c-Abl激酶在L-选择素介导的信号通路中的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白细胞沿着血管内皮滚动、稳定粘附,最终到达炎症部位是一个复杂的,多步骤的过程。在这个过程中有很多分子参与。选择素家族分子对于白细胞沿着血管内皮的滚动起重要作用。L-选择素是选择素家族的一员,组成性的表达在白细胞微绒毛顶端,对白细胞与血管内皮的起始粘附起主要作用。L-选择素不仅可以作为一个粘附分子,还能作为一个信号分子在粘附事件中发挥作用。L-选择素与其单克隆抗体的结合,能引起细胞形态变化,细胞骨架重排,氧呼吸爆发,细胞内IL-8以及TNFα基因的表达上调等。在L-选择素起始的信号事件中,有激酶分子的参与,但具体的分子机制还很不清楚。c-Abl激酶是一类非受体酪氨酸激酶,具有F-肌动蛋白结合结构域,能够被整合素以及生长因子受体结合而活化,从而调节F-肌动蛋白依赖的细胞骨架的变化。我们推测,c-Abl激酶也可能参与了L-选择素交联起始的信号事件。本文主要探讨了c-Abl分子是否以及如何参与了由L-选择素交联起始的信号事件。
     c-Abl的激酶活性在细胞内受到分子间和分子内双重的严格调控。我们的研究发现,当L-选择素交联以后,c-Abl激酶活性增强。如果在活化细胞前用c-Abl的抑制剂处理细胞,则c-Abl的激酶活性降低。c-Abl的激酶活性变化和L-选择素交联引起的F-肌动蛋白的变化相一致。在活化的细胞内,c-Abl的定位也发生变化。在静止细胞中,c-Abl激酶均匀的分布在整个细胞中,而L-选择素交联活化的细胞内,c-Abl激酶聚集在F-肌动蛋白以及L-选择素富集的部位。在细胞活化前用c-Abl的激酶抑制剂处理,三者的共定位现象消失。用抑制F-肌动蛋白聚合的抑制剂CB处理活化前的细胞,三者的共定位现象也减弱。说明L-选择素交联引起的F-肌动蛋白依赖的细胞骨架的变化依赖于c-Abl激酶的活性。
     c-Abl激酶还参与了由L-选择素交联引起的集落刺激因子-1(CSF-1)基因的表达。过表达野生型而不是激酶突变型的c-Abl能够增强由L-选择素交联引起的CSF-1基因的表达上调。用c-Abl激酶抑制剂处理活化前的细胞则降低了由c-Abl过表达引起的CSF-1基因的表达。说明L-选择素交联引起的CSF-1基因的表达增强依赖于c-Abl的激酶活性。ZAP70激酶是T细胞活化后最先被活化的分子之一。过表达野生型而不是激酶突变型或者Y319F突变型的ZAP70也能增强CSF-1基因的表达增强。在L-选择素交联活化以前,用c-Abl以及ZAP70抑制剂处理发现c-Abl激酶通过调节ZAP70 Y319的磷酸化来调节CSF-1基因的表达。
     通过蛋白质免疫共沉淀以及GST-pull down实验,我们发现在L-选择素活化的T细胞内,L-选择素、c-Abl以及ZAP70三者结合在一起。通过L-选择素不同刺激时间来检测三者的结合关系,我们发现c-Abl激酶和L-选择素组成性的结合在一起,随着L-选择素交联时间的增加,更多的ZAP70聚集到c-Abl激酶的SH2结构域。
     我们的结果证明了L-选择素交联引起的信号事件中,c-Abl激酶起到了很重要的作用。它不仅通过激酶活性的变化来调节F-肌动蛋白依赖的细胞骨架的变化,还能通过和L-选择素胞浆尾部结合,接受并传递由L-选择素交联引起的信号事件。将上游的信号事件通过与下游的底物结合来传递从而调控细胞内基因的表达。
Lymphocyte recruitment onto inflamed tissues requires cells tethering to and rolling on vascular surfaces under flow. Recruitment of leukocytes is controlled by a variety of adhesion molecules expressed on the surface of the endothelium and circulating leukocytes. The members of selectin family play an important role during the lymphocytes rolling on the vessel. L-selectin, a member of selectin family and constitutively expressed on leukocytes, plays a fundamental role in the lymphocyte tethering on the vessel. Except for its role in adhesion, L-selectin can function as a signal transduction molecule. Crosslinking of human L-selectin with its antibody leads to cell shape change, cytoskeleton reorganization, superoxide generation, increased cytokine gene transcription, and activation of intracellular protein pathways. Though many kinases are involved in the signaling transduction mediated by L-selectin crosslinking, the regulation of them is unclear. c-Abl, a nonreceptor protein tyrosine kinase, contains the F-actin binding domain. It has been shown to be very important for cell signal transduction triggered by integrin and PDGF engagement. In this study, we focus on the c-Abl kinase function in the signaling transduction induced by L-selectin ligation.
     It has been reported that the kinase activity of the cytoplasmic c-Abl is tightly regulated by inter- and intra- molecular regulation. In our present work, we found that c-Abl kinase activity was increased following L-selectin crosslinking. STI571 preincubation would reduce the c-Abl kinase activity. The regulation of c-Abl kinase activity is closely related to the F-actin assembly triggered by L-selectin crosslinking, and the localization of c-Abl changes in the L-selectin stimulated neutrophils. c-Abl was faint and obscure in resting cells, while in majority of stimulated neutrophils c-Abl redistributed to the region where L-selectin and F-actin polarized. The colocalization of c-Abl and F-actin and L-selectin was reduced by cytochalasin B and STI571 preincubation. These results suggested that F-actin alteration triggered by L-selectin crosslinking was regulated by c-Abl kinase.
     c-Abl kinase was also involved in the CSF-1 gene transcription induced by L-selectin engagement. Our results demonstrated that overexpression of WT c-Abl kinase increased CSF-1 gene transcriptional activity. Alternatively, CSF-1 transcription was blockaded by STI571 incubation as well as by overexpression of the KD mutant of c-Abl, suggesting that c-Abl kinase regulates CSF-1 gene transcription dependenting on its kinase activity. ZAP70 is one of the earliest activated molecules in TCR signaling. Preincubation with STI571 reduced the phosphorylation of ZAP70Y319, while the increase of c-Abl kinase activity triggered by L-selectin ligation was not inhibited by pretreating the cells with piceatannol. Overexpression of WT ZAP70 other than KD ZAP70 or Y319F ZAP70 enhanced CSF-1 gene transcription which was greatly reduced in the presence of STI571. These data suggested that c-Abl kinase could regulate ZAP70 Y319 phosphorylation in the L-selectin ligation stimulated cells and ZAP70 kinase acted as a substrate of the c-Abl kinase in the CSF-1 transcriptional events triggered by L-selectin ligation.
     We found that L-selectin, c-Abl and ZAP70 was connected closely in the L-selectin engagement stimulated T cells by using the co-IP and GST-pull down assays. In the rest cells, the cytoplamic domain of L-selectin was connected with c-Abl SH2 domain constitutively. After L-selectin ligation, more ZAP70 would recruit to the c-Abl SH2 domain and made a complex with L-selectin and c-Abl kinase.
     In summary, the results we obtained provide the proofs for understanding the key role of c-Abl kinase in the signaling transduction triggered by L-selectin ligation. c-Abl kinase can regulate cytoskelecton reorganization in a kinase activity dependent manner. It also can associate with the cytoplasmic domain of L-selectin to accept the L-selectin intiated signaling and connect with the substrate proteins to regulate gene transcription.
引文
[1]Bevilacqua M P, Nelson R M, Selectins[J]. J Clin Invest, 1993, 91: 379-387.
    [2]McEver R P, Selectins[J]. Curr Op Immunol, 1994, 6: 75-84.
    [3]Kansas G S. Structure and function of L-selectin[J]. AMPIS, 1992, 100: 287-293.
    [4]Huang K S, Graves B J, Wolitzky B A. (1997) Functional analysis of selectin structure. In The Selectins (M. A. Vadas and J. Harlan, eds.), New York: Harwood, 1–29.
    [5]Geng J G, Heawvener G A, McEver R P, Lectin domain peptides from selectins interact with both cell surface ligands and Ca2+ ions[J]. J Biol Chem, 1992, 267: 19846-19853.
    [6]Gibson R M, Kansas G S, Tedder T F, et al. The lectin and EGF domains of P-selectin at physiological density are the recognition unit for leukocyte binding[J]. Blood, 1995, 85: 150-158.
    [7]Kansas G S, Saunders K B, Ley K Z, et al. A role for the epidermal growth factor-like domain of P-selectin in ligand recognition and cell adhesion[J]. J Cell Biol, 1994, 124: 609-618.
    [8]Watson S R, Imai Y, Geoffrey J, et al. The complement binding-like domain of the murine receptor facilitate lectin activity[J]. J Cell Biol, 1991, 115: 235-243.
    [9]Jutila M A, Watts G, Walcheck B, et al. Characterization of a functionally important and evolutionarily well-conserved epitope mapped to the short consensus repeats of E-selectin and L-selectin[J]. J Exp Med, 1992, 175: 1565-1573.
    [10]Bargayze R F, Kurk S, Watts G, et al. In vivo and in vitro functional examination of a conserved epitope of L- and E-selectin crucial for leukocyte-endothelial cell interactions[J]. J Immunol, 1994, 152: 5814-5825.
    [11]Crockett-Torabi E, Sullenbarger B, Smith C W, et al. Activation of human neutrophils through L-selectin and Mac-1 molecules[J]. J Immunol, 1995, 154: 2291-2302.
    [12]Crockett-Torabi E, Sullenbarger B, Fantone J C. Tyrosine phosphorylation is coupled to L-selectin-mediated signal transduction and superoxide release in human neutrophils[J]. FASEB J, 1995, 9: A226.
    [13]Watson S R, Kingsmore S F, Johnston G I, et al. Genomic organization of the selectin family of leukocyte adhesion molecules on human and mouse chromosome 1[J]. J Exp Med, 1990, 172: 263-272.
    [14]Kishimoto T K, Jutila M A, Berg E L, et al. Neutrophil Mac-1 and MEL-14 adhesion proteins inversely regulated by chemotactic factors[J]. Science, 1989, 245 (4923): 1238-1241.
    [15]Jung T M, Dailey M O, Rapid modulation of homing receptors (gp90 mel-14) induced by activators of protein kinase C: receptor shedding due to accelerated proteolytic cleavage at the cell surface[J]. J Immunol, 1990, 144: 3130-3136.
    [16]Kishimoto T K, Jutila M A, Butcher E C, Identification of a human peripheral lymph node homingreceptor: a rapidly down-regulated adhesion molecule[J]. Proc Natl Acad Sci, 1990, 87 (6): 2244-2248.
    [17]Kahn J, Ingraham R H, Shirley F, et al. Membrane proximal cleavage of L-selectin: identification of the cleavage site and a 6-kD transmembrane peptide fragment of L-selectin[J]. J Cell Biol, 1994, 125 (22): 461-470.
    [18]Chen A, Engel P, Tedder T F, Structural requirements regulate endoproteolytic release of the L-selectin (CD62L) adhesion receptor from the cell surface of leukocytes[J]. J Exp Med, 1995, 182 (22): 519-530.
    [19]Migaki G I, Kahn J, Kishimoto T K, Mutational analysis of the membrane-proximal cleavage site of L-selectin: relaxed sequence specificity surrounding the cleavage site[J]. J Exp Med, 1995, 182 (2): 549-557.
    [20] Jr Stoddart J H, Jasuja R R, Sikorski M A, et al. Protease-resistant L-selectin mutants: down-modulation by cross-linking but not cellular activation[J]. J Immunol, 1996, 157 (12): 5653-5659.
    [21]Preece G, Murphy G, Ager A, Metalloproteinase-mediated regulation of L-selectin levels on leukocytes[J]. J Biol Chem, 1996, 271: 11634-11640.
    [22]Feehan C, Darlak K, Kahn J, et al. Shedding of the lymphocyte L-selectin adhesion molecule is inhibited by a hydroxamic acid-based protease inhibitor: identification with an L-selectin-alkaline phosphatase reporter[J]. J Biol Chem, 1996, 271 (12): 7019-7024.
    [23]Bennett T A, Lynam E B, Sklar L A, et al. Hydroxamate-based metalloprotease inhibitor blocks shedding of L-selectin adhesion molecule from leukocytes: functional consequences for neutrophil aggregation[J]. J Immunol, 1996, 156 (9): 3093-3097.
    [24]Dietmar V and James E B, Mechanisms that regulate the function of the selectins and their ligands[J]. Physiol Rev, 1999, 79: 181-213.
    [25]Von Andrian U H, Hasslen S R, Nelson R D, et al. A central role for microvillous receptor presentation in leukocyte adhesion under flow[J]. Cell, 1995, 82: 989-999.
    [26]Sinom S I, Cherapanov V, Nadra I, et al. Signaling function of L-selectin in neutrophil: Alterations in the cytoskeleton and colocalization with CD18[J]. J Immunol, 1999, 163: 2891-2901.
    [27]Kansas G S, Selectins and their ligands: current concepts and controversies[J]. Blood, 1996, 88 (9): 3259-3287.
    [28]Bevilacqua M P, Stengelin S, Gimbrone M A, et al. Endothelial leukocyte adhedion molecule 1: An inducible receptor for neutrophils related to complement regulatory proteins and lectins[J]. Science, 1989, 243:1160-1163.
    [29]Hsu-Lin S, Berman C L, Furie B C, et al. A platelet membrane protein expressed during platelet activation and secretion[J]. J Biol Chem, 1984, 259: 9121-9126.
    [30]Green S A, Setiadi R P, McEver R P, et al. The cytoplasmic domain of P-selectin contains a sorting determinant that mediates rapid degradation in lysosomes[J]. J Cell Biol, 1994, 124: 435-448.
    [31]Low J B, The carbohydrate components of selectin ligands. In The Selectin (M. A. Vadas and J. Harlan, eds.), New York: Harwood, 1997, 143-177.
    [32]Foxall C, Watson S R, Dowbenko D, et al. The three members of the selectin receptor family recognize a common carbohydrate epitope, the sialyl Lewis X oligosaccharide[J]. J Cell Biol, 1992, 117: 895-902.
    [33]Berg E L, Magnani J, Warnock R A, et al. Comparison of L-selectin and E-selectin ligand specificities: the L-selectin can bind the E-selectin ligands sialyl Lex and sialyl Lea[J]. Biochem Biophys Res Commun, 1992, 184: 1048-1055.
    [34]Tyrrell D, James P, Rao V, et al. Structural requirements for the carbohydrate ligand of E-selectin[J]. Proc Natl Acad Sci, 1991, 88: 10372-10376.
    [35]Skinner M P, Lucas C M, Burns G F, et al. GMP-140 binding to neutrophils is inhibited by sulfated glycans[J]. J Biol Chem, 1991, 266: 5371-5374.
    [36]Needham L K, Schnaar R L, The HNK-1 reactive sulfoglucuronyl glycolipids are ligands for L-selectin and P-selectin but not E-selectin[J]. Proc Natl Acad Sci, 1993, 90: 1359-1363.
    [37]Lasky L A, Selectins: Interpreters of cell-specific carbohydrate information during inflammation[J]. Science, 1992, 258: 964-969.
    [38]Imai Y, Singer M S, Fennie C, et al. Identification of a carbohydrate-based endothelial ligand for a lymphocyte homing receptor[J]. J Cell Biol, 1991, 113: 1213-1221.
    [39]Young P E, Baumheuter S, Lasky L A, The sialomucin CD34 is expressed on hematopoietic cells and blood vessels during murine development[J]. Blood, 1995, 85: 96-105.
    [40]Tedder T F, Steeber D A, Chen A, et al. The selectins: vascular adhesion molecules[J]. FASEB J, 1995, 9: 866–873.
    [41]Hwang S T, Singer M S, Giblin P A, et al. GlyCAM-1, a physiologic ligand for L-selectin, activates beta 2 integrins on naive peripheral lymphocytes[J]. J Exp Med, 1996, 184: 1343-1348.
    [42]Giblin P A, Hwang S T, Katsumoto T R, et al. Ligation of L-selectin on T lymphocytes activates beta1 integrins and promotes adhesion to fibronectin[J]. J Immunol, 1997, 159: 3498-3507.
    [43]Baumheter S, Singer M S, Henzel W, et al. Binding of L-selectin to the vascular sialomucin CD34[J]. Science, 1993, 262: 436-438.
    [44]Puri K D, Finger E B, Gaudernack G, et al. Sialomucin CD34 is the major L-selectin ligand in human tonsil high endothelial venules[J]. J Cell Biol, 1995, 131: 261-270.
    [45]Berg E L, McEvoy L M, Berlin C, et al. L-selectin-mediated lymphocyte rolling on MAdCAM-1[J]. Nature, 1993, 366: 695-698.
    [46]Berlin C, Bargatze R F, Campbell J J, et al. Alpha 4 integrins mediate lymphocyte attachment and rolling under physiologic flow[J]. Cell, 1995, 80: 413-422.
    [47]Bargatze R F, Jutila M A, Butcher E C, Distinct roles of L-selectin and integrins alpha 4 beta 7 and LFA-1 in lymphocyte homing to Peyer’s patch-HEV in situ: the multistep model confirmed and refined[J]. Immunity, 1995, 3: 99-108.
    [48]Spertini O, Cordey A S, Monai N, et al. P-selectin glycoprotein ligand 1 is a ligand for L-selectin on neutrophils, monocytes, and CD34+ hematopoietic progenitor cells[J]. J Cell Biol, 1996, 135: 523-531.
    [49]Walcheck B, Moore K L, McEver R P, et al. Neutrophil–neutrophil interactions under hydrodynamicshear stress involve L-selectin and PSGL-1. A mechanism that amplifies initial leukocyte accumulation of P-selectin in vitro[J]. J Clin Invest, 1996, 98: 1081-1087.
    [50]Hemmerich S, Butcher E C, Rosen S D, Sulfationdependent recognition of high endothelial venules (HEV)- ligands by L-selectin and MECA 79, and adhesion-blocking monoclonal antibody[J]. J Exp Med, 1994, 180: 2219-2226.
    [51]Moore K L, Stultz N L, Diaz S, et al. Identification of a specific glycoprotein ligand for P-selectin (CD62) on myeloid cells[J]. J Cell Biol, 1992, 118: 445-456.
    [52]Norgard K E, Moore K L, Diaz S, et al. Characterization of a specific ligand for P-selectin on myeloid cells. A minor glycoprotein with sialylated O-linked oligosaccharides[J]. J Biol Chem, 1993, 268: 12764-12774.
    [53]Sako D, Chang X J, Barone K M, et al. Expression cloning of a functional glycoprotein ligand for Pselectin[J]. Cell, 1993, 75: 1179-1186.
    [54]Liu W, Ramachandran V, Kang J, et al. Identification of N-terminal residues on P-selectin glycoprotein ligand- 1 required for binding to P-selectin[J]. J Biol Chem, 1998, 273: 7078-7087.
    [55]Moore K L, Patel K D, Bruehl R E, et al. P-selectin glycoprotein ligand-1 mediates rolling of human neutrophils on P-selectin[J]. J Cell Biol, 1995, 128: 661-671.
    [56]Aigner S, Ramos C L, Hafezi-Moghadam A, et al. CD24 mediates rolling of breast carcinoma cells on P-selectin[J]. Faseb J, 1998, 12: 1241-1251.
    [57]Levinovitz A, Muhloff J, Isenmann S, et al. Identification of glycoprotein ligand for E-selectin on mouse myeloid cells[J]. J Cell Biol, 1993, 121: 449-459.
    [58]Walcheck B, Jutila M A, Bovine g/d T cells bind E-selectin via a novel glycoprotein receptor: first characterization of a lymphocyte/Eselectin interaction in an animal model[J]. J Exp Med, 1993, 178: 853-863.
    [59]Asa D, Raycroft L, Ma L, et al. The P-selectin glycoprotein ligand functions as a common human leukocyte ligand for P- and E-selectins[J]. J Biol Chem, 1995, 270: 11662-11670.
    [60]Zollner O, Lenter M C, Blanks J E, et al. L-selectin from human, but not from mouse neutrophils binds directly to E-selectin[J]. J Cell Biol, 1997, 136: 707-716.
    [61]Kamala D P, Susan L C, Shahina W, Selectins: critical mediators of leukocyte recruitment[J]. seminars in Immunology, 2002, 14: 73-81.
    [62]Ley K, The selectins as rolling receptors. In The Selectins (M. A. Vadas and J. Harlan, eds.) New York: Harwood, 1997, 63–104.
    [63]Von Andrian U H, Hansell P, Chambers J D, et al. L-selectin function is required for β2-integrin-mediated neutrophil adhesion at physiological shear rates in vivo[J]. Am J Physiol, 1992, 263: H1034–H1044.
    [64]Hynes R O, Wagner D D, Genetic manipulation of vascular adhesion molecules in mice[J]. J Clin Invest, 1996, 98: 2193-2195.
    [65]Mayadas T N, Johnson R C, Rayburn H, et al. Leukocyte rolling and extravasation are severelycompromised in P-selectin-deficient mice[J]. Cell, 1993, 74: 541-554.
    [66]Arbones M L, Ord D C, Ley K, et al. Lymphocyte homing and leukocyte rolling and migration are impaired in L-selectin (CD62L) deficient mice[J]. Immunity, 1994, 1: 247-260.
    [67]Labow M A, Norton C R, Rumberger J M, et al. Characterization of E-selectindeficient mice: Demonstration of overlapping function of endothelial selectins[J]. Immunity, 1994, 1: 709-720.
    [68]Gallatin W M, Weissmann I L, Butcher E C, A cell-surface molecule involved in organ-specific homing of lymphocytes[J]. Nature, 1983, 303: 30-34.
    [69]Dore M, Korthuis R J, Granger D N, et al. P-selectin mediates spontaneous leukocyte rolling in vivo[J]. Blood, 1993, 82: 1308-1316.
    [70]Mulligan M S, Varani J, Dame M K, et al. Role of endothelial-leukocyte adhesion molecule 1 (ELAM-1) in neutrophil-mediated lung injury in rats[J]. J Clin Invest, 1991, 88: 1396-1406.
    [71]Olofesson A M, Arfors K E, Ramezani L, et al. E-seelctin mediates leukocyte rolling in interleukin-1-treated rabbit mesentery venules[J]. Blood, 1994, 84: 2749-2758.
    [72]Gamble J R, Skinner M P, Berndt M C, et al. Prevention of activated neutrophil adhesion toendothelium by soluble adhesion protein GMP-140[J]. Science, 1990, 249(4967): 414-417.
    [73]Evangelista V, Manarini S, Rotondo S, et al. Platelet/polymorphonuclear leukocyte interaction in dy namic conditions: evidence of adhesion cascade and cross talk between P-selectin and the beta 2 integrin CD11b/CD18[J]. Blood, 1996, 88: 4183-4194.
    [74]Nagata K, Tsuji T, Todoroki N, et al. Activated platelets induce superoxide anion release by monocytes and neutrophils through P-selectin (CD62) [J]. J Immunol, 1993, 151: 3267-3273.
    [75]Lo S K, Lee S, Ramos R, et al. Endothelial-leukocyte adhesion molecule-1 stimulates the adhesion activity of leukocyte integrin CR3 (CD11b/CD18, Mac-1, αMβ2) on human neutrophils[J]. J Exp Med, 1991, 173 (6): 1493-1500.
    [76]Kaplanski G, Franarier C, Tissot O, et al. Granulocyte-endothelium initial adhesion: analysis of transient binding events mediated by E-selectin in a laminar shear flow[J]. Biophys J, 1993, 64 (6):1922-1933.
    [77]Lawrence M B, and Springer T A. Neutrophils roll on E-selectin[J]. J Immunol, 1993, 151: 6338-6346.
    [78]Abbassi O, Kishimoto T K, Mcintire L V, et al. E-selectin supports neutrophil rolling in vitro under conditions of flow[J]. J Clin Invest, 1993, 92: 2719-2730.
    [79]Simon S I, Burns A R, Taylor A D, et al. L-selectin (CD62L) crosslinking signals neutrophil adhesive functions via the Mac-1 (CD11b/CD18) β2-integrin[J]. J Immunol, 1995, 155: 1502-1514.
    [80]Gopalan P K, Smith C W, Lu H, et al. Neutrophil CD18-dependent arrest on intercellular adhesion molecule 1 (ICAM-1) in shear flow can be activated through L-selectin[J]. J Immunol, 1997, 158: 367-375.
    [81]Strauch U G, Holzmann B, Triggering of L-selectin (gp90 MEL-14) induces homotypic lymphocyte adhesion by a mechanism independent of LFA-1[J]. Int Immunol, 1993, 5: 393-398.
    [82]Waddell T K, Fialkow L, Chen C K, et al. Potentiation of the oxidative burst of human neutrophils: asignaling role for L-selectin[J]. J Biol Chem, 1994, 289: 18485-18491.
    [83]Suzuki M, Inauen W, Kvietys P R, et al. Superoxide mediates reperfusion-induced leukocyte-endothelial interactions[J]. Am J Physiol 1989, 257: H1740-H1745.
    [84]Patel K D, Zimmerman G A, Prescott S M, et al. Novel leukocyte agonists are released by endothelial cells exposed to peroxide[J]. J Biol Chem, 1992, 267: 15168-15175.
    [85]Del Maestro R F, Planker M, Arfors K E, Evidence for the participation of superoxide anion radical in altering the adhesive interaction between granulocytes and endothelium, in vivo[J]. Int J Microcirc Clin Exp ,1982, 1: 105-120.
    [86]Laudanna C, Constantin G, Baron P, et al. Sulfatides trigger increase of cytostolic free calcium and enhanced expression of tumor necrosis factor-alpha and interleukin-8 mRNA in human neutrophils[J]. J Biol Chem, 1994, 269: 4021-4026.
    [87]Crockett-Torabi E, Ward P A, The role of leukocyte in tissue injury[J]. Eur J Anaesthesiol, 1996, 13: 235-246.
    [88]Kunkel E J, Jung U, Ley K, TNF-alpha induces selectin mediated lekocyte rolling in mouse cremaster muscle arterioles[J]. Am J Physiol, 1997, 272: H1391-H1400.
    [89]Baggiolini M, Clark-Lewis I, Interleukin-8, a chemotactic and inflammatory cytokine[J]. FEBS Lett, 1992, 307 (1): 97-101.
    [90]Egan S E, Weinbeerg R A W, The pathway to signal achievement[J]. Nature, 1993, 365: 781-783.
    [91]Lorenzon P, Vecile E, Nardon E, et al. Endothelial cell E- and P-selectin and vascular cell adhesion molecule-1 function as signaling receptors[J]. J Cell Biol, 1998, 142: 1381-1391.
    [92]Haller H, Kunzendorf U, Sacherer K, et al. T cell adhesion to P-selectin induces tyrosine phosphorylation of pp125 focal adhesion kinase and other substrates. J Immunol, 1997, 158: 1061-1067.
    [93]Modderman P W, von dem Borne A E, Sonnenberg A, Tyrosine phosphorylation of P-selectin in intact platelets and in a disulphide-linked complex with immunoprecipitated pp60c-src[J]. Biochem J, 1994, 299: 613-621.
    [94]Hidari K I, Weyrich A S, Zimmerman G A, et al. Engagement of P-selectin glycoprotein ligand-1 enhances tyrosine phosphorylation and activates mitogenactivated protein kinases in human neutrophils[J]. J Biol Chem, 1997, 272: 28750-28756.
    [95]Piccardoni P, Sideri R, Manarini S, et al. Platelet/polymorphonuclear leukocyte adhesion: a new role for SRC kinases in Mac-1 adhesive function triggered by P-selectin[J]. Blood, 2001, 98: N108-116.
    [96]Hu Y, Szente B E, Kiely J M, et al. Molecular events in transmembrane signalling via E-selectin: SHP2 association, adaptor protein complex formation and ERK1/2 activation[J]. J Biol Chem, 2001, 276 (51): 48549-48553.
    [97]Kumar P, Hosaka S, Koch A E, Soluble E-selectin induces monocyte chemotaxis through Src family tyrosine kinases[J]. J Biol Chem, 2001, 276: 21039-21045.
    [98]Brenner B, Gulbins E, Schlottmann K, et al. L-selectin activates the Ras pathway via the tyrosinekinase p56lck[J]. Proc Natl Acad Sci, 1996, 93:15376-15381.
    [99]Brenner B, Gulbins E, Busch G L, et al. L-selectin regulates actin polymerisation via activation of the small G-protein Rac2[J]. Biochem Biophys Res Commun, 1997, 231: 802-807.
    [100]Brenner B C, Kadel S, Grigorovich S, et al. Mechanisms of L-selectin-induced activation of the nuclear factor of activated T lymphocytes (NFAT) [J]. Biochem Biophys Res Commun, 2002, 291: 237-244.
    [101]Brenner B, Weinmann S, Grassme H, et al. L-selectin activates JNK via src-like tyrosine kinases and the small G-protein Rac[J]. Immunology, 1997, 92: 214-219.
    [102]Su B, Jacinto E, Hibi M, et al. JNK is involved in signal integration during costimulation of T lymphocytes[J]. Cell, 1994, 77: 727-736.
    [103]Brenner B, Grassme H U, Muller C, et al. L-selectin stimulates the neutral sphingomyelinase and induces release of ceramide[J]. Exp Cell Res, 1998, 243: 123-128.
    [104]Kolesnick R, Golde D W. The sphingomyelin pathway in tumor necrosis factor and interleukin-1 signaling[J]. Cell, 1994, 77: 325-328.
    [105]Kilian K, Dernedde J, Mueller E C, et al. The interaction of protein kinase C isozymes alpha, iota, and theta with the cytoplasmic domain of L-selectin is modulated by phosphorylation of the receptor[J]. J Biol Chem, 2004, 279: 34472-34480.
    [106]Crockett-Torabi E, Sulenbarger B, Smith C W, et al. Activation of human neutrophils through L-selectin and Mac-1 molecules[J]. J Immunol, 1995, 154: 2291-2302.
    [107]Laudanna C, Constantin G, Baron P, et al. Sulfatides trigger increase of cytosolic free calcium and enhanced expression of tumor necrosis factor-alpha and interleukin-8 mRNA in human neutrophils. Evidence for a role of L-selectin as a signaling molecule[J]. J Biol Chem, 1994, 269:4021-6402.
    [108]Waddell T K, Fialkow L, Chan C K, et al. Potentiation of the oxidative burst of human neutrophils. A signaling role for L-selectin[J]. J Biol Chem, 1994, 269: 18485-18491.
    [109]Waddell T K, Fialkow L, Chan C K, et al. Signaling functions of L-selectin. Enhancement of tyrosine phosphorylation and activation of MAP kinase[J]. J Biol Chem, 1995, 270:15403-15411.
    [110]Smolen J E, Petersen T K, Koch C, et al. L-selectin signaling of neutrophil adhesion and degranulation involves p38 mitogen- activated protein kinase[J]. J Biol Chem, 2000, 275: 15876-15884.
    [111]Chen C, Ba X, Xu T, et al. c-Abl Is Involved in the F-Actin Assembly Triggered by L-Selectin Crosslinking. J Biochem (Tokyo) [J]. 2006, 140: 229-235.
    [112]Turutin D V, Kubareva E A, Pushkareva M A, et al. Activation of NF-kappa B transcription factor in human neutrophils by sulphatides and L-selectin cross-linking[J]. FEBS Lett, 2003, 536: 241-524.
    [113] Dutt S, Ermann J, Tseng D, et al. L-selectin and beta7 integrin on donor CD4 T cells are required for the early migration to host mesenteric lymph nodes and acute colitis of graft-versus-host disease[J]. Blood. 2005, 1:106(12): 4009-4015.
    [114]Sikorski M A, Staunton D E, Mier J W, L-selectin-crosslinking induces integrin-dependent adhesion: evidence for a signaling pathway involving PTK but not PKC[J]. Cell Adhesion Commun, 1996, 4:355-367.
    [115]Crockett-Torabi E, Fantone J C, L-selectin stimulation of canine neutrophil initiates calcium signal secondary to tyrosine kinase activation[J]. Am J Physiol, 1997, 272 (3): H1302-H1308.
    [116]Diamond M S, Springer T A, A subpopulation of Mac-1 (CD11b/CD18) molecules mediates neutrophil adhesion to ICAM-1 and fibrinogen[J]. J Cell Biol, 1993, 120: 545-556.
    [117]Landis R C, Bennett R I, Hogg N, A novel LFA-1 activation epitope maps to the I domain[J]. J Cell Biol, 1993, 120: 1519-1527.
    [118]Philips M R, Buyon J P, Winchester R, et al. Up-regulation of the iC3b receptor (CR3) is neither necessary nor sufficient to promote neutrophil aggregation[J]. J Clin Invest, 1988, 82: 495-501.
    [119]Simon S I, Chambers J D, Butcher E, et al. Neutrophil aggregation is beta 2-integrin- and L-selectin-dependent in blood and isolated cells[J]. J Immunol, 1992, 149: 2765-2771.
    [120]Buyon J P, Abramson S B, Philips M R, et al. Dissociation between increased surface expression of gp165/95 and homotypic neutrophil aggregation[J]. J Immunol, 1988, 140: 3156-3160.
    [121] Mattila P E, Green C E, Schaff U, et al. Cytoskeletal interactions regulate inducible L-selectin clustering[J]. Am J Physiol Cell Physiol, 2005, 289 (2): C323-32.
    [122]Dwir O, Kansas G S, Alon R, Cytoplasmic anchorage of L-selectin controls leukocyte capture and tolling by increasing the mechanical stability of the selectin tether[J]. Cell Biol, 2001, 155 (1): 145-156.
    [123]Aleksandar I, Jürgen D, Anne R, et al. The Cytoplasmic Tail of L-selectin Interacts with Members of the Ezrin-Radixin-Moesin (ERM) Family of Proteins[J]. Molecular basis of cell and developmental biology, 2002, 277 (3): 2321-2329.
    [124]Juan M S, Ana U, Jose L. et al. A juxta-membrane amino acid sequence of p-selectin-glycoprotein ligand-1 is involve in moesin binding and ezrin/radixin/moesin-derected targeting at the tailing edge of migrating lymphocytes[J]. J Immunol, 2002, 32: 1560-1566.
    [125]Pavalko F M, Walker D M, Graham L, et al. The cytoplasmic domain of L-selectin interacts with cytoskeletal proteins via alpha-actinin: receptor positioning in microvilli does not require interaction with alpha-actinin[J]. J Cell Biol, 1995, 129 (4):1155-1164.
    [126]Dwir O, Kansas G S, Alon R, Cytoplasmic anchorage of L-selectin controls leukocyte capture and rolling by increasing the mechanical stability of the selectin tether[J]. J Cell Biol, 2001, 155: 145-156.
    [127]Evans S S, Schleider D M, Bowman LA, et al. Dynamic association of L-selectin with the lymphocyte cytoskeletal matrix[J]. J Immunol, 1999, 162: 3615-3624.
    [128]Kahn J, Walcheck B, Migaki G I, et al. Calmodulin regulates L-selectin adhesion molecule expression and function through a protease dependent mechanism[J]. Cell, 1998, 92: 809-818.
    [129]Diaz-Rodriguez E, Esparis-Ogando A, Montero J C, et al. Stimulation of cleavage of membrane proteins by calmodulin inhibitors[J]. Biochem J, 2000, 346 (2): 359-367.
    [130]Ivetic A, Deka J, Ridley A, et al. The cytoplasmic tail of L-selectin interacts with members of the Ezrin-Radixin-Moesin (ERM) family of proteins: cell activation-dependent binding of Moesin but not Ezrin[J]. J Biol Chem, 2002, 277: 2321-2329.
    [131]Ivetic A, Florey O, Deka J, et al. Mutagenesis of the ezrin-radixin-moesin binding domain of L-selectin tail affects shedding, microvillar positioning, and leukocyte tethering[J]. J Biol Chem, 2004, 279: 33263-33272.
    [132]Kilian K, Dernedde J, Mueller E C, et al. The Interaction of protein kinase C isozymes alpha, Iota and theta with the cytoplasmic domain of L-selectin is modulated by phosphorylation of the receptor[J]. J Biol Chem, 2004, 279: 34472-34480.
    [133] Ivetic A and Ridley A J,The telling tail of L-selectin[J],Biochemical Society Transactions , 2004, 32 (6): 1118-1121.
    [134]Li B, Boast S, de los Santos K, et al. Mice deficient in Abl are osteoporotic and have defects in osteoblast maturation[J]. Nat Genet, 2000, 24: 304-308.
    [135]Schwartzberg P L, Stall A M, Hardin J D, et al. Mice homozygous for the ablm1 mutation show poor viability and depletion of selected B and T cell populations[J]. Cell, 1991, 65: 1165-1175.
    [136]Tybulewicz V L J, Crawford C E, Jackson P K, et al. Neonatal lethality and lymphopenia in mice with a homozygous disruption of the c-abl proto-oncogene[J]. Cell, 1991, 65: 1153-1163.
    [137]Kipreos E T, Wang J Y J, Cell cycle-regulated binding of c-Abl tyrosine kinase to DNA[J]. Science, 1992, 256: 382-385.
    [138]Wang J Y J, Nuclear protein tyrosine kinases[J]. Trends Biochem Sci, 1994, 19: 373-376.
    [139]Welch P J, Wang J Y J, A C-terminal protein-binding domain in the retinoblastoma protein regulates nuclear c-Abl tyrosine kinase in the cell cycle[J]. Cell, 1993, 75: 779-790.
    [140]Kipreos E T, Wang J Y J, Differential phosphorylation of c-Abl in cell cycle determined by cdc2 kinase and phosphatase activity[J]. Science, 1990, 248: 217-220.
    [141]Vigneri P and Wang J Y J, Induction of apoptosis in chronic myelogenous leukemia cells through nuclear entrapment of BCR-ABL tyrosine kinase[J]. Nat Med, 2001, 7: 228-234.
    [142]Wang J Y J, Regulation of cell death by the Abl tyrosine kinase[J]. Oncogene 2000, 19: 5643-5650.
    [143]Shaul, Y. c-Abl: activation and nuclear targets[J]. Cell Death Differ, 2000, 7: 10-16.
    [144]Puri P, Bhakta K, Wood L, et al. A myogenic differentiation checkpoint activated by genotoxic stress[J]. Nat Genet, 2002, 32: 585-593.
    [145]Barilá D, Rufini A, Condo I, et al. Caspase-dependent cleavage of c-Abl contributes to apoptosis[J]. Mol Cell Biol, 2003, 23: 2790-2799.
    [146] Yuan Z M, Hhuang Y Y, Takatoshi I, et al. Regulation of DNA damage-induced apoptosis by the c-Abl tyrosine kinase[J]. Proc Natl Acad Sci, 1997, 94: 1437-1440.
    [147]Ba X, Chen C, Gao Y et al. Signaling function of PSGL-1 in neutrophil: tyrosine-phosphorylation-dependent and c-Abl-involved alteration in the F-actin-based cytoskeleton[J]. J Cell Biochem, 2005, 94: 365-373.
    [148] Sini P, Cannas A, Koleske A J, et al. Abl-dependent tyrosine phosphorylation of Sos-1 mediates growth-factor-induced Rac activation[J]. Nat Cell Biol, 2004, 6: 268-274.
    [149]Wang J Y, Abl tyrosine kinase in signal transduction and cell-cycle regulation[J],Curr Opin GenetDev, 1993, 3: 35-43.
    [150]Woodring P J, Hunter T and Wang J Y J, Regulation of F-actin-dependent processes by the Abl family of tyrosine kinases[J]. J of cell science, 116: 2613-2626.
    [151]Cohen G B, Ren R and Baltimore D, Modular binding domains in signal transduction proteins[J]. Cell, 1995, 80: 237-248.
    [152]Pawson T, SH2 and SH3 domains in signal transduction[J]. Adv Cancer Res, 1994, 64: 87-110.
    [153]Songyang Z, Shoelson S E, McGlade J et al. Specific motifs recognized by the SH2 domains of Csk, 3BP2, fps/fes, GRB-2, HCP, SHC, Syk, and Vav[J]. Mol Cell Biol, 1994, 14: 2777-2785.
    [154]Kipreos E T and Wang J Y, Cell cycle-regulated binding of c-Abl tyrosine kinase to DNA[J]. Science, 1992, 256: 382-385.
    [155]Ren R, Mayer B J, Cicchetti P, et al. Identification of a ten-amino acid proline-rich SH3 binding site[J]. Science, 1993, 259: 1157-1161.
    [156]Miao J Y and Wang J, Binding of A/T-rich DNA by three high mobility grouplike domains in c-Abl tyrosine kinase[J]. J Biol Chem, 1996, 271: 22823-22830.
    [157]McWhirter J R and Wang J Y, An actin-binding function contributes to transformation by the Bcr-Abl oncoprotein of Philadelphia chromosome-positive human leukemias[J]. EMBO J, 1994, 12: 1533-1546.
    [158]Van Etten R, Jackson P K, Baltimore D, et al. The COOH terminus of the c-Abl tyrosine kinase contains distinct Fand G-actin binding domains with bundling activity[J]. J Cell Biol, 1994, 124: 325-340.
    [159] Salme T, David M, Nucelar-cytoplasmic shuttling of c-Abl tyrosine kinase[J]. Proc Natl Acad Sci, 1998, 95: 7457-7462.
    [160]Lewis J, Baskaran R, Taagepera S, et al. Integrin regulation of c-Abl tyrosine kinase activity and cytoplasmic-nuclear transport[J]. Proc Natl Acad Sci, 1996, 93: 15174-15179.
    [161]Pluk H, Dorey K and Superti-Furga G, Autoinhibition of c-Abl[J]. Cell, 2002, 108: 247-259.
    [162]Smith J M and Mayer B J, Abl: mechanisms of regulation and activation[J]. Front Biosci, 2002, 1: d31-42.
    [163]Tanis K Q, Veach D, Duewel H S, et al. Two distinct phosphorylation pathways have additive effects on abl family kinase activation[J]. Mol Cell Biol, 2003, 23: 3884-3896.
    [164]Dorey K, Engen J R, Kretzschmar J, et al. Phosphorylation and structure-based functional studies reveal a positive and a negative role for the activation loop of the c-Abl tyrosine kinase [J]. Oncogene, 2001, 20 (56): 8075-8084.
    [165]Hantschel O, Nagar B, Guettler S, et al. A myristoyl/phosphotyrosine switch regulates c-Abl[J]. Cell, 2003, 112: 845-857.
    [166]Barilá D and Superti-Furga G, An intramolecular SH3-domain interaction regulates c-Abl activity[J]. Nat Genet, 1998, 18: 280-282.
    [167]Brasher B and Van Etten R, c-Abl has high intrinsic tyrosine kinase activity that is stimulated by mutation of the Src homology 3 domain and by autophosphorylation at two distinct regulatorytyrosines[J]. J Biol Chem, 2000, 275: 35631-35637.
    [168]Nagar B, Hantschel O, Young M, et al. Structural basis for the auto-inhibition of c-Abl tyrosine kinase[J]. Cell, 2003, 112: 859-871.
    [169]Mayer B J and Baltimore D, Mutagenic analysis of the roles of SH2 and SH3 domains in regulation of the Abl tyrosine kinase[J]. Mol Cell Biol, 1994, 14: 2883-2894.
    [170]Franz W, Berger P and Wang J Y J, Deletion of an N-terminal regulatory domain of the c-Abl tyrosine kinase activates its oncogenic potential[J]. EMBO J, 1989, 8: 137-147.
    [171]Plattner R, Kadlec L, DeMali K A, et al. c-Abl is activated by growth factors and Src family kinases and has a role in the cellular response to PDGF[J]. Genes Dev, 1999, 13: 2400-2411.
    [172]Pendergast A M, Muller A J, Havlik M H, et al. Evidence for regulation of the human Abl tyrosine kinase by a cellular inhibitor[J]. Proc Natl Acad Sci, 1991, 88: 5927-5931.
    [173]Dorey K, Engen J, Kretzschmar J, et al. Phosphorylation and structure-based functional studies reveal a positive and a negative role for the activation loop of the c-Abl tyrosine kinase[J]. Oncogene, 2001, 20: 8075-8084.
    [174]Welch P J and Wang J Y J, A C-terminal protein-binding domain in the retinoblastoma protein regulates nuclear c-Abl tyrosine kinase in the cell cycle[J]. Cell, 1993, 75: 779-790.
    [175]Wen S T, Jackson P K and Van Etten R A, The cytostatic function of c-Abl is controlled by multiple nuclear localization signals and requires the p53 and Rb tumor suppressor gene products[J]. EMBO J, 1996, 15: 1583-1595.
    [176]Woodring P J, Hunter T and Wang J Y J, Inhibition of c-Abl tyrosine kinase by filamentous-actin[J]. J Biol Chem, 2001, 276: 27104-27110.
    [177]Zhu J and Shore S K, c-ABL tyrosine kinase activity is regulated by association with a novel SH3-domain-binding protein[J]. Mol Cell Biol, 1996, 16: 7054-7062.
    [178]Zipfel P A, Grove M, Blackburn K, et al. The c-Abl tyrosine kinase is regulated downstream of the B-cell antigen receptor and interacts with CD19[J]. J Immunol, 2000, 165: 6872-6879.
    [179]Agami R, Blandino G, Oren M, et al. Interaction of c-Abl and p73alpha and their collaboration to induce apoptosis[J]. Nature, 1999, 399: 809-813.
    [180]Yuan Z M, Shioya H, Ishiko T, et al. p73 is regulatedby tyrosine-kinase c-Abl in the apoptotic response to DNA damage[J]. Nature, 1999, 399: 814-817
    [181]Yuan Z M, Huang Y, Ishiko T, et al. Regulation of DNA damage-induced apoptosis by the c-Abl tyrosine kinase[J]. Proc Natl Acad Sci, 1997, 94: 1437-1440.
    [182]Huang Y, Yuan Z M, Ishiko T, et al. Pro-apoptotic effect of the c-Abl tyrosine kinase in the cellular response to 1-beta-D-arabinofuranosylcytosine[J].Oncogene, 1997, 15: 1947 -1952.
    [183]Gong J G, Costanzo A, Yang H Q, et al. The tyrosine-kinase c-Abl regulates p73 in apoptotic response to cisplatin-induced DNA damage[J]. Nature, 1999, 399: 806-809.
    [184]Dan S, Naito M, Seimiya H, et al. Activation of c-Abl tyrosine kinase requires caspase activation and is not involved in JNK/ SAPK activation during apoptosis of human monocytic leukemia U937 cells[J].Oncogene, 1999, 18: 1277-1283.
    [185]Van Etten R A, Cycling, stressed-out and nervous: cellular functions of c-Abl[J]. Trends Cell Biol, 1999, 9: 179-186.
    [186]Shingo D, Mikihiko N, Hiroyuki S, et al. Activation of c-Abl tyrosine kinase requires caspase activation and is not involved in JNK/SAPK activation during apoptosis of human monocytic leukemia U937 cells[J]. oncogene, 1999, 18: 1277-1283.
    [187]Yuan Z M, Huang Y, Fan M M, et al. Genotoxic drugs induce interaction of the c-Abl tyrosine kinase and the tumor suppressor protein p53[J]. J Biol Chem, 1996, 271: 26457 -26460.
    [188]Yuan Z M, Huang Y, WhangY, et al. Role for c-Abl tyrosine kinase in growth arrest response to DNA damage[J]. Nature, 1996, 382: 272-274.
    [189]Sawyers C L, McLauglin J, Goga A, et al. The nuclear tyrosine kinase c-Abl negatively regulates cell growth[J]. Cell, 1994, 77: 121-131.
    [190]Wen S T, Jackson P K and Van Etten R A, The cytostatic function of c-Abl is controlled by multiple nuclear localization signals and requires the p53 and Rb tumor suppressor gene product[J]. EMBO J, 1996, 15: 1583-1595.
    [191]Goga A, Liu X, Hambuch T M, et al. p53 dependent growth suppression by the c-Abl nuclear tyrosine kinase[J]. Oncogene, 1995, 11: 791-799.
    [192]Sionov R V, Moallem E, Berger M, et al. c-Abl neutralizes the inhibitory effect of Mdm2 on p53[J]. J Biol Chem, 1999, 274: 8371-8374.
    [193]Welch P J and Wang J Y, A C-terminal protein-binding domain in the retinoblastoma protein regulates nuclear c-Abl tyrosine kinase in the cell cycle[J]. Cell, 1993, 75: 779-790.
    [194]Knudsen E S and Wang J Y, Differential regulation of retinoblastoma protein functionby specific Cdk phosphorylation sites[J]. J Biol Chem, 1996, 271: 8313-8320.
    [195] Goga A, Liu X, Hambuch T M, et al. p53 dependent growth suppression by the c-Abl nuclear tyrosine kinase[J], Oncogene, 1995, 11: 791-799.
    [196] Welch P J and Wang J Y, Abrogation of retinoblastoma protein function by c-Abl through tyrosine kinase-dependent and -independent mechanisms[J]. Mol Cell Biol, 1995, 15: 5542-5551.
    [197] Agami R and Shaul Y, The kinase activity of c-Abl but not v-Abl is potentiated by direct interaction with RFXI, a protein that binds the enhancers of several viruses and cell-cycle regulated genes[J]. Oncogene, 1998, 16: 1779-1788.
    [198] Arcinas M, Sizer K C and Boxer L M, Nuclear c-Abl is a COOH-terminal repeated domain (CTD)-tyrosine (CTD)-tyrosine kinase-specific for the mammalian RNA polymerase II: possible role in transcription elongation[J]. J Biol Chem, 1994, 269: 21919-21924.
    [199]Shi Y, Alin K and Goff S, Abl-interactor-1, a novel SH3-protein binding to the carboxy-terminal portion of the v-Abl protein, suppresses v-abl transforming activity[J]. Genes Dev, 1995, 9: 2583-2597.
    [200]Dai Z and Pendergast A M, Abi-2, a novel SH3-containing protein interacts with the c-Abl tyrosine kinase and modulates c-Abl transforming activity[J]. Genes Dev 1995, 9: 2569-2582.
    [201]Robert Roskoski Jr, STI-571: an anticancer protein-tyrosine kinase inhibitor, Biochem Biophys Res Commun, 2003, 309: 709-717.
    [202]Schindler T, Bornmann W, Pellicena P, et al. Structural mechanism for STI-571 inhibition of abelson tyrosine kinase[J]. Science, 2000, 289: 1938-1942.
    [203]Nagar B, Bornmann W G, Pellicena P, et al. Crystal structures of the kinase domain of c-Abl in complex with the small molecule inhibitors PD173955 and imatinib (STI-571) [J]. Cancer Res, 2002, 62: 4236–4243.
    [204]Kurzrock R, Kantarjian H M, Druker B J, et al. chromosome-positive leukemias: from basic mechanisms to molecular therapeutics[J]. Ann Int Med, 2003, 138(10): 819-830.
    [205]Cowan-Jacob S W, Guez V, Fendrich G, et al. Imatinib (STI571) resistance in chronic myelogenous leukemia: molecular basis of the underlying mechanisms and potential strategies for treatment[J]. Mini Rev Med Chem, 2004, 4 (3): 285-299.
    [206]Hubbard S R, Till J H, Protein tyrosine kinase structure and function[J]. Annu Rev Biochem, 2000, 69: 373-398.
    [207]Corbin A S, Rosee P L, Stoffregen E P, et al. Several Bcr-Abl kinase domain mutants associated with imatinib mesylate resistance remain sensitive to imatinib[J]. Blood, 2003, 101: 4611-4614.
    [208]van Oers N S, Killeen N, Weiss A. ZAP-70 is constitutively associated with tyrosine-phosphorylated TCR ε in murine thymocytes and lymph node T cells[J]. Immunity, 1994, 1: 675–685.
    [209]Chan A C, Iwashima M, Turck C W, et al. ZAP-70: a 70 kd protein-tyrosine kinase that associates with the TCR chain[J]. Cell, 1992, 71: 649-662.
    [210]Marie Christine Be′ne′, What Is ZAP-70? Clinical Cytometry (Cytometry Part B), 2006, 70B: 204-208.
    [211]Jin L, Pluskey S, Eugene C, The three-dimensional structure of the ZAP-70 kinase domain in complex with staurosporine: implications for the design of selective inhibitors[J]. J Biol Chem, 2004, 279: 42818-42825
    [212]van Oers N S, Weiss A. The Syk/ZAP-70 protein tyrosine kinase connection to antigen receptor signalling processes[J]. Semin Immunol, 1995, 7: 227-236.
    [213]Mustelin T, Tasken K. Positive and negative regulation of T-cell activation through kinases and phosphatases[J]. Biochem J, 2003, 371: 15-27.
    [214]Pacini S, Ulivieri C, Di Somma M M, et al. Tyrosine 474 of ZAP-70 is required for association with the Shc adaptor and for T-cell antigen receptordependent gene activation[J]. J Biol Chem, 1998, 273: 20487-20493.
    [215]Wange R L, Guitian R, Isakov N, et al. Activating and inhibitory mutations in adjacent tyrosines in the kinase domain of ZAP-70[J]. J Biol Chem, 1995, 270: 18730-18733.
    [216]Di Bartolo V, Mege D, Germain V, et al. Tyrosine 319, a newly identified phosphorylation site of ZAP-70, plays a critical role in T cell antigen receptor signaling[J]. J Biol Chem, 1999, 274: 6285-6294.
    [217]Di Bartolo V, Malissen M, Dufour E, et al. Tyrosine 315 determines optimal recruitment of ZAP-70 to the T cell antigen receptor[J]. Eur J Immunol, 2002, 32: 568-575.
    [218]Kong G, Dalton M, Wardenburg J B, et al. Distinct tyrosine phosphorylation sites in ZAP-70 mediate activation and negative regulation of antigen receptor function[J]. Mol Cell Biol, 1996, 16: 5026-5035.
    [219]Muljo S A, Schlissel M S, Pre-B and pre-T-cell receptors: Conservation of strategies in regulating early lymphocyte development[J]. Immunol Rev, 2000, 175: 80-93.
    [220]Clements J L, Boerth N J, Lee J R, et al. Integration of T cell receptor-dependent signaling pathways by adapter proteins[J]. Annu Rev Immunol, 1999, 17: 89-108.
    [221]Elder M E, Lin D, Clever J, et al. Human severe combined immunodeficiency due to a defect in ZAP-70, a T cell tyrosine kinase[J]. Science, 1994, 264 (5165): 1596-1599.
    [222]Chen L, Widhopf G, Huynh L, et al. Expression of ZAP-70 is associated with increased B cell receptor signaling in chronic lymphocytic leukemia[J]. Blood, 2002, 100: 4609-4614.
    [223]Wiestner A, Rosenwald A, Barry T S, et al. ZAP-70 expression identifies a chronic lymphocytic leukemia subtype with unmutated immunoglobulin genes, inferior clinical outcome, and distinct gene expression profile[J]. Blood, 2003, 101: 4944-4951.
    [224]Durig J, Nuckel H, Cremer M, et al. ZAP-70 expression is a prognostic factor in chronic lymphocytic leukemia[J]. Leukemia, 2003, 17: 2426-2434.
    [225]Orchard J A, Ibbotson R E, Davis Z, et al. ZAP-70 expression and prognosis in chronic lymphocytic leukaemia[J]. Lancet, 2004, 363: 105-111.
    [226]吴雨洁, 李建勇 审校 ZAP-70 在慢性淋巴细胞白血病中的表达及意义[M]。国外医学输血及血液学分册 2005 年第 28 卷第 3 期,216-218。
    [227]Fais F, Ghiotto F,Hashimoto S,et al. Chronic lymphocytic leukemia B cells express restricted sets of mutated and unmutated antigen receptors[J]. J ClinInvest, 1998, 102 (8):1515-1525.
    [228]Truong T, Sun G, Doorly M, et al. Modulation of DNA damage-induced apoptosis by cell adhesion is independently mediated by p53 and c-Abl[J]. Proc Natl Acad Sci, 2003,100: 10281-10286.
    [229]Lewis J M, Schwartz M A, Integrins regulate the association and phosphorylation of paxillin by c-Abl[J]. J Biol Chem, 1998, 273:14225-14230.
    [230]Yoshida K, Komatsu K, Wang H G, et al. c-Abl Tyrosine Kinase Regulates the Human Rad9 Checkpoint Protein in Response to DNA Damage[J]. Mol Cell Biol, 2002, 22: 3292-3300.
    [231]Woodring P J, Meisenhelder J, Johnson S A, et al. c-Abl phosphorylates Dok1 to promote filopodia during cell spreading[J]. J Cell Biol, 2004, 165: 493-503.
    [232]Woodring P J, Litwack E D, O'Leary D D, et al. Modulation of the F-actin cytoskeleton by c-Abl tyrosine kinase in cell spreading and neurite extension[J]. J Cell Biol, 2002, 156: 879-892.
    [233]Master Z, Tran J, Bishnoi A, et al. Dok-R Binds c-Abl and Regulates Abl Kinase Activity and Mediates Cytoskeletal Reorganization[J]. J Biol Chem, 2003, 278: 30170-30179.
    [234]Jones S B, Lu H Y, Lu Q, Abl tyrosine kinase promotes dendrogenesis by inducing actin cytoskeletal rearrangements in cooperation with Rho family small GTPases in hippocampal neurons[J]. J Neurosci,2004, 24: 8510-8521.
    [235]Kain K and Klemke R, Inhibition of cell migration by Abl family tyrosine kinases through uncoupling of Crk-CAS complexes[J]. J Biol Chem, 2001, 276: 16185-16192.
    [236]Zukerberg L, Patrick G, Nikolic M, et al. Cables links Cdk5 and c-Abl and facilitates Cdk5 tyrosine phosphorylation, kinase upregulation, and neurite outgrowth[J]. Neuron, 2000, 26: 633-646.
    [237]Stanley E R, The macrophage colony stimulating factor, CSF-1[J]. Meth Enzymol 1985, 115: 565-587.
    [238]Roth P, and Stanley E R, The biology of CSF-1 and its receptor[J]. Curr Top Microbiol Immunol, 1993, 181:141–167.
    [239]Stanley E R, Berg K L, Einstein D B, et al. Biology and action of colony-stimulating factor-1[J]. Mol Reprod Dev, 1997, 46: 4–10.
    [240]Warren M K and Ralph P, Macrophage growth factor CSF-1 stimulates human monocyte production of interferon, tumor necrosis factor, and colony stimulating activity[J]. J Immunol, 1986, 137: 2281-2285.
    [241]Plattner R, Irvin B J, Guo S, et al. A new link between the c-Abl tyrosine kinase and phosphoinositide signalling through PLC-γ1[J]. Nature Cell Biology, 2003, 5: 309 -319.
    [242]Zipfel P A, Zhang W, Quiroz M, et al. Requirement for Abl kinases in T cell receptor signaling[J]. Curr Biol, 2004, 14:1222-1231.
    [243]Chan A C, Kadlecek T A, Elder M E, et al. ZAP-70 deficiency in an autosomal recessive form of severe combined immunodeficiency[J]. Science, 1994, 264: 1599-1601.
    [244]Arpaia E, Shahar M H D, Cohen A, et al. Defective T cell receptor signaling and CD81 thymic selection in humans lacking ZAP-70 kinase[J]. Cell, 1994, 76: 947-958.
    [245]Negishi I, Motoyama N, Nakayama K I, et al. Essential role for ZAP-70 in both positive and negative selection of thymocytes[J]. Nature, 1995, 376: 435-438.
    [246]Williams B L, Schreiber K L, Zhang W, et al. Genetic evidence for differential coupling of Syk family kinases to the T-cell receptor: reconstitution studies in a ZAP-70-deficient Jurkat T-cell line[J]. Mol Cell Biol, 1998, 18:1388-1399.
    [247]Lupher M L J, Songyang Z, Shoelson S E, et al. The Cbl phosphotyrosine-binding domain selects a D(N/D)XpY motif and binds to the Tyr292 negative regulatory phosphorylation site of ZAP-70[J]. J Biol Chem, 1997, 272: 33140-33144.
    [248]Katzav S, Sutherland M, Packham G, et al. The protein tyrosine kinase ZAP-70 can associate with the SH2 domain of proto-Vav[J]. J Biol Chem, 1994, 269: 32579-32585.
    [249]Wu J, Zhao Q, Kurosaki T, et al. The Vav binding site (Y315) in ZAP-70 is critical for antigen receptor-mediated signal transduction[J]. J Exp Med, 1997, 185: 1877-1882.
    [250]Williams B L, Irvin B J, Sutor S L, et al. Phosphorylation of Tyr319 in ZAP-70 is required for T-cell antigen receptor-dependent phospholipase C-γ1 and Ras activation[J]. EMBO J, 1999, 18: 1832-1844.
    [251]Mayer B J, Hirai H, and Sakai R, Evidence that SH2 domains promote processive phosphorylation byprotein-tyrosine kinases[J]. Curr Biol, 1995, 5: 296-305.
    [252]Cicchetti P, Mayer B J, Thiel G, et al. Identification of a protein that binds to the SH3 region of Abl and is similar to Bcr and GAP-rho[J]. Science, 1992, 257: 803-806.
    [253]Mayer B J, Jackson P K, and Baltimore D, The noncatalytic src homology region 2 segment of abl tyrosine kinase binds to tyrosine-phosphorylated cellular proteins with high affinity[J]. Proc Natl Acad Sci, 1991, 88:627-631.
    [254]Zhou S, Shoelson S E, Chaudhuri M, et al. SH2 domains recognize specific phosphopeptide sequences[J]. Cell, 1993, 72: 767-778.
    [255]Neumeister E, Zhu Y, Richard S, Terhorst C, et al. Binding of ZAP-70 to phosphorylated T-cell receptor zeta and eta enhances its autophosphorylation and generates specific binding sites for SH2 domain-containing proteins[J]. Mol Cell Biol, 1995, 15: 3171-3178.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700