β-分泌酶在脑淀粉样血管病变中的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脑淀粉样血管病(cerebral amyloid angiopathy,CAA)是一种与老龄相关的脑部小血管疾病,其病理特点是β淀粉样蛋白(amyloidβ-protein,Aβ)沉积在皮层和软脑膜中小动脉管壁的中层及外层。CAA并发的原发性非外伤性颅内出血(CAA-related hemorrhage,CAAH)是老年人自发性脑出血的常见病因,但其发生机制尚不清楚,也缺乏有效的防治手段。β-分泌酶(β-site of APP-cleavingenzyme,BACE1)是酶切淀粉样前体蛋白(amyloid precursor protein,APP),生成Aβ的关键酶。散发性阿尔茨海默病(Alzheimer's disease,AD)病人脑内BACE1的蛋白表达和活性水平明显升高,表明BACE1在淀粉样病变的发病机制中发挥重要作用。本研究首先采用人软脑膜和大脑皮层样本,以及不同的血管细胞株明确BACE1在脑血管壁上是否能表达及其确切的表达部位。然后采用快速尸检、病理明确诊断的CAA病变的人软脑膜血管样本,定量测定BACE1的蛋白表达和酶活性水平,同时以紧密连接(tight junctions,TJs)蛋白作为血脑屏障(blood-brain barrier,BBB)的评价指标,定量测定TJs的蛋白表达水平。最后,通过CAA的转基因动物模型——APP23小鼠和细胞模型——脑微血管内皮细胞株(bEnd.3),探索BACE1在CAAH发病机制中的作用,以期为CAA和CAAH的防治提供新途径。
     第一部分BACE1在脑血管壁上的表达
     目的:BACE1在脑内主要表达于神经元。为了研究BACE1在CAA中的作用,首先需要明确BACE1在脑血管壁上是否能表达及其确切的表达部位。
     方法:采用快速尸检的正常老年人软脑膜血管和大脑皮层血管样本、人主动脉平滑肌细胞、人脐静脉内皮细胞以及脑微血管内皮细胞株(bEnd.3)等不同的组织和细胞,运用Western-blot、免疫组织化学和免疫细胞化学的方法,采用不同的BACE1抗体,检测BACE1的表达。
     结果:正常老年人的软脑膜血管和皮层血管壁上能够表达BACE1,与神经元表达的BACE1蛋白分子量相同,但其表达量明显低于神经元。血管内皮细胞(脐静脉内皮细胞和脑微血管内皮细胞)和平滑肌细胞均能表达BACE1,表达部位为胞浆。
     结论:BACE1不仅表达于神经元,还广泛分布于脑血管内皮细胞和平滑肌细胞中。在人脑微血管壁上,尤其是脑微血管内皮细胞中检测到BACE1的表达,为进一步研究BACE1在CAA和CAAH发病机制中的作用奠定了基础。
     第二部分BACE1在CAA病变的脑内和脑血管壁上的蛋白表达和活性
     目的:作为Aβ生成的关键酶,BACE1的蛋白表达和活性水平在AD病人脑内显著升高,并且第一部分已经证实BACE1在人脑微血管壁上能够表达。此部分拟明确BACE1在在有大量Aβ沉积的脑血管壁,即CAA病变的脑内和脑血管壁上的蛋白表达和活性情况。
     方法:随机选取病理明确诊断的6例AD合并有中重度CAA病变的患者(AD+CAA组)、6例AD患者(AD组)和6例非AD个体(对照组,Con组),采用其快速尸检的人大脑皮层和软脑膜血管样本,Western-blot检测BACE1的蛋白表达水平以及APP经BACE1酶切后的产物——C99片段的蛋白表达水平,测定BACE1活性水平,并且定性(免疫组织化学)和定量(ELISA)观察脑血管壁上Aβ的沉积量。
     结果:三组研究对象在性别、年龄、死后尸检时间方面均匹配。AD+CAA组仅1例患者发生CAA并发的脑叶出血。AD+CAA组中有1例死于突发的心血管事件,1例死于急性脑叶出血,其余死于AD并发症(脱水/恶病质,肺炎,心、肾功能衰竭),AD组患者均死于AD并发症,对照组均死于心或肾功能衰竭。脑内,AD组和AD+CAA组BACE1的蛋白表达和活性水平均显著高于对照组,而AD组与AD+CAA组之间无明显差异;软脑膜血管壁上,AD+CAA组BACE1的蛋白表达水平显著高于AD组和对照组,而AD组和对照组之间无明显差异,AD组和AD+CAA组BACE1的活性水平显著高于对照组,而AD组和AD+CAA组之间无明显差异,C99蛋白表达水平在AD+CAA组显著高于AD组和对照组。AD+CAA组的皮层血管壁上可见大量Aβ的沉积,包括Aβ_(40)和Aβ_(42),同时伴有血管平滑肌细胞和内皮细胞的破坏和数量减少。Aβ_(40)和Aβ_(42) ELISA定量测定的结果显示AD+CAA组软脑膜血管壁上Aβ_(40)和Aβ_(42)的沉积量显著高于对照组和AD组。
     结论:在有中重度CAA病变的软脑膜血管壁上,BACE1的蛋白表达和活性水平显著升高,而AD合并有中重度CAA与AD患者相比,脑内BACE1蛋白表达和活性水平无明显改变。软脑膜血管壁上BACE1的高表达和高活性,可能使APP酶解产生更多的Aβ,并最终形成CAA的病理改变。上述结果也间接提示脑血管壁可以原位产生Aβ,并且脑血管壁原位产生的Aβ是CAA病变中Aβ来源的重要组成部分。
     第三部分BACE1在CAA相关性脑出血中的作用研究
     目的:中枢神经系统微血管中相邻内皮细胞通过TJs相互连接,TJs也是BBB的重要组成成份,BBB的破坏可能是CAAH的重要原因之一。此部分拟明确CAA病变的脑血管壁上TJs的蛋白表达情况,并探索BACE1在其中发挥的作用。
     方法:采用与第二部分相同的快速尸检的人大脑皮层和软脑膜血管样本,Western-blot测定3组研究对象软脑膜血管壁上TJs蛋白(occludin和ZO-1)的表达水平,免疫荧光染色观察皮层血管壁上ZO-1的表达。采用CAA的动物模型——APP23转基因小鼠,Western-blot测定12月龄和24月龄小鼠皮层内occludin和ZO-1的蛋白表达水平,Perl氏普鲁士蓝染色观察脑血管周围微出血。最后,转染pcDNA-BACE1至脑微血管内皮细胞(bEnd.3),观察BACE1对occludin的影响,并给予BACE1活性抑制剂明确BACE1作用的特异性。
     结果:AD+CAA组软脑膜血管壁上,occludin和ZO-1的蛋白表达水平显著低于AD组和对照组,AD组occludin和ZO-1的蛋白表达水平显著低于与对照组。AD+CAA组皮层血管壁上ZO-1的表达水平明显低于对照组,并伴有内皮细胞标记——vWF的表达量减少。12月龄的APP23小鼠皮层内ZO-1的蛋白表达水平较野生型(wild type,WT)小鼠显著下降,而此时occludin的蛋白表达水平无明显差异。24月龄时,APP23和WT小鼠皮层内ZO-1的蛋白表达水平均较低,并且与WT小鼠相比,occludin的蛋白表达水平在APP23小鼠皮层内表达显著下降。24月龄APP23小鼠皮层血管周围存在微出血。bEnd.3细胞株过表达BACE1,可使occludin的蛋白表达水平下降,给予BACE1活性抑制剂干预后,occludin的蛋白表达水平能较明显地恢复。
     结论:AD以及AD合并有中重度CAA病人的脑血管壁TJs存在不同程度的表达量降低,以后者更明显。APP23转基因小鼠是合适的CAA动物模型,从12月龄起出现TJs的破坏,最终可产生微出血。CAA病变的脑血管壁上高表达和高活性的BACE1可使TJs的表达下调,BBB破坏,可能是CAAH发生的重要原因之一,而BACE1可能是新的防治靶点。
     结论
     1.CAA病变的脑血管壁上BACE1的蛋白表达和活性水平明显升高,可能在脑血管壁原位生成Aβ的过程中发挥重要作用。
     2.CAA病变的脑血管壁上高表达和高活性的BACE1可使TJs的表达下调,BBB破坏,可能是CAAH发生的重要原因之一,BACE1可能是新的防治靶点。
Cerebral amyloid angiopathy(CAA) is an age-associated condition pathologically characterized by the deposition of amyloidβ-protein(Aβ) in the medial layer of primarily small and medium-sized arteries of the cerebral cortex and leptomeninges.One of its common complications is primary non-traumatic intracerebral hemorrhage,which is also a significant cause of spontaneous intracerebral hemorrhage in the elderly.While studies demonstrated that the pathologies of CAA are associated with Alzheimer's disease(AD),mechanisms of Aβdeposition and CAA-related hemorrhage(CAAH) remain unclear with no effective prevention and therapeutic strategy.The generation of Aβfrom the amyloid precursor protein(APP) is initiated byβ-secretase(β-site of APP-cleaving enzyme,BACE1).It is reported that BACE1 protein expression and enzyme activities are increased in sporadic AD brains,indicating an important role of BACE1 in the pathogenesis of AD. Here,we propose the hypothesis that BACE1 may also play an important role in CAA pathogenesis.We first utilized human leptomeningeal vessel and cortex samples,and various vessel cell lines to determine whether BACE1 can be detected on cerebral vessels.We have access to a large brain bank from which we can choose age-matched samples from tissue obtained within 3hrs after death.Through this advantage,we examined BACE1 protein expression and enzymatic activities in the leptomeninges from autopsy-confirmed AD,AD with CAA(AD+CAA),and non AD control individuals.Besides,we also detected tight junctions(TJs) protein expression in the above leptomeningeal vessels to evaluate blood-brain barrier(BBB) function. Furthermore,we used APP23 transgenic mice,a recognized CAA mice model,and cerebral microvessel endothelial cell line to study the role of BACE1 in the pathogenesis of CAAH,expecting to provide a promising therapeutic target for CAA and CAAH.
     PartⅠThe expression of BACE1 on cerebral vessels
     Objectives:BACE1 is regarded as a neuron-specific protein,mainly expressed in neurons in brain.Whether BACE1 is expressed on cerebral vessels needs to be determined first,in order to study roles of BACE1 in the pathogenesis of CAA.
     Methods:The quickly-autopsied leptomeningeal vessel and cortex vessel samples from a normal aging individual,and human aortic smooth muscle cell line (HA-VSMC),human umbilical vein endothelial cell line(HUVEC) and mouse cerebral cortex endothelioma cell line(bEnd.3) were used to detect BACE1 expression by Western-blot,immunohistochemistry and immunocytochemistry.Both polyclonal and monoclonal BACE1 antibodies were used to confirm the findings. Results:The same BACE1 can be detected on the leptomeningeal vessels and cortex vessels of normal aging as in neurons,however its expression level in vessels is much lower than that in neurons.Vascular endothelial cells,including cerebral microvessel endothelial cells,and vascular smooth muscle ceils both express BACE1.BACE1 is located in the cytoplasm of those cells.
     Conclusions:BACE1 is not only expressed in neurons,but widely expressed in cerebral endothelial and smooth muscle cells as well.The detection of BACE1 in leptomenigeal vessels,especially cerebral microvessel endothelial cells,makes it possible to further study roles of BACE1 in the pathogenesis of CAA and CAAH.
     PartⅡBACE1 protein expression and enzyme activities in CAA brains and leptomeningeal vessels
     Objectives:As the initial and rate-limiting enzyme in the production of Aβ,BACE1 protein expression and enzyme activities are increased in AD brains,and we found that BACE1 can be detected on leptomeningeal vessels in PartⅠ.Therefore,we aim to examine BACE1 protein expression and enzyme activities in CAA brains and leptomeningeal vessels in this part.
     Methods:We randomly chose autopsy-confirmed 6 AD with moderate and severe CAA(AD+CAA group) patients,6 AD(AD group) patients and 6 non AD control (control group) individuals.We detected BACE1 and C99 protein expression levels by Western-blot,BACE1 enzyme activities in brains and leptomeningeal vessels of those subjects.Meanwhile,we examined Aβdeposition on leptomeningeal vessels by immunohistochemistry and ELISA.
     Results:Three groups of subjects were well matched on gender,age,and postmortem interval.Only one patient in AD+CAA group had CAA related lobar hemorrhage.In AD+CAA group,one patient died of acute cardiovascular event,and one died of acute cerebral hemorrhage,while the others were all of AD complications (dehydration/cachexia,pneumonia,heart and renal failure).The cause of death for subjects in AD group was all AD complications,while for subjects in control group was heart or renal failure.In brain samples,BACE1 protein expression and enzyme activities were significantly increased in AD and AD+CAA groups compared to control group,with no significant difference between AD and AD+CAA groups.As for leptomeningeal vessel samples,BACE1 protein expression were significantly elevated in AD+CAA group compared to AD and control groups,with no significant difference between AD and control groups;BACE1 enzyme activities were significantly increased in AD and AD+CAA groups compared to control group,with no significant difference between AD and AD+CAA groups.Besides,we found a significant elevation of C99 protein levels in leptomeningeal vessels of AD+CAA and AD patients compared to that in control individuals.We also found abundant deposition of Aβ_(40) and Aβ_(42) on cortex vessels in AD+CAA patients with loss of cerebral smooth muscle cells and endothelial cells.Aβ_(40) and Aβ_(42) ELISA analysis revealed significant deposition of Aβ_(40) and Aβ_(42) in leptomeningeal vessels of AD+CAA patients compared to that in AD and control individuals.
     Conclusions:BACE1 protein expression and enzyme activities are significantly increased in CAA affected leptomeningeal vessels,which may trigger more generation of Aβfrom APP and eventually result in pathologies of CAA.Elevated expression level and activity of BACE1 in CAA affected leptomeningeal vessels may also contribute to Aβin-situ production in cerebral vessels.
     PartⅢRoles of BACE1 in the pathogenesis of CAA related hemorrhage
     Objectives:One of the most important characteristics of the microvasculature of the central nervous system is the cell-to-cell contact between two adjacent endothelial cells of the cerebral capillaries through the TJs,which are also key players in the control of BBB properties.BBB breakdown might be an important cause of CAAH. Therefore,we aim to determine the TJs protein expression levels in CAA leptomeningeal vessels and to study its interaction with BACE1 in this part.
     Methods:The same cerebral cortex and leptomeningeal vessel samples used in PartⅡwere used here.We examined TJs(occludin and ZO-1) protein expression levels in leptomeningeal vessels of those subjects by Western-blot,and ZO-1 expression in cortex vessels by immunohistochemistry.Besides,APP23 transgenic mice,a recognized AD and CAA mice model,were used to determine TJs protein expression levels by Western-blot and observe microhemorrhage by Perl's Prussian staining. Furthermore,bEnd.3 cell line overexpressed with pcDNA-BACE1 and BACE1 inhibitor were utilized to determine the effect of BACE1 on cerebral vessel degeneration.
     Results:Occludin and ZO-1 protein expression levels were significantly reduced in leptomeningeal vessels of AD+CAA group compared to AD and control groups.In AD group,we also found significantly reduced protein expression levels of occludin and ZO-1 compared to that in control group.In cortex vessels,ZO-1 expression was reduced in AD+CAA patients with loss of vWF expression as well.In 12-month-old APP23 mice,ZO-1 protein expression was significantly reduced compared to that in wild type(WT) mice,while no significant difference in occludin expression was detected between APP23 and WT mice at this age.In 24-month-old APP23 and WT mice,both expressed low levels of ZO-1,however,APP23 mice exhibited significantly lower levels of occludin.Importantly,we observed that overexpressing BACE1 in cerebral microvessel endothelial cells resulted in TJs degradation,which was prevented by BACE1 inhibitor.
     Conclusions:TJs protein expression levels are significantly reduced in AD and AD+CAA patients,which is even more obvious in the latter.APP23 transgenic mice exhibit TJs degradation from 12 month old and eventually results in microhemorrhage, which is a suitable mice model for CAA study.Elevated expression level and activity of BACE1 in CAA affected leptomeningeal vessels contribute to TJs degradation and BBB breakdown,which is an important cause of CAAH,and BACE1 might be a potential therapeutic target.
     Conclusions
     1.Elevated expression level and activity of BACE1 in CAA affected leptomeningeal vessels may contribute to Aβin-situ production in cerebral vessels.
     2.Elevated expression level and activity of BACE1 in CAA affected leptomeningeal vessels contribute to TJs degradation and BBB breakdown,which is an important cause of CAAH,and BACE1 might be a potential therapeutic target.
引文
1. Vinters, H.V., Cerebral amyloid angiopathy. A critical review[J]. Stroke, 1987, 18(2): 311-324.
    
    2. Attems, J., F. Lauda, and K.A. Jellinger, Unexpectedly low prevalence of intracerebral hemorrhages in sporadic cerebral amyloid angiopathy: an autopsy study [J]. J Neurol, 2008, 255(1): 70-76.
    
    3. Thal, D.R., W.S. Griffin, R.A. de Vos, et al., Cerebral amyloid angiopathy and its relationship to Alzheimer's disease[J]. Acta Neuropathol, 2008, 115(6): 599-609.
    
    4. Greenberg, S.M., Cerebral amyloid angiopathy: prospects for clinical diagnosis and treatment[J]. Neurology, 1998, 51(3): 690-694.
    
    5. Sacco, R.L., Lobar intracerebral hemorrhage [J]. N Engl J Med, 2000, 342(4): 276-279.
    
    6. Ellis, R.J., J.M. Olichney, L.J. Thal, et al., Cerebral amyloid angiopathy in the brains of patients with Alzheimer's disease: the CERAD experience, Part XV[J]. Neurology, 1996,46(6): 1592-1596.
    
    7. Ishii, N., Y. Nishihara, and A. Horie, Amyloid angiopathy and lobar cerebral haemorrhage [J]. J Neurol Neurosurg Psychiatry, 1984,47(11): 1203-1210.
    
    8. Jellinger, K., Cerebrovascular amyloidosis with cerebral hemorrhage[J]. J Neurol, 1977,214(3): 195-206.
    
    9. Jellinger, K.A., Alzheimer disease and cerebrovascular pathology: an update[J]. J Neural Transm, 2002, 109(5-6): 813-836.
    
    10. Vinters, H.V., Z.Z. Wang, and D.L. Secor, Brain parenchymal and microvascular amyloid in Alzheimer's disease[J]. Brain Pathol, 1996, 6(2): 179-195.
    
    11. Vonsattel, J.P., R.H. Myers, E.T. Hedley-Whyte, et al., Cerebral amyloid angiopathy without and with cerebral hemorrhages: a comparative histological study [J]. Ann Neurol, 1991, 30(5): 637-649.
    
    12. Itoh, Y., M. Yamada, M. Hayakawa, et al., Cerebral amyloid angiopathy: a significant cause of cerebellar as well as lobar cerebral hemorrhage in the elderly[J]. J Neurol Sci, 1993, 116(2): 135-141.
    
    13. Mughal, M. and S. Allen, Cerebral amyloid angiopathy as a cause of recurrent intracerebral hemorrhage[J]. Conn Med, 2002, 66(2): 67-70.
    
    14. Ritter, M.A., D.W. Droste, K. Hegedus, et al., Role of cerebral amyloid angiopathy in intracerebral hemorrhage in hypertensive patients[J].Neurology,2005,64(7):1233-1237.
    15.Thanvi,B.and T.Robinson,Sporadic cerebral amyloid angiopathy-an important cause of cerebral haemorrhage in older people[J].Age Ageing,2006.35(6):565-571.
    16.Wagle,W.A.,T.W.Smith,and M.Weiner,Intracerebral hemorrhage caused by cerebral amyloid angiopathy:radiographic-pathologic correlation[J].AJNR Am J Neuroradiol,1984,5(2):171-176.
    17.Burgermeister,P.,M.E.Calhoun,D.T.Winkler,et al.,Mechanisms of cerebrovascular amyloid deposition.Lessons from mouse models[J].Ann N Y Acad Sci,2000,903:307-316.
    18.Yamada,M.,Cerebral amyloid angiopathy:an overview[J].Neuropathology,2000,20(1):8-22.
    19.Sinha,S.,J.P.Anderson,R.Barbour,et al.,Purification and cloning of amyloid precursor protein beta-secretase from human brain[J].Nature,1999,402(6761):537-540.
    20.Vassar,R.,B.D.Bennett,S.Babu-Khan,et al.,Beta-secretase cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE[J].Science,1999,286(5440):735-741.
    21.Yan,R.,M.J.Bienkowski,M.E.Shuck,et al.,Membrane-anchored aspartyl protease with Alzheimer's disease beta-secretase activity[J].Nature,1999,402(6761):533-537.
    22.Hussain,I.,D.Powell,D.R.Howlett,et al.,Identification of a novel aspartic protease(Asp 2) as beta-secretase[J].Mol Cell Neurosci,1999,14(6):419-427.
    23.Lin,X.,G.Koelsch,S.Wu,et al.,Human aspartic protease memapsin 2cleaves the beta-secretase site of beta-amyloid precursor protein[J].Proc Natl Acad Sci U S A,2000,97(4):1456-1460.
    24.Wolfe,M.S.,W.Xia,B.L.Ostaszewski,et al.,Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and gamma-secretase activity[J].Nature,1999,398(6727):513-517.
    25.Wolfe,M.S..J.De Los Angeles,D.D.Miller,et al.,Are presenilins intramembrane-cleaving proteases? Implications for the molecular mechanism of Alzheimer's disease[J].Biochemistry,1999,38(35):11223-11230.
    26. Yu, G, M. Nishimura, S. Arawaka, et al., Nicastrin modulates presenilin-mediated notch/glp-1 signal transduction and betaAPP processing[J]. Nature, 2000, 407(6800): 48-54.
    
    27. Francis, R., G. McGrath, J. Zhang, et al., aph-1 and pen-2 are required for Notch pathway signaling, gamma-secretase cleavage of betaAPP, and presenilin protein accumulation[J]. Dev Cell, 2002, 3(1): 85-97.
    
    28. Takasugi, N., T. Tomita, I. Hayashi, et al., The role of presenilin cofactors in the gamma-secretase complex[J]. Nature, 2003, 422(6930): 438-441.
    
    29. Lammich, S., E. Kojro, R. Postina, et al., Constitutive and regulated alpha-secretase cleavage of Alzheimer's amyloid precursor protein by a disintegrin metalloprotease[J]. Proc Natl Acad Sci U S A, 1999, 96(7): 3922-3927.
    
    30. Cole, S.L. and R. Vassar, The Alzheimer's disease beta-secretase enzyme, BACEl [J]. Mol Neurodegener, 2007, 2: 22.
    
    31. Blasko, I., R. Veerhuis, M. Stampfer-Kountchev, et al., Costimulatory effects of interferon-gamma and interleukin-lbeta or tumor necrosis factor alpha on the synthesis of Abetal-40 and Abetal-42 by human astrocytes[J]. Neurobiol Dis, 2000, 7(6 Pt B): 682-689.
    
    32. Bourne, K.Z., D.C. Ferrari, C. Lange-Dohna, et al., Differential regulation of BACE1 promoter activity by nuclear factor-kappaB in neurons and glia upon exposure to beta-amyloid peptides[J]. J Neurosci Res, 2007, 85(6): 1194-1204.
    
    33. Rossner, S., C. Lange-Dohna, U. Zeitschel, et al., Alzheimer's disease beta-secretase BACE1 is not a neuron-specific enzyme[J]. J Neurochem, 2005, 92(2): 226-234.
    
    34. Selkoe, D.J., Alzheimer's disease: genes, proteins, and therapy[J]. Physiol Rev, 2001, 81(2): 741-766.
    
    35. Fukumoto, H., B.S. Cheung, B.T. Hyman, et al., Beta-secretase protein and activity are increased in the neocortex in Alzheimer disease[J]. Arch Neurol, 2002, 59(9): 1381-1389.
    
    36. Holsinger, R.M., C.A. McLean, K. Beyreuther, et al., Increased expression of the amyloid precursor beta-secretase in Alzheimer's disease[J]. Ann Neurol, 2002. 51(6): 783-786.
    
    37. Yang, L.B., K. Lindholm, R. Yan, et al., Elevated beta-secretase expression and enzymatic activity detected in sporadic Alzheimer disease[J]. Nat Med, 2003, 9(1): 3-4.
    
    38. Li, R., K. Lindholm, L.B. Yang, et al., Amyloid beta peptide load is correlated with increased beta-secretase activity in sporadic Alzheimer's disease patients[J]. Proc Natl Acad Sci U S A, 2004, 101(10): 3632-3637.
    
    39. Okazaki, H., T.J. Reagan, and R.J. Campbell, Clinicopathologic studies of primary cerebral amyloid angiopathy[J]. Mayo Clin Proc, 1979, 54(1): 22-31.
    
    40. Kawai, M, R.N. Kalaria, P. Cras, et al., Degeneration of vascular muscle cells in cerebral amyloid angiopathy of Alzheimer disease[J]. Brain Res, 1993, 623(1): 142-146.
    
    41. Rensink, A.A., R.M. de Waal, B. Kremer, et al., Pathogenesis of cerebral amyloid angiopathy[J]. Brain Res Brain Res Rev, 2003, 43(2): 207-223.
    
    42. Kniesel, U. and H. Wolburg, Tight junctions of the blood-brain barrier[J]. Cell Mol Neurobiol, 2000, 20(1): 57-76.
    
    43. Ballabh, P., A. Braun, and M. Nedergaard, The blood-brain barrier: an overview: structure, regulation, and clinical implications[J]. Neurobiol Dis, 2004, 16(1): 1-13.
    
    44. Huber, J.D., R.D. Egleton, and T.P. Davis, Molecular physiology and pathophysiology of tight junctions in the blood-brain barrier[J]. Trends Neurosci, 2001, 24(12): 719-725.
    
    45. Wisniewski, H.M., A.W. Vorbrodt, and J. Wegiel, Amyloid angiopathy and blood-brain barrier changes in Alzheimer's disease[J]. Ann N Y Acad Sci, 1997,826: 161-172.
    
    46. Claudio, L., Ultrastructural features of the blood-brain barrier in biopsy tissue from Alzheimer's disease patients[J]. Acta Neuropathol, 1996, 91(1): 6-14.
    
    47. Bruban, J., A.L. Glotin, V. Dinet, et al., Amyloid-beta(1-42) alters structure and function of retinal pigmented epithelial cells[J]. Aging Cell, 2009, 8(2): 162-177.
    
    48. Gonzalez-Velasquez, F.J., J.A. Kotarek, and M.A. Moss, Soluble aggregates of the amyloid-beta protein selectively stimulate permeability in human brain microvascular endothelial monolayers[J]. J Neurochem, 2008, 107(2): 466-477.
    
    49. Marco. S. and S.D. Skaper, Amyloid beta-peptide1-42 alters tight junction protein distribution and expression in brain microvessel endothelial cells[J]. Neurosci Lett, 2006, 401(3): 219-224.
    1. Beach, T.G., L.I. Sue, D.G. Walker, et al., The Sun Health Research Institute Brain Donation Program: description and experience, 1987-2007[J]. Cell Tissue Bank, 2008, 9(3): 229-245.
    
    2. Roher, A.E., Y.M. Kuo, C. Esh, et al., Cortical and leptomeningeal cerebrovascular amyloid and white matter pathology in Alzheimer's disease[J]. Mol Med, 2003, 9(3-4): 112-122.
    
    3. Lowry, O.H., N.J. Rosebrough, A.L. Farr, et al., Protein measurement with the Folin phenol reagent[J]. J Biol Chem, 1951, 193(1): 265-275.
    
    4. Ellis, R.J., J.M. Olichney, L.J. Thal, et al., Cerebral amyloid angiopathy in the brains of patients with Alzheimer's disease: the CERAD experience, Part XV[J]. Neurology, 1996,46(6): 1592-1596.
    
    5. Esiri, M.M. and G.K.. Wilcock, Cerebral amyloid angiopathy in dementia and old age[J]. J Neurol Neurosurg Psychiatry, 1986, 49(11): 1221-1226.
    
    6. Mandybur, T.I., The incidence of cerebral amyloid angiopathy in Alzheimer's disease[J]. Neurology, 1975,25(2): 120-126.
    
    7. Yamada, M., H. Tsukagoshi, E. Otomo, et al., Cerebral amyloid angiopathy in the aged[J]. J Neurol, 1987, 234(6): 371-376.
    
    8. Greenberg, S.M., J.P. Vonsattel, J.W. Stakes, et al., The clinical spectrum of cerebral amyloid angiopathy: presentations without lobar hemorrhage [J]. Neurology, 1993, 43(10): 2073-2079.
    
    9. Yamada, M., Y. Itoh, N. Suematsu, et al., Vascular variant of Alzheimer's disease characterized by severe plaque-like beta protein angiopathy[J]. Dement Geriatr Cogn Disord, 1997, 8(3): 163-168.
    
    10. Yoshimura, M, H. Yamanouchi, S. Kuzuhara, et al., Dementia in cerebral amyloid angiopathy: a clinicopathological study [J]. J Neurol, 1992, 239(8): 441-450.
    
    11. Greenberg, S.M., G.W. Rebeck, J.P. Vonsattel, et al., Apolipoprotein E epsilon 4 and cerebral hemorrhage associated with amyloid angiopathy[J]. Ann Neurol, 1995, 38(2): 254-259.
    
    12. Itoh, Y, M. Yamada, N. Suematsu, et al., Influence of apolipoprotein E genotype on cerebral amyloid angiopathy in the elderly[J]. Stroke, 1996, 27(2): 216-218.
    13. Premkumar, D.R., D.L. Cohen, P. Hedera, et al., Apolipoprotein E-epsilon4 alleles in cerebral amyloid angiopathy and cerebrovascular pathology associated with Alzheimer's disease[J]. Am J Pathol, 1996, 148(6): 2083-2095.
    
    14. Joachim, C.L., L.K. Duffy, J.H. Morris, et al., Protein chemical and immunocytochemical studies of meningovascular beta-amyloid protein in Alzheimer's disease and normal aging[J]. Brain Res, 1988, 474(1): 100-111.
    
    15. Suzuki, N., T. Iwatsubo, A. Odaka, et al., High tissue content of soluble beta 1-40 is linked to cerebral amyloid angiopathy [J]. Am J Pathol, 1994, 145(2): 452-460.
    
    16. Alonzo, N.C., B.T. Hyman, G.W. Rebeck, et al., Progression of cerebral amyloid angiopathy: accumulation of amyloid-beta40 in affected vessels[J]. J Neuropathol Exp Neurol, 1998, 57(4): 353-359.
    
    17. Shinkai, Y, M. Yoshimura, Y. Ito, et al., Amyloid beta-proteins 1-40 and 1-42(43) in the soluble fraction of extra- and intracranial blood vessels[J]. Ann Neurol, 1995, 38(3): 421-428.
    
    18. Selkoe, D.J., Alzheimer's disease: genes, proteins, and therapy[J]. Physiol Rev, 2001, 81(2): 741-766.
    
    19. Hussain, I., D. Powell, D.R. Howlett, et al., Identification of a novel aspartic protease (Asp 2) as beta-secretase[J]. Mol Cell Neurosci, 1999, 14(6): 419-427.
    
    20. Lin, X., G. Koelsch, S. Wu, et al., Human aspartic protease memapsin 2 cleaves the beta-secretase site of beta-amyloid precursor protein[J]. Proc Natl Acad Sci U S A, 2000, 97(4): 1456-1460.
    
    21. Sinha, S.. J.P. Anderson, R. Barbour, et al., Purification and cloning of amyloid precursor protein beta-secretase from human brain[J]. Nature, 1999, 402(6761): 537-540.
    
    22. Vassar, R., B.D. Bennett, S. Babu-Khan, et al., Beta-secretase cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE[J]. Science, 1999, 286(5440): 735-741.
    
    23. Yan, R., M.J. Bienkowski, M.E. Shuck, et al., Membrane-anchored aspartyl protease with Alzheimer's disease beta-secretase activity[J]. Nature, 1999, 402(6761): 533-537.
    
    24. McConlogue, L., M. Buttini, J.P. Anderson, et al., Partial reduction of BACE1 has dramatic effects on Alzheimer plaque and synaptic pathology in APP Transgenic Mice[J]. J Biol Chem, 2007, 282(36): 26326-26334.
    
    25. Ohno, M., S.L. Cole, M. Yasvoina, et al., BACE1 gene deletion prevents neuron loss and memory deficits in 5XFAD APP/PS1 transgenic mice[J]. Neurobiol Dis, 2007, 26(1): 134-145.
    
    26. Ohno, M.. E.A. Sametsky, L.H. Younkin, et al., BACE1 deficiency rescues memory deficits and cholinergic dysfunction in a mouse model of Alzheimer's disease[J]. Neuron, 2004, 41(1): 27-33.
    
    27. Rossner, S., M. Sastre, K. Bourne, et al., Transcriptional and translational regulation of BACE1 expression-implications for Alzheimer's disease[J]. Prog Neurobiol, 2006, 79(2): 95-111.
    
    28. Bennett, B.D., P. Denis, M. Haniu, et al., A furin-like convertase mediates propeptide cleavage of BACE, the Alzheimer's beta -secretase[J]. J Biol Chem, 2000, 275(48): 37712-37717.
    
    29. Vassar, R., BACE1: the beta-secretase enzyme in Alzheimer's disease[J]. J Mol Neurosci, 2004,23(1-2): 105-114.
    
    30. Satoh, J. and Y. Kuroda, Amyloid precursor protein beta-secretase (BACE) mRNA expression in human neural cell lines following induction of neuronal differentiation and exposure to cytokines and growth factors[J]. Neuropathology, 2000, 20(4): 289-296.
    
    31. Marcinkiewicz, M. and N.G. Seidah, Coordinated expression of beta-amyloid precursor protein and the putative beta-secretase BACE and alpha-secretase ADAM10 in mouse and human brain[J]. J Neurochem, 2000, 75(5): 2133-2143.
    
    32. Bodendorf, U.. F. Fischer, D. Bodian, et al., A splice variant of beta-secretase deficient in the amyloidogenic processing of the amyloid precursor protein[J]. J Biol Chem, 2001, 276(15): 12019-12023.
    
    33. Ehehalt, R., B. Michel, D. De Pietri Tonelli, et al., Splice variants of the beta-site APP-cleaving enzyme BACE1 in human brain and pancreas[J]. Biochem Biophys Res Commun, 2002, 293(1): 30-37.
    
    34. Blasko, I., R. Veerhuis, M. Stampfer-Kountchev, et al., Costimulatory effects of interferon-gamma and interleukin-1beta or tumor necrosis factor alpha on the synthesis of Abeta1-40 and Abeta1-42 by human astrocytes[J]. Neurobiol Dis, 2000, 7(6 Pt B): 682-689.
    
    35. Bourne. K.Z., D.C. Ferrari, C. Lange-Dohna, et al., Differential regulation of BACE1 promoter activity by nuclear factor-kappaB in neurons and glia upon exposure to beta-amyloid peptides[J]. J Neurosci Res, 2007, 85(6): 1194-1204.
    
    36. Rossner, S., C. Lange-Dohna, U. Zeitschel, et al., Alzheimer's disease beta-secretase BACEl is not a neuron-specific enzyme[J]. J Neurochem, 2005, 92(2): 226-234.
    
    37. Heneka, M.T., M. Sastre, L. Dumitrescu-Ozimek, et al., Focal glial activation coincides with increased BACEl activation and precedes amyloid plaque deposition in APP[V717I] transgenic mice[J]. J Neuroinflammation, 2005, 2: 22.
    
    38. Auerbach, I.D. and H.V. Vinters, Effects of anoxia and hypoxia on amyloid precursor protein processing in cerebral microvascular smooth muscle cells[J]. J Neuropathol Exp Neurol, 2006, 65(6): 610-620.
    
    39. Coma, ML, F.X. Guix, G. Ill-Raga, et al., Oxidative stress triggers the amyloidogenic pathway in human vascular smooth muscle cells[J]. Neurobiol Aging. 2008, 29(7): 969-980.
    1. Fukumoto, H., B.S. Cheung, B.T. Hyman, et al., Beta-secretase protein and activity are increased in the neocortex in Alzheimer disease[J]. Arch Neurol, 2002,59(9): 1381-1389.
    
    2. Holsinger, R.M., C.A. McLean, K. Beyreuther, et al., Increased expression of the amyloid precursor beta-secretase in Alzheimer's disease[J]. Ann Neurol, 2002, 51(6): 783-786.
    
    3. Tyler, S.J., D. Dawbarn, G.K. Wilcock, et al., alpha- and beta-secretase: profound changes in Alzheimer's disease[J]. Biochem Biophys Res Commun, 2002, 299(3): 373-376.
    
    4. Yang, L.B., K. Lindholm, R. Yan, et al., Elevated beta-secretase expression and enzymatic activity detected in sporadic Alzheimer disease[J]. Nat Med, 2003, 9(1): 3-4.
    
    5. Li, R., K, Lindholm, L.B. Yang, et al., Amyloid beta peptide load is correlated with increased beta-secretase activity in sporadic Alzheimer's disease patients[J]. Proc Natl Acad Sci U S A, 2004, 101(10): 3632-3637.
    
    6. Beach, T.G., L.I. Sue, D.G. Walker, et al., The Sun Health Research Institute Brain Donation Program: description and experience, 1987-2007[J]. Cell Tissue Bank, 2008, 9(3): 229-245.
    
    7. McKhann, G, D. Drachman, M. Folstein, et al., Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease[J]. Neurology, 1984, 34(7): 939-944.
    
    8. Hyman, B.T. and J.Q. Trojanowski, Consensus recommendations for the postmortem diagnosis of Alzheimer disease from the National Institute on Aging and the Reagan Institute Working Group on diagnostic criteria for the neuropathological assessment of Alzheimer disease[J]. J Neuropathol Exp Neurol, 1997,56(10): 1095-1097.
    
    9. Mirra, S.S., A. Heyman, D. McKeel, et al., The Consortium to Establish a Registry for Alzheimer's Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer's disease[J]. Neurology, 1991, 41(4): 479-486.
    
    10. Vonsattel, J.P., R.H. Myers, E.T. Hedley-Whyte, et al., Cerebral amyloid angiopathy without and with cerebral hemorrhages: a comparative histological study[J]. Ann Neurol, 1991, 30(5): 637-649.
    
    11. Thal. D.R., W.S. Griffin, R.A. de Vos, et al., Cerebral amyloid angiopathy and its relationship to Alzheimer's disease[J]. Acta Neuropathol, 2008, 115(6): 599-609.
    
    12. Lowry, O.H., N.J. Rosebrough, A.L. Farr, et al., Protein measurement with the Folin phenol reagent[J]. J Biol Chem, 1951, 193(1): 265-275.
    
    13. Calhoun, M.E., P. Burgermeister, A.L. Phinney, et al., Neuronal overexpression of mutant amyloid precursor protein results in prominent deposition of cerebrovascular amyloid[J]. Proc Natl Acad Sci U S A, 1999, 96(24): 14088-14093.
    
    14. Weller, R.O., A. Massey, T.A. Newman, et al., Cerebral amyloid angiopathy: amyloid beta accumulates in putative interstitial fluid drainage pathways in Alzheimer's disease[J]. Am J Pathol, 1998, 153(3): 725-733.
    
    15. Mackic, J.B., M.H. Weiss, W. Miao, et al., Cerebrovascular accumulation and increased blood-brain barrier permeability to circulating Alzheimer's amyloid beta peptide in aged squirrel monkey with cerebral amyloid angiopathy [J]. J Neurochem, 1998, 70(1): 210-215.
    
    16. Zlokovic, B.V., J. Ghiso, J.B. Mackic, et al., Blood-brain barrier transport of circulating Alzheimer's amyloid beta[J]. Biochem Biophys Res Commun, 1993,197(3): 1034-1040.
    
    17. Deane, R.. S. Du Yan, R.K. Submamaryan, et al.. RAGE mediates amyloid-beta peptide transport across the blood-brain barrier and accumulation in brain[J]. Nat Med, 2003, 9(7): 907-913.
    
    18. Fukuchi, K., L. Ho, S.G. Younkin, et al., High levels of circulating beta-amyloid peptide do not cause cerebral beta-amyloidosis in transgenic mice[J]. Am J Pathol, 1996, 149(1): 219-227.
    
    19. Van Dorpe, J., L. Smeijers, I. Dewachter, et al., Prominent cerebral amyloid angiopathy in transgenic mice overexpressing the london mutant of human APP in neurons[J]. Am J Pathol, 2000, 157(4): 1283-1298.
    
    20. Frackowiak, J., D.L. Miller, A. Potempska, et al., Secretion and accumulation of Abeta by brain vascular smooth muscle cells from AbetaPP-Swedish transgenic mice[J]. J Neuropathol Exp Neurol, 2003, 62(6): 685-696.
    
    21. Frackowiak, J., A. Potempska, H. LeVine, et al., Extracellular deposits of A beta produced in cultures of Alzheimer disease brain vascular smooth muscle cells[J]. J Neuropathol Exp Neurol, 2005, 64(1): 82-90.
    
    22. Wisniewski, H.M., J. Frackowiak, and B. Mazur-Kolecka, In vitro production of beta-amyloid in smooth muscle cells isolated from amyloid angiopathy-affected vessels[J]. Neurosci Lett, 1995, 183(1-2): 120-123.
    
    23. Mazur-Kolecka, B., D. Dickson, and J. Frackowiak, Induction of vascular amyloidosis-beta by oxidative stress depends on APOE genotype[J]. Neurobiol Aging, 2006, 27(6): 804-814.
    
    24. Burgermeister, P., M.E. Calhoun, D.T. Winkler, et al.. Mechanisms of cerebrovascular amyloid deposition. Lessons from mouse models[J]. Ann N Y Acad Sci, 2000, 903:307-316.
    
    25. Coma, M., F.X. Guix, G. Ill-Raga, et al., Oxidative stress triggers the amyloidogenic pathway in human vascular smooth muscle cells[J]. Neurobiol Aging, 2008, 29(7): 969-980.
    
    26. Mohajeri, M.H., K.D. Saini, and R.M. Nitsch, Transgenic BACE expression in mouse neurons accelerates amyloid plaque pathology[J]. J Neural Transm, 2004, 111(3): 413-425.
    
    27. Willem, M., I. Dewachter, N. Smyth, et al., beta-site amyloid precursor protein cleaving enzyme 1 increases amyloid deposition in brain parenchyma but reduces cerebrovascular amyloid angiopathy in aging BACE x APP[V717I] double-transgenic mice[J]. Am J Pathol, 2004, 165(5): 1621-1631.
    
    28. Lee. E.B., B. Zhang, K. Liu, et al., BACE overexpression alters the subcellular processing of APP and inhibits Abeta deposition in vivo[J]. J Cell Biol, 2005, 168(2): 291-302.
    
    29. McGowan, E., F. Pickford, J. Kim, et al., Abeta42 is essential for parenchymal and vascular amyloid deposition in mice[J]. Neuron, 2005, 47(2): 191-199.
    
    30. Van Nostrand, W.E., J. Melchor, M. Wagner, et al., Cerebrovascular smooth muscle cell surface fibrillar A beta. Alteration of the proteolytic environment in the cerebral vessel wall[J]. Ann N Y Acad Sci, 2000, 903: 89-96.
    
    31. Suzuki, N., T. Iwatsubo, A. Odaka, et al., High tissue content of soluble beta 1-40 is linked to cerebral amyloid angiopathy[J]. Am J Pathol, 1994, 145(2): 452-460.
    
    32. Stockley, J.H. and C. O'Neill, Understanding BACE1: essential protease for amyloid-beta production in Alzheimer's disease[J]. Cell Mol Life Sci, 2008, 65(20): 3265-3289.
    
    33. Tamagno. E., P. Bardini, A. Obbili, et al., Oxidative stress increases expression and activity of BACE in NT2 neurons[J]. Neurobiol Dis, 2002, 10(3): 279-288.
    
    34. Blasko, I., R. Beer, M. Bigl, et al., Experimental traumatic brain injury in rats stimulates the expression, production and activity of Alzheimer's disease beta-secretase (BACE-1)[J]. J Neural Transm, 2004, 111(4): 523-536.
    
    35. Wen, Y., O. Onyewuchi, S. Yang, et al., Increased beta-secretase activity and expression in rats following transient cerebral ischemia[J]. Brain Res, 2004, 1009(1-2): 1-8.
    
    36. Velliquette, R.A., T. O'Connor, and R. Vassar, Energy inhibition elevates beta-secretase levels and activity and is potentially amyloidogenic in APP transgenic mice: possible early events in Alzheimer's disease pathogenesis[J]. J Neurosci, 2005. 25(47): 10874-10883.
    
    37. Tong, Y, W. Zhou, V. Fung, et al., Oxidative stress potentiates BACE1 gene expression and Abeta generation[J]. J Neural Transm, 2005, 112(3): 455-469.
    
    38. Tesco, G, Y.H. Koh, E.L. Kang, et al., Depletion of GGA3 stabilizes BACE and enhances beta-secretase activity[J]. Neuron, 2007, 54(5): 721-737.
    
    39. Tamagno, E., M. Parola, P. Bardini. et al., Beta-site APP cleaving enzyme up-regulation induced by 4-hydroxynonenal is mediated by stress-activated protein kinases pathways[J]. J Neurochem, 2005, 92(3): 628-636.
    
    40. Sun, X., G He, H. Qing, et al., Hypoxia facilitates Alzheimer's disease pathogenesis by up-regulating BACEl gene expression[J]. Proc Natl Acad Sci U S A, 2006, 103(49): 18727-18732.
    
    41. Xiong, K., H. Cai, X.G. Luo, et al., Mitochondrial respiratory inhibition and oxidative stress elevate beta-secretase (BACE1) proteins and activity in vivo in the rat retina[J]. Exp Brain Res, 2007, 181(3): 435-446.
    
    42. Yan, X.X., K. Xiong, X.G. Luo, et al., beta-Secretase expression in normal and functionally deprived rat olfactory bulbs: inverse correlation with oxidative metabolic activity [J]. J Comp Neurol, 2007, 501(1): 52-69.
    1. Zlokovic, B.V., The blood-brain barrier in health and chronic neurodegenerative disorders[J]. Neuron, 2008, 57(2): 178-201.
    
    2. Sturchler-Pierrat, C. and M. Staufenbiel, Pathogenic mechanisms of Alzheimer's disease analyzed in the APP23 transgenic mouse model[J]. Ann N Y Acad Sci, 2000, 920: 134-139.
    
    3. Zhong, Z., M. Ewers, S. Teipel, et al., Levels of beta-secretase (BACE1) in cerebrospinal fluid as a predictor of risk in mild cognitive impairment[J]. Arch Gen Psychiatry. 2007, 64(6): 718-726.
    
    4. Chirapu, S.R., B. Pachaiyappan, H.F. Nural, et al., Molecular modeling, synthesis, and activity studies of novel biaryl and fused-ring BACE1 inhibitors[J]. Bioorg Med Chem Lett, 2009, 19(1): 264-274.
    
    5. Hawkins, B.T. and T.P. Davis, The blood-brain barrier/neurovascular unit in health and disease[J]. Pharmacol Rev, 2005, 57(2): 173-185.
    
    6. Bazzoni, G. and E. Dejana, Endothelial cell-to-cell junctions: molecular organization and role in vascular homeostasis[J]. Physiol Rev, 2004, 84(3): 869-901.
    
    7. Claudio, L., Ultrastructural features of the blood-brain barrier in biopsy tissue from Alzheimer's disease patients[J]. Acta Neuropathol, 1996, 91(1): 6-14.
    
    8. Hirase, T., J.M. Staddon, M. Saitou, et al., Occludin as a possible determinant of tight junction permeability in endothelial cells[J]. J Cell Sci, 1997, 110 ( Pt 14): 1603-1613.
    
    9. Vorbrodt, A.W. and D.H. Dobrogowska, Molecular anatomy of intercellular junctions in brain endothelial and epithelial barriers: electron microscopist's view[J]. Brain Res Brain Res Rev, 2003, 42(3): 221-242.
    
    10. Furuse, M., T. Hirase, M. Itoh, et al., Occludin: a novel integral membrane protein localizing at tight junctions[J]. J Cell Biol, 1993, 123(6 Pt 2): 1777-1788.
    
    11. Bolton, S.J., D.C. Anthony, and V.H. Perry, Loss of the tight junction proteins occludin and zonula occludens-1 from cerebral vascular endothelium during neutrophil-induced blood-brain barrier breakdown in vivo[J]. Neuroscience, 1998.86(4): 1245-1257.
    12. Dallasta, L.M., L.A. Pisarov, J.E. Esplen, et al., Blood-brain barrier tight junction disruption in human immunodeficiency virus-1 encephalitis[J]. Am J Pathol. 1999, 155(6): 1915-1927.
    
    13. Persidsky. Y. D. Heilman, J. Haorah, et al., Rho-mediated regulation of tight junctions during monocyte migration across the blood-brain barrier in HIV-1 encephalitis (HIVE)[J]. Blood. 2006, 107(12): 4770-4780.
    
    14. Fanning, A.S., B.J. Jameson, L.A. Jesaitis, et al., The tight junction protein ZO-1 establishes a link between the transmembrane protein occludin and the actin cytoskeleton[J]. J Biol Chem, 1998, 273(45): 29745-29753.
    
    15. Mark, K.S. and T.P. Davis, Cerebral microvascular changes in permeability and tight junctions induced by hypoxia-reoxygenation[J]. Am J Physiol Heart Circ Physiol. 2002, 282(4): H1485-1494.
    
    16. Kirk, J., J. Plumb, M. Mirakhur, et al., Tight junctional abnormality in multiple sclerosis white matter affects all calibres of vessel and is associated with blood-brain barrier leakage and active demyelination[J]. J Pathol, 2003, 201(2): 319-327.
    
    17. Leech, S., J. Kirk, J. Plumb, et al., Persistent endothelial abnormalities and blood-brain barrier leak in primary and secondary progressive multiple sclerosis[J]. Neuropathol Appl Neurobiol, 2007, 33(1): 86-98.
    
    18. Hawkins, B.T., T.F. Lundeen, K.M. Norwood, et al., Increased blood-brain barrier permeability and altered tight junctions in experimental diabetes in the rat: contribution of hyperglycaemia and matrix metalloproteinases[J]. Diabetologia, 2007, 50(1): 202-211.
    
    19. Kalaria, R.N. and A.B. Pax, Increased collagen content of cerebral microvessels in Alzheimer's disease[J]. Brain Res, 1995, 705(1-2): 349-352.
    
    20. Kalaria, R.N. and P. Hedera, Differential degeneration of the cerebral microvasculature in Alzheimer's disease[J]. Neuroreport, 1995, 6(3): 477-480.
    
    21. Berzin, T.M., B.D. Zipser, M.S. Rafii, et al., Agrin and microvascular damage in Alzheimer's disease[J]. Neurobiol Aging, 2000, 21(2): 349-355.
    
    22. Farkas, E. and P.G. Luiten, Cerebral microvascular pathology in aging and Alzheimer's disease[J]. Prog Neurobiol, 2001, 64(6): 575-611.
    
    23. Grammas, P., M. Yamada, and B. Zlokovic, The cerebromicrovasculature: a key player in the pathogenesis of Alzheimer's disease[J]. J Alzheimers Dis, 2002, 4(3): 217-223.
    24. Bailey, T.L., C.B. Rivara, A.B. Rocher, et al., The nature and effects of cortical microvascular pathology in aging and Alzheimer's disease[J]. Neurol Res, 2004, 26(5): 573-578.
    
    25. Ervin, J.F., C. Pannell, M. Szymanski, et al., Vascular smooth muscle actin is reduced in Alzheimer disease brain: a quantitative analysis[J]. J Neuropathol Exp Neurol, 2004, 63(7): 735-741.
    
    26. Pu, H., K. Hayashi, I.E. Andras, et al., Limited role of COX-2 in HIV Tat-induced alterations of tight junction protein expression and disruption of the blood-brain barrier[J]. Brain Res, 2007, 1184: 333-344.
    
    27. Song, L., S. Ge, and J.S. Pachter, Caveolin-1 regulates expression of junction-associated proteins in brain microvascular endothelial cells[J]. Blood, 2007,109(4): 1515-1523.
    
    28. Bruban, J., A.L. Glotin, V. Dinet, et al., Amyloid-beta(1-42) alters structure and function of retinal pigmented epithelial cells[J]. Aging Cell, 2009, 8(2): 162-177.
    
    29. Gonzalez-Velasquez, F.J., J.A. Kotarek, and M.A. Moss, Soluble aggregates of the amyloid-beta protein selectively stimulate permeability in human brain microvascular endothelial monolayers[J]. J Neurochem, 2008, 107(2): 466-477.
    
    30. Marco, S. and S.D. Skaper, Amyloid beta-peptide1-42 alters tight junction protein distribution and expression in brain microvessel endothelial cells[J]. Neurosci Lett, 2006, 401(3): 219-224.
    
    31. Hu, X., C.W. Hicks, W. He, et al., Bace1 modulates myelination in the central and peripheral nervous system[J]. Nat Neurosci, 2006, 9(12): 1520-1525.
    
    32. Willem, M., A.N. Garratt, B. Novak, et al., Control of peripheral nerve myelination by the beta-secretase BACE1[J]. Science, 2006, 314(5799): 664-666.
    
    33. Laird, F.M., H. Cai, A.V. Savonenko, et al., BACE1, a major determinant of selective vulnerability of the brain to amyloid-beta amyloidogenesis, is essential for cognitive, emotional, and synaptic functions[J]. J Neurosci, 2005. 25(50): 11693-11709.
    
    34. Lichtenthaler, S.F., D.I. Dominguez, G.G. Westmeyer, et al., The cell adhesion protein P-selectin glycoprotein ligand-1 is a substrate for the aspartyl protease BACE1[J]. J Biol Chem, 2003, 278(49): 48713-48719.
    35.Kitazume,S.,Y.Tachida,R.Oka,et al.,Alzheimer's beta-secretase,beta-site amyloid precursor protein-cleaving enzyme,is responsible for cleavage secretion of a Golgi-resident sialyltransferase[J].Proc Natl Acad Sci U S A,2001,98(24):13554-13559.
    36.Kitazume,S.,K.Nakagawa,R.Oka,et al.,In vivo cleavage of alpha2,6-sialyltransferase by Alzheimer beta-secretase[J].J Biol Chem,2005,280(9):8589-8595.
    37.Kuhn,P.H.,E.Marjaux,A.Imhof,et al.,Regulated intramembrane proteolysis of the interleukin-1 receptor Ⅱ by alpha-,beta-,and gamma-secretase[J].J Biol Chem,2007,282(16):11982-11995.
    38.Bamforth,S.D.,U.Kniesel,H.Wolburg,et al.,A dominant mutant of occludin disrupts tight junction structure and function[J].J Cell Sci,1999,112(Pt 12):1879-1888.
    39.Stockley,J.H.and C.O'Neill,Understanding BACE1:essential protease for amyloid-beta production in Alzheimer's disease[J].Cell Mol Life Sci,2008.65(20):3265-3289.
    40.Tesco,G.,Y.H.Koh,E.L.Kang,et al.,Depletion of GGA3 stabilizes BACE and enhances beta-secretase activity[J].Neuron,2007,54(5):721-737.
    41.Cole,S.L.and R.Vassar,The Alzheimer's disease beta-secretase enzyme,BACE1[J].Mol Neurodegener,2007,2:22.
    1. Vinters, H.V., Cerebral amyloid angiopathy. A critical review[J]. Stroke, 1987, 18(2): 311-324.
    
    2. Burgermeister, P., M.E. Calhoun, D.T. Winkler, et al., Mechanisms of cerebrovascular amyloid deposition. Lessons from mouse models[J]. Ann N Y Acad Sci, 2000, 903: 307-316.
    
    3. Yamada, M., Cerebral amyloid angiopathy: an overview[J]. Neuropathology, 2000, 20(1): 8-22.
    
    4. Okazaki, H., T.J. Reagan, and R.J. Campbell, Clinicopathologic studies of primary cerebral amyloid angiopathy[J]. Mayo Clin Proc, 1979, 54(1): 22-31.
    
    5. Attems, J., F. Lauda, and K.A. Jellinger, Unexpectedly low prevalence of intracerebral hemorrhages in sporadic cerebral amyloid angiopathy: an autopsy study [J]. J Neurol, 2008, 255(1): 70-76.
    
    6. Attems, J., K.A. Jellinger, and F. Lintner, Alzheimer's disease pathology influences severity and topographical distribution of cerebral amyloid angiopathy [J]. Acta Neuropathol, 2005, 110(3): 222-231.
    
    7. Greenberg, S.M., M.E. Gurol, J. Rosand, et al., Amyloid angiopathy-related vascular cognitive impairment[J]. Stroke, 2004, 35(11 Suppl 1): 2616-2619.
    
    8. Itoh, Y, M. Yamada, M. Hayakawa, et al., Cerebral amyloid angiopathy: a significant cause of cerebellar as well as lobar cerebral hemorrhage in the elderly [J]. J Neurol Sci, 1993, 116(2): 135-141.
    
    9. Ellis, R.J., J.M. Olichney, L.J. Thal, et al., Cerebral amyloid angiopathy in the brains of patients with Alzheimer's disease: the CERAD experience, Part XV[J]. Neurology, 1996,46(6): 1592-1596.
    
    10. Ishii, N., Y. Nishihara, and A. Horie, Amyloid angiopathy and lobar cerebral haemorrhage[J]. J Neurol Neurosurg Psychiatry, 1984,47(11): 1203-1210.
    
    11. Jellinger, K., Cerebrovascular amyloidosis with cerebral hemorrhage [J]. J Neurol, 1977,214(3): 195-206.
    
    12. Jellinger, K.A., Alzheimer disease and cerebrovascular pathology: an update[J]. J Neural Transm, 2002, 109(5-6): 813-836.
    
    13. Vinters, H.V., Z.Z. Wang, and D.L. Secor, Brain parenchymal and microvascular amyloid in Alzheimer's disease[J]. Brain Pathol, 1996, 6(2): 179-195.
    14. Vonsattel, J.P., R.H. Myers, E.T. Hedley-Whyte, et al., Cerebral amyloid angiopathy without and with cerebral hemorrhages: a comparative histological study[J]. Ann Neurol, 1991, 30(5): 637-649.
    
    15. Calhoun, M.E., P. Burgermeister, A.L. Phinney, et al., Neuronal overexpression of mutant amyloid precursor protein results in prominent deposition of cerebrovascular amyloid[J]. Proc Natl Acad Sci U S A, 1999, 96(24): 14088-14093.
    
    16. Weller, R.O., A. Massey, T.A. Newman, et al., Cerebral amyloid angiopathy: amyloid beta accumulates in putative interstitial fluid drainage pathways in Alzheimer's disease[J]. Am J Pathol, 1998, 153(3): 725-733.
    
    17. Mackic, J.B., M.H. Weiss, W. Miao, et al., Cerebrovascular accumulation and increased blood-brain barrier permeability to circulating Alzheimer's amyloid beta peptide in aged squirrel monkey with cerebral amyloid angiopathy[J]. J Neurochem, 1998, 70(1): 210-215.
    
    18. Zlokovic, B.V., J. Ghiso, J.B. Mackic, et al., Blood-brain barrier transport of circulating Alzheimer's amyloid beta[J]. Biochem Biophys Res Commun, 1993. 197(3): 1034-1040.
    
    19. Deane, R., S. Du Yan, R.K. Submamaryan, et al., RAGE mediates amyloid-beta peptide transport across the blood-brain barrier and accumulation in brain[J]. Nat Med, 2003, 9(7): 907-913.
    
    20. Fukuchi, K., L. Ho, S.G. Younkin, et al., High levels of circulating beta-amyloid peptide do not cause cerebral beta-amyloidosis in transgenic mice[J]. Am J Pathol, 1996, 149(1): 219-227.
    
    21. Van Dorpe, J., L. Smeijers, I. Dewachter, et al., Prominent cerebral amyloid angiopathy in transgenic mice overexpressing the london mutant of human APP in neurons[J]. Am J Pathol. 2000, 157(4): 1283-1298.
    
    22. Frackowiak. J., D.L. Miller, A. Potempska, et al., Secretion and accumulation of Abeta by brain vascular smooth muscle cells from AbetaPP-Swedish transgenic mice[J]. J Neuropathol Exp Neurol, 2003, 62(6): 685-696.
    
    23. Frackowiak. J., A. Potempska, H. LeVine, et al., Extracellular deposits of A beta produced in cultures of Alzheimer disease brain vascular smooth muscle cells[J]. J Neuropathol Exp Neurol. 2005, 64(1): 82-90.
    
    24. Wisniewski, H.M., J. Frackowiak, and B. Mazur-Kolecka, In vitro production of beta-amyloid in smooth muscle cells isolated from amyloid angiopathy-affected vessels[.I]. Neurosci Lett, 1995, 183(1-2): 120-123.
    
    25. Mazur-Kolecka, B., D. Dickson, and J. Frackowiak, Induction of vascular amyloidosis-beta by oxidative stress depends on APOE genotype[J]. Neurobiol Aging. 2006, 27(6): 804-814.
    
    26. Coma, M, F.X. Guix, G. Ill-Raga, et al., Oxidative stress triggers the amyloidogenic pathway in human vascular smooth muscle cells[J]. Neurobiol Aging, 2008, 29(7): 969-980.
    
    27. Roch, J.A., N. Nighoghossian, M. Hermier, et al., Transient neurologic symptoms related to cerebral amyloid angiopathy: usefulness of T2*-weighted imaging[J]. Cerebrovasc Dis, 2005, 20(5): 412-414.
    
    28. Ropper, A.H. and K.R. Davis, Lobar cerebral hemorrhages: acute clinical syndromes in 26 cases[J]. Ann Neurol, 1980, 8(2): 141-147.
    
    29. Greenberg SM, K.D., Hedley-Whyte ET et al., Case records of the Massachusetts General Hospital. Weekly clinicopathological exercises. Case 22-1996. Cerebral hemorrhage in a 69-year-old woman receiving warfarin[J]. N Engl J Med, 1996, 335(3): 189-196.
    
    30. Knudsen, K.A., J. Rosand, D. Karluk, et al., Clinical diagnosis of cerebral amyloid angiopathy: validation of the Boston criteria[J]. Neurology, 2001, 56(4): 537-539.
    
    31. Zhan, R.Y., Y. Tong, J.F. Shen, et al., Study of clinical features of amyloid angiopathy hemorrhage and hypertensive intracerebral hemorrhage[J]. J Zhejiang Univ Sci, 2004, 5(10): 1262-1269.
    
    32. Auer, R.N. and G.R. Sutherland, Primary intracerebral hemorrhage: pathophysiology[J]. Can J Neurol Sci, 2005, 32 Suppl 2: S3-12.
    
    33. Rosand, J., E.M. Hylek, H.C. O'Donnell, et al., Warfarin-associated hemorrhage and cerebral amyloid angiopathy: a genetic and pathologic study [J]. Neurology, 2000, 55(7): 947-951.
    
    34. Miller, J.H., J.M. Wardlaw, and G.A. Lammie, Intracerebral haemorrhage and cerebral amyloid angiopathy: CT features with pathological correlation[J]. Clin Radiol, 1999, 54(7): 422-429.
    
    35. Passero, S., L. Burgalassi, P. D'Andrea, et al., Recurrence of bleeding in patients with primary intracerebral hemorrhage[J]. Stroke, 1995, 26(7): 1189-1192.
    
    36. Greenberg. S.M., J.A. Eng, M. Ning, et al., Hemorrhage burden predicts recurrent intracerebral hemorrhage after lobar hemorrhage[J]. Stroke, 2004, 35(6): 1415-1420.
    
    37. Smith, E.E., J. Rosand, K.A. Knudsen, et al., Leukoaraiosis is associated with warfarin-related hemorrhage following ischemic stroke[J]. Neurology, 2002, 59(2): 193-197.
    
    38. Polivka, M., A.V. Vallat, F. Woimant, et al., Cerebral amyloid angiopathy (CAA) with presentation as a brain inflammatory pseudo-tumour[J]. Clin Exp Pathol, 1999, 47(6): 303-310.
    
    39. Mathis, C.A., W.E. Klunk, J.C. Price, et al., Imaging technology for neurodegenerative diseases: progress toward detection of specific pathologies[J]. Arch Neurol, 2005, 62(2): 196-200.
    
    40. Johnson, K.A., M. Gregas, J.A. Becker, et al., Imaging of amyloid burden and distribution in cerebral amyloid angiopathy[J]. Ann Neurol, 2007, 62(3): 229-234.
    
    41. Saunders, A.M., Apolipoprotein E and Alzheimer disease: an update on genetic and functional analyses[J]. J Neuropathol Exp Neurol, 2000, 59(9): 751-758.
    
    42. Corder, E.H., A.M. Saunders. W.J. Strittmatter, et al., Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families[J]. Science, 1993, 261(5123): 921-923.
    
    43. Yamada, M., Risk factors for cerebral amyloid angiopathy in the elderly[J]. Ann N Y Acad Sci, 2002, 977: 37-44.
    
    44. Rebeck, G.W., J.S. Reiter, D.K. Strickland, et al., Apolipoprotein E in sporadic Alzheimer's disease: allelic variation and receptor interactions[J]. Neuron, 1993, 11(4): 575-580.
    
    45. Alonzo, N.C., B.T. Hyman, G.W. Rebeck, et al., Progression of cerebral amyloid angiopathy: accumulation of amyloid-beta40 in affected vessels[J]. J Neuropathol Exp Neurol, 1998, 57(4): 353-359.
    
    46. Chalmers, K., G.K. Wilcock, and S. Love, APOE epsilon 4 influences the pathological phenotype of Alzheimer's disease by favouring cerebrovascular over parenchymal accumulation of A beta protein[J]. Neuropathol Appl Neurobiol, 2003, 29(3): 231-238.
    
    47. Tian, J., J. Shi, K. Bailey, et al., Association between apolipoprotein E e4 allele and arteriosclerosis, cerebral amyloid angiopathy, and cerebral white matter damage in Alzheimer's disease[J]. J Neurol Neurosurg Psychiatry, 2004, 75(5): 696-699.
    
    48. Corder, E.H., A.M. Saunders, N.J. Risch, et al., Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer disease[J]. Nat Genet, 1994,7(2): 180-184.
    
    49. Greenberg, S.M., J.P. Vonsattel, A.Z. Segal, et al., Association of apolipoprotein E epsilon2 and vasculopathy in cerebral amyloid angiopathy [J]. Neurology, 1998, 50(4): 961-965.
    
    50. O'Donnell, H.C., J. Rosand, K.A. Knudsen, et al., Apolipoprotein E genotype and the risk of recurrent lobar intracerebral hemorrhage [J]. N Engl J Med, 2000, 342(4): 240-245.
    
    51. Keage, H.A., R.O. Carare, R.P. Friedland, et al., Population studies of sporadic cerebral amyloid angiopathy and dementia: a systematic review[J]. BMC Neurol, 2009, 9: 3.
    
    52. Zarow, C, B. Zaias, S.A. Lyness, et al., Cerebral amyloid angiopathy in Alzheimer disease is associated with apolipoprotein E4 and cortical neuron loss[J]. Alzheimer Dis Assoc Disord, 1999, 13(1): 1-8.
    
    53. Natte, R., H. Yamaguchi, M.L. Maat-Schieman, et al., Ultrastructural evidence of early non-fibrillar Abeta42 in the capillary basement membrane of patients with hereditary cerebral hemorrhage with amyloidosis, Dutch type[J]. Acta Neuropathol, 1999, 98(6): 577-582.
    
    54. Tian, J., J. Shi, and D.M. Mann, Cerebral amyloid angiopathy and dementia[J]. Panminerva Med, 2004, 46(4): 253-264.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700