-9.
    [42] Postma M, Bosgraaf L, Loovers HM et al, Chemotaxis: signalling modules join hands at front and tail. EMBO Rep, 2004; 5: 35-40.
    [43] Janmey PA. The cytoskeleton and cell signaling: component localization and mechanical coupling. Physiol Rev, 1998; 78(3): 763-81.
    [44] Fuhler GM, Drayer AL, Olthof SG et al, Reduced activation of protein kinase B, Rac, and F-actin polymerization contributes to an impairment of stromal cell derived factor-1 induced migration of CD34+ cells from patients with myelodysplasia. Blood, 2008; 111(1):359-68.
    [45] Hanada M, Feng J, Hemmings BA. Structure, regulation and function of PKB/AKT-a major therapeutic target. Biochim Biophys Acta, 2004; 1697(1-2): 3-16
    [46] Hu JP, Nishishita K, Sakai E, et al. Berberine inhibits RANKL-induced osteoclast formation and survival through suppressing the NF-kappaB and Akt pathways.Eur J Pharmacol, 2008; 580(1-2): 70-9.
    [1] Pardo LA. Votage-gated protassium channels in cell proliferation. Physiology, 2004; 19:285-92.
    [2] Cherubini A, Taddei GL, Crociani O, et al. HERG potassium channels are more frequently expressed in human endometrial cancer as compared to non-cancerous endometrium. Br J Cancer, 2000; 83(12): 1722-9.
    [3] Bianchi L, Wible B, Arcangeli A, et al. Herg encodes a K+ current highly conserved in tumors of different histogenesis: a selective advantage for cancer cells? Cancer Res, 1998;58(4): 815-22.
    [4] Fontana L, D'Amico M, Crociani O, et al. Long-term modulation of HERG channel gating in hypoxia. Biochem Biophys Res Commun, 2001; 286(5): 857-62.
    [5] Cayabyab FS, Tsui FW, Schlichter LC, et al. Modulation of the ERG K+ current by the tyrosine phosphatase, SHP-1. J Biol Chem, 2002; 277(50): 48130-8.
    [6] Hofmann G, Bernabei PA, Crociani O, et al. HERG K+ channels activation during beta(1) integrin-mediated adhesion to fibronectin induces an up-regulation of alpha(v)beta(3) integrin in the preosteoclastic leukemia cell line FLG 29.1. J Biol Chem,2001; 276(7): 4923-31.
    [7] Arcangeli A, Becchetti A, Mannini A, et al. Integrin-mediated neurite outgrowth in neuroblastoma cells depends on the activation of potassium channels. J Cell Biol. 1993;122(5): 1131-43.
    [8] Lastraioli Lastraioli E, Guasti L, et al. hergl gene and HERG1 protein are overexpressed in colorectal cancers and regulate cell invasion of tumor cells. Cancer Res, 2004; 64: 606-11.
    [9] Pillozzi S, Brizzi MF, Bernabei PA, et al. VEGFR-1 (FLT-1), beta-1 integrin and hERG Kt channel form a macromolecular signalling complex in acute myeloid leukemia: role in cell migration and clinical outcome. Blood, 2007; 110: 1238-50.
    [10] Wonderlin WF, Strobl JS. Potassium channels, proliferation and G1 progression. J Membr Biol, 1996; 154: 91-107.
    [11] Li BX, Yang BF, Zhou J, et al. Inhibitory effects of berberine on IK1, IK, and HERG channels of cardiac myocytes. Acta Pharmacol Sin, 2001; 22: 125-31.
    [12] Rodriguez-Menchaca A, Ferrer-Villada T, Lara J, et al. Block of HERG channels by berberine: mechanisms of voltage- and state-dependence probed with site-directed mutant channels. J Cardiovasc Pharmacol, 2006; 47(1): 21-9.
    [13] Lazarini F, Tham T N, Casanova P, et al. Role of the alpha-chemokine stromal cellderived factor (SDF-1) in the developing and mature central nervous system. Glia, 2003;42: 139-48.
    [14] Till KJ, Spiller DG, Harris RJ, et al. CLL, but not normal, B cells are dependent on autocrine VEGF and α 4 β 1 integrin for chemokine-induced motility on and through endothelium. Blood, 2005; 105: 4813-4819.
    [15] Recher C, Ysebaert L, Beyne-Rauzy O, et al. Expression of focal adhesion kinase in acute myeloid leukemia is associated with enhanced blast migration, increased cellularity, and poor prognosis. Cancer Res, 2004; 64: 3191-3197.
    [16] Neher E, Sakmann B. Single - channel currents recorded from membrane of denervated frog muscle fibres. Nature, 1976, 260 (5554):799-802.
    [17] Hamill OP, Marty A, Neher E, et al. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patche. Pflugers Arch,1981; 391(2): 85-100.
    [18] Judge SI, Smith PJ, Stewart PE, et al. Potassium channel blockers and openers as CNS neurologic therapeutic agents. Recent Patents CNS Drug Discov, 2007; 2: 200-28.
    [19] Smith GA, Tsui HW, Newell EW, et al. Functional Up-regulation of HERG K~+Channels in Neoplastic Hematopoietic Cells. J Biol Chem, 2002; 277:18528-34.
    [20] Dubois JM, Rouzaire-Dubois B. The influence of cell volume changes on tumour cell proliferation. Eur Biophys J, 2004; 33: 227-232.
    [21] Rouzaire-Dubois B, Dubois JM. K+ channel block induced mammalian neuroblastoma cell swelling: a possible mechanism to influence proliferation. J Physiol (Land.), 1998; 510: 93-102.
    [22] Wonderlin WF, Strobl JS. Potassium channels, proliferation and G1 progression. J Membr Biol, 1996; 154: 91-107.
    [23] Guyon A, Rovere C, Cervantes C, et al. Stromal cell-derived factor-la directly modulates voltage-dependent currents of the action potential in mammalian neuronal cells.J Neuroche, 2005; 93: 963-73.
    [1] Pillozzi S, Brizzi MF, Balzi M, et al. HERG K~+ channels are constitutively expressed in primary human acute myeloid leukemias and regulate cell proliferation of normal and leukemic hemopoietic progenitors. Leukemia, 2002; 16: 1791-8.
    [2] Pillozzi S, Brizzi MF, Bernabei PA, et al. VEGFR-1(FLT-1), {beta} integrin and hERG K~+ channel form a macromolecular signaling complex in acute myeloid leukemia: role in cell migration and clinical outcome. Blood, 2007; 110: 1238-50.
    [3] Rafelski SM, Theriot JA.Crawling toward a unified model of cell mobility: spatial and temporal regulation of actin dynamics. Annu Rev Biochem, 2004; 73: 209-39.
    [4] Coffer PJ, Koenderman L. Granulocyte signal transduction and priming: cause without effect? Immunol Lett, 1997; 57(1-3): 27-31.
    [5] Wettschureck N, Offermanns S. Mammalian G proteins and their cell type specific functions. Physiol Rev, 2005; 85(4): 1159-204
    [6] Brown EJ. Integrin-associated proteins. Curr Opin Cell Biol, 2002; 14: 603-7.
    [7] Arcangeli A, Becchetti A. Complex functional interaction between integrin receptors and Ion channels. Trends Cell Biol, 2006; 16: 631-9.
    [8] Hofmann G, Bernabei PA, Crociani O, et al. HERG K1 channels activation during b1 integrin-mediated adhesion to fibronectin induces an up-regulation of avb3 integrin in the preosteoclastic leukemia cell line FLG 29.1. J Biol Chem, 2001; 276: 4923-31.
    [1] Wickenden, A.D. K~+ channels as therapeutic drug targets. Pharmacol. Therap, 2002; 94:157-82.
    [2] Akbarali HI, Thatte H, He XD et al. Role of HERG-like K~+ currents in opossum esophageal circular smooth muscle. Am J Physiol, 1999; 277: C1284-90.
    [3] Emanuel R, Valentina V, Elisabetta P, et al. The hERG K~+ channel: target and antitarget strategies in drug development. Pharmacological Research, 2008; 57:181-95.
    [4] Farrelly AM, Ro S, Callaghan BP, et al. Expression and function of KCNH2 (HERG) in the human jejunum. Am J Physiol Gastrointest Liver Physiol 2003; 284: G883-95.
    [5] Rosati B, Marchetti P, Crociani O, et al. Glucose- and arginine-induced insulin secretion by human pancreatic beta-cells: the role of HERG K~((+)) channels in firing and release. FASEB J 2000; 14: 2601-10.
    [6] Abdul, M, Hoosein, N. Voltage-gated potassium ion channels in colon cancer. Oncol. Rep, 2002; 9: 961-4.
    [7] Abdul, M, Hoosein, N. Voltage-gated sodium ion channels in prostate cancer: expression and activity. Anticancer Res, 2002; 22: 1727-30.
    [8] Chang KW, Yuan TC, Fang KP, et al. The increase of voltage-gated potassium channel Kv3.4 mRNA expression in oral squamous cell carcinoma. J Oral Pathol. Med, 2003; 32: 606-11.
    [9] Ganapathi SB, Kester M, Elmslie KS. State-dependent block of HERG potassium channels by R-roscovitine: implications for cancer therapy. Am J Physiol Cell Physiol,2009; 296(4): C701-10.
    [10] Liang XJ, Taylor B, Cardarelli C, et al. Different roles for K~+ channels in cisplatin-resistant cell lines argue against a critical role for these channels in cisplatin resistance. Anticancer Res, 2005; 25(6B): 4113-22.
    [11] Wang YJ, Lin MW, Lin AA, et al. Evidence for state-dependent block of DPI 201-106,a synthetic inhibitor of Na~+ channel inactivation, on delayed-rectifier K~+ current in pituitary tumor (GH3) cells. J Physiol Pharmacol, 2008; 59(3): 409-23.
    [12] Lastraioli E, Guasti L, Crociani O, et al. A herg gene and HERG protein are overexpressed in colorectal cancers and regulate cell invasion of tumor cells. Cancer Res, 2004; 64: 606-11.
    [13] Kaplan WD, Trout WED. The behavior of four neurologicalmutants of Drosophila. Genet, 1969; 61: 399-409.
    [14] Warmke J, Drysdale R, Ganetzky B. A distinct potassium channel polypeptideencoded by the Drosophila eag locus. Science, 1991; 252:1560-2.
    [15] Warmke JW, Ganetzki B. A family of potassium channe genes related to eag in Drosophila and mammals. Proc. Natl. Acad. Sci, 1994; 91: 3438-42.
    [16] Jiang C, Atkinson D, Towbin JA, et al. Two long QT syndrome loci map to chromosomes 3 and 7 with evidence for further heterogeneity. Nat Genet, 1994; 8(2):141-7.
    [17] Neher E, Sakmann B, Single-channel currents recorded from membrane ofdenervated frog muscle fibres. Nature, 1976; 260: 799-802.
    [18] Hamill OP, Marty A, Neher E, et al. Improved patchclamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch,1981; 391: 85-100.
    [19] Doyle DA, Morais Cabral J, Pfuetzner RA, et al. The structure of the potassium channel: molecular basis of Kt conduction and selectivity. Science, 1998; 280: 69-77.
    [20] Trudeau MC, Warmke JW, Ganetzky B, et al. HERG, a human inward rectifier in the voltage-gated potassium channel family. Science, 2005; 269: 92-5.
    [21] Cabral JHM, Lee A, Cohen SL, et al. Crystal structure and functional analysis of the HERG potassium channel N terminus - a eukaryotic PAS domain. Cell, 1998; 95:649-55.
    [22] Scho¨nherr R, Lober K, Heinemann, SH. Inhibition of human ether-a-go-go potassium channels by Ca~(2+)/calmodulin. EMBO J, 2000; 19: 3263-71.
    [23] Taylor BL, Zhulin IB. PAS domains: internal sensors of oxygen, redoxpotential, and light. Microbiol. Mol. Biol. Rev, 1999; 63: 479-506.
    [24] Torres AM, Bansal PS, Sunde M, et al. Structure of the HERG Kt channel S5P extracellular linker: role of an amphipathic alpha-helix in C-type inactivation. J. Biol. Chem, 2003; 278: 42136-48.
    [25] Perrin MJ, Subbiah RN, Vandenberg JI, et al. Human ether-a-go-go related gene (hERG) K~((+)) channels: Function and dysfunction. Prog Biophys Mol Biol, 2008; 98(2-3):137-48.
    [26] Long SB, Tao X, Campbell EB, et al. Atomic structure ofa voltage-dependent Kt channel in a lipid membrane-like environment. Nature, 2007; 450: 376-82.
    [27] Abbott GW, Sesti F, Splawski I, et al. MiRP1 forms IKr potassium channels with HERG and is associated with cardiac arrhythmia. Cell, 1999; 97(2): 175-87.
    [28] Crociani O. Cell cycle -dependent expression of HERG1 and HERG1B isoforms in tumor cells. J Biol Chem, 2003; 278(5): 2947-55.
    [29] Pardo LA. Votage-gated protassium channels in cell proliferation. Physiology, 2004;19: 285-92.
    [30] Zhu Y, Golden CM, Ye J, et al. ERG K+ currents regulate pacemaker activity in ICC.Am J Physiol Gastrointest Liver Physiol, 2003; 285: G1249-58.
    [31] McKay CM, Ye J, Huizinga JD. Characterization of depolarization evoked ERG K currents in interstitial cells of Cajal. Neurogastroenterol Motil, 2006; 18: 324-33.
    [32] Chiesa N, Rosati B, Arcangeli A, et al. A novel role for HERG K~+ channels:spike-frequency adaptation. J Physiol, 1997; 501(Pt2): 313-8.
    [33] Akbarali HI, Thatte H, He XD, et al. Role of HERG-like K~+ currents in opossum esophageal circular smooth muscle. AmJ Physiol, 1999; 277: C1284-90.
    [34] Overholt JL, Ficker E, Yang T, et al. HERG-Like potassium current regulates the resting membrane potential in glomus cells of the rabbit carotid body. J Neurophysiol, 2000;83:1150-7.
    [35] Overholt JL, Ficker E, Yang T, et al. Chemosensing at the carotid body. Involvement of a HERG-like potassium current in glomus cells. Adv Exp Med Biol, 2000; 475: 241-8.
    [36] Corrette BJ, Bauer CK, Schwarz JR. An inactivating inward-rectifying K current present in prolactin cells from the pituitary of lactating rats. J Membr Biol, 1996; 150:185-95.
    [37] Rosati B, Marchetti P, Crociani O, et al. Glucose- and arginine-induced insulin secretion by human pancreatic beta-cells: the role of HERG K~((+)) channels in firing and release. FASEB J, 2000; 14: 2601-10.
    [38] Gullo F, Ales E, Rosati B, et al. ERG K~+ channel blockade enhances firing and epinephrine secretion in rat chromaffin cells: the missing link to LQT2-related sudden death? FASEB J, 2003; 17: 330-2.
    [39] Recanatini M, Poluzzi E, Masetti M, et al. QT prolongation through hERG K~+ channel blockade: current knowledge and strategies for the early prediction during drug development. Med Res Rev, 2005; 25:133-66.
    [40] Jones EM, Roti EC, Wang J, et al. Cardiac IKr channels minimally comprise hERG la and 1b subunits. J Biol Chem, 2004; 279(43): 44690-4.
    [41] Brugada R, Hong K, Dumaine R, et al. Sudden death associated with short-QT syndrome linked to mutations in HERG. Circulation, 2004; 109: 30-5.
    [42] Furlan F, Guasti L, Avossa D, et al. Interneurons transiently express the ERG K~+ channels during development of mouse spinal networks in vitro. Neuroscience, 2005; 135:1179-92.
    [43] Furlan F, Taccola G, Grandolfo M, et al. ERG conductance expression modulates the excitability of ventral horn GABAergic interneurons that control rhythmic oscillations in the developing mouse spinal cord. J Neurosci, 2007; 27: 919-28.
    [44] Camacho J. Ether a go-go potassium channels and cancer. Cancer Lett, 2006; 233:1-9.
    [45] McKay CM, Huizinga JD. Muscarinic regulation of ether-a-go-go-related gene K~+currents in interstitial cells of Cajal. J Pharmacol Exp Ther, 2006; 319:1112-23.
    [46] Ohya S, Asakura K, Muraki K, et al. Molecular and functional characterization of ERG, KCNQ, and KCNE subtypes in rat stomach smooth muscle. Am J Physiol, 2002; 282:G277-87.
    [47] Parr E, Pozo MJ, Horowitz B, et al. ERG K~+ channels modulate the electrical and contractile activities of gallbladder smooth muscle. Am J Physiol, 2003; 284: G392-8.
    [48] Trudeau MC, Warmke JW, Ganetzky B, et al. HERG, a human inward rectifier in the voltage-gated potassium channel family. Science, 1995; 269(5220): 92-5.
    [49] Smith PL, Baukrowitz T, Yellen G. The inward rectification mechanism of the HERG cardiac potassium channel. Nature, 1996; 379(6568): 833-6.
    [50] Lu Y, Mahaut-Smith MP, Varghese A, et al. Effects of premature stimulation on HERG K(t) channels. J. Physiol, 2001; 537: 843-51.
    [51] Spector PS, Curran ME, Keating MT, et al. Class Ⅲ antiarrhythmic drugs block HERG, a human cardiac delayed rectifier K~+ channel. Open-channel block by methanesulfonanilides. Circ Res, 1996; 78(3): 499-503.
    [52] Mitcheson JS, Chen J, Sanguinetti MC. Trapping of a methanesulfonanilide by closure of the HERG potassium channel activation gate. J Gen Physiol, 2000; 115(3): 229-40.
    [53] Ficker E, Jarolimek W, Kiehn J, et al. Molecular determinants of dofetilide block of HERG K~+ channels. Circ Res, 1998; 82(3): 386-95.
    [54] Wang S, Morales MJ, Liu S, Strauss HC, et al. Modulation of HERG affinity for E-4031 by [K~+]o and C-type inactivation. FEBS Lett, 1997; 417(1): 43-7.
    [55] Pillozzi S, Brizzi M F, Balzi M, et al. HERG potassium channels are constitutively expressed in primary human acute myeloid leukemias and regulate cell proliferation of normal and leukemic hemopoietic progenitors. Leukemia, 2002; 16: 1791-8.
    [56] Bauer CK, wulfsen I, Schafer R, et al. HERG K~+ currents in human prolactin-secreting adenoma cells. Pflugers Arch, 2003; 445: 589-600.
    [57] Bianchi L, Wible B, Arcangeli A, et al. herg encodes a K~+ current highly conserved in tumors of different histogenesis: a selective advantage for cancer cells? Cancer Res, 1998;58: 815-22.
    [58] O'Grady SM, Lee SY. Molecular diversity and function of voltage-gated (Kv) potassium channels in epithelial cells. Int. J Biochem Cell Biol, 2005; 37: 1578-94.
    [59] Pardo LA, del Camino D, S(?)nchez A, et al.Oncogenic potential of EAG K~(()) channels.EMBO J, 1999; 18: 5540-7.
    [60] Cherubini A, Taddei GL, Crociani O, et al. HERG potassium channels are more frequently expressed in human endometrial cancer as compared to non-cancerous endometrium. Br J Cancer, 2000; 83(12): 1722-9.
    [61] Smith GA, Tsui HW, Newell EW, et al. Functional up-regulation of HERG K~+channels in neoplastic hematopoietic cells. J Biol Chem, 2002; 277: 18528-34.
    [62] Suzuki T, Takimoto K. Selective expression of HERG and Kv2 channels influences proliferation of uterine cancer cells. Int. J Oncol, 2004; 25:153-9.
    [63] Crociani O, Guasti L, Balzi M, et al. Cell cycle-dependent expression of HERG1 and HERG1B isoforms in tumor cells. J Biol Chem, 2003; 278(5): 2947-55.
    [64] Wang Z. Roles of K~+ channels in regulating tumour cell proliferation and apoptosis. Pfl¨ugers Arch, 2004; 448: 274-86.
    [65] Chen SZ, Jiang M, Zhen YS. HERG K~+ channel expression-related chemosensitivity in cancer cells and its modulation by erythromycin. Cancer Chemother Pharmacol, 2005; 56:212-20.
    [66] Wang H, Zhang Y, Cao L, et al. hERG HERG K~+ channel, a regulator of tumor cell apoptosis and proliferation. Cancer Res, 2002; 62(17): 4843-8.
    [67] Wang L, Feng ZP, Kondo CS, et al. Developmental changes in the delayed rectifier K+ channels in mouse heart. Circ Res, 1996; 79(1): 79-85.
    [68] Claycomb WC, Lanson NA Jr, Stallworth BS, et al. HL-1 cells: a cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte. Jr.Proc Natl Acad Sci, 1998; 95(6): 2979-84.
    [69] Yang T, Snyders DJ, Roden DM. Rapid inactivation determines the rectification and [K~+]-dependence of the rapid component of the delayed rectifier K~+ current in cardiac cells. Circ Res, 1997; 80(6):782-9.
    [70] Conti MJ. Targeting K~+ channels for cancer therapy. Exp Ther Oncol, 2004; 4(2):161-6.
    [71] Patt S, Preussat K, Beetz C, et al. Expression of ether a go-go potassium channels in human gliomas. Neurosci Lett, 2004; 368: 249-53.
    [72] Masi A, Becchetti A, Restano-Cassulini R, et al. hERG1 channels are overexpressed in glioblastoma multiforme and modulate VEGF secretion in glioblastoma cell lines. Br J Cancer, 2005; 93: 781-92.
    [73] Pillozzi S, Brizzi MF, Bernabei PA, et al. VEGFR-1 (FLT-1), beta1 integrin, and hERG K~+ channel for a macromolecular signaling complex in acute myeloid leukemia: role in cell migration and clinical outcome. Blood, 2007; 110:1238-50.
    [74] Ding XW, Luo HS, Luo B, et al. Overexpression of hERG1 in resected esophageal squamous cell carcinomas: a marker for poor prognosis. J Surg Oncol, 2007; 97: 57-62.
    [75] Rao JN, Platoshyn O, Li L, et al. Activation of K~((+)) channels and increased migration of differentiated intestinal epithelial cells after wounding. Am. J Physiol Cell Physiol, 2002;282: C885-98.
    [76] Schwab A, Wulf A, Schulz C, et al. Subcellular distribution of calcium-sensitive potassium channels (IK1) in migrating cells. J Cell Physiol, 2005; 206(1):86-94.
    [77] Schwab A. Ion channels and transporters on the move. News Physiol Sci, 2001; 16: 29-33.
    [78] Farias LM, Ocana DB, Diaz L, et al. Ether a go-go potassium channels as human cervical cancer markers. Cancer Res, 2004; 64: 6996-7001.
    [79] Lastraioli E, Taddei A, Messerini L, et al. hERG1 channels in human esophagus: evidence for their aberrant expression in the malignant progression of Barrett's esophagus. J Cell Physiol, 2006; 209: 398-404.
    [80] Shao XD, Wu KC, Hao ZM, et al. The potent inhibitory effects of cisapride, a specific blocker for human ether-a-go-go-related gene (HERG) channel, on gastric cancer cells.Cancer Biol Ther, 2005; 4: 295-301.
    [81] Arcangeli A, Becchetti A, Mannini A, et al. Integrin-mediated neurite outgrowth in neuroblastoma cells depends on the activation of potassium channels. J Cell Biol, 1993;122(5): 1131-43.
    [82] Hofmann G, Bernabei PA, Crociani O, et al. HERG K~+ channels activation during beta(1) integrin-mediated adhesion to fibronectin induces an up-regulation of alpha(v)beta(3) integrin in the preosteoclastic leukemia cell line FLG 29.1. J Biol Chem,2001; 276(7): 4923-31.
    [83] Cherubini A, Pillozzi S, Hofmann G, et al. HERG K channels and betal integrins interact throulgh the assembly of a macromolecular complex. Ann N Y Acad Sci, 2002; 973:559-61.
    [84] Arcangeli A, Becchetti A, Cherubini A, et al. Physical and functional interaction between integrins and hERG potassium channels. Biochem Soc Trans, 2004; 32(Pt 5):826-7.
    [85] Cayabyab FS, Tsui FW, Schlichter LC. Modulation of the ERG K~+ current by the tyrosine phosphatase, SHP-1. J Biol Chem, 2002; 277(50): 48130-8.
    [86] Zhang DY, Wang Y, Lau CP, et al. Both EGFR kinase and Src-related tyrosine kinases regulate human ether-(?)-go-go-related gene potassium channels. Cell Signal, 2008; 20(10): 1815-21.
    [87] Cherubini A, Hofmann G, Pillozzi S, et al. Human ether-a-go-go-related gene 1 channels are physically linked to betal integrins and modulate adhesion-dependent signaling. Mol Biol Cell, 2005; 16(6): 2972-83.
    [88] Arcangeli A, Becchetti A, Cherubini A, et al. Physical and functional interaction between integrins and hERG potassium channels. Biochem Soc Trans, 2004; 32(Pt 5):826-7.
    [89] Han H, Wang H, Long H, et al. Oxidative preconditioning and apoptosis in L-cells:Roles of protein kinase B and mitogen-actived protein kinases. J Boil Chem, 2001; 276:26357-64.
    [90] Long H, Han H, Yang B, et al. Oppositae cell density-dependence between spontaneous and oxidative stress-induced apoptosis in mouse fibroblast L-cells. Cell Physiol Biochem, 2003; 13:401-14.
    [91] Wible BA, Wang L, Kuryshev YA, et al. Increased K~+ efflux and apoptosis induced by the potassium channel modulatory protein KCh-AP/PIAS3 beta in prostate cancer cells. J Biol chem, 2002; 277:17852-62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700