Yb:LiYF_4激光晶体生长与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在众多固体激光基质材料中,氟化物激光基质材料具有化学稳定性好、熔点较低、高浓度掺杂依然透明、自发辐射荧光寿命长、折射率受温度影响小等优点。因此,在光学领域中,氟化物激光材料具有十分重要的研究与应用价值。
     本文采用CZ法,在Ar和CF4两种不同生长气氛下生长了Yb:LiYF4(Yb:YLF)激光晶体。Yb3+掺杂浓度5%,晶体尺寸分别为Φ25×50mm和Φ25×45mm。最佳工艺参数:拉速1mm/h,转速12r/min,降温速率为25℃/h。采用一次退火工艺,降温速率为20℃/h,晶体无开裂现象。通过对比Ar气氛下和CF4气氛下生长Yb:YLF晶体的XRD测试结果,表明CF4气氛下生长的晶体透明度较好,晶体质量较高。通过提高真空度,在CF4气氛下生长Yb:YLF晶体,有效地降低了晶体内部及表层的杂质成分含量,提高了晶体的纯度。通过晶体结构转变温度分析,解决了Yb:YLF晶体生长中的组分过冷问题。对CF4气氛下生长的Yb:YLF晶体进行了光谱测试:分析该晶体吸收光谱参数,可实现激光跃迁;该晶体的荧光光谱峰位在1019nm处红外最强,接近Yb3+离子1030nm理论值。
Among the many solid-state laser host materials, the fluoride laser host materials have many advantages that good chemical stability, low melting point, good transparency under high doping concentration, long fluorescence lifetime of spontaneous emission and small affectedness for refractive index by temperature and so on. Therefore, the fluoride laser materials is very important value of research and application in the optical domain.
     In this paper, Yb:LiYF4 (Yb:YLF) laser crystals were grown by CZ method in Ar and CF4 two different atmosphere. Yb3+ doping concentration is 5%, and the crystal sizes areΦ25×50 mm andΦ25×45 mm respectively. Optimum process parameters the pulling rate was 1 mm/h, the rotation rate was 12 rpm and the cooling rate is 25℃/h. Adopting an annealing process, the cooling rate is 20℃/h, and no crystal cracking phenomenon. By comparing XRD results of Yb:YLF crystals grown in Ar atmosphere and CF4 atmosphere respectively, it is indicated that the crystals grown in CF4 atmosphere has good transparency and high crystal quality. By improving the vacuum, Yb:YLF crystal was grown in CF4 atmosphere. The impurity content of the internal and the surface of crystal was effectively reduced, and the crystal purity was improved. Through the analysis for transition temperature of crystal structure, the component cooling problems of Yb:YLF crystal growth were effectively solved. The spectroscopic measurements of Yb:YLF crystal in CF4 atmosphere is performed:through analysis of absorption spectra parameters, laser transition can be achieved; and the peak of crystal infrared fluorescence spectrum is strongest at 1019 nm, closing to 1030 nm of Yb3+ ions the theoretical value.
引文
[1]T. Y. Fan, IEEE J. Quantum Electr.29 (1993) 1457.
    [2]P. Lacovara, H.K. Choi, C.A. Wang, et al., Opt. Lett.16 (1991) 1089.
    [3]G Boulon, A. Brenier, L. Laversenne, Y. Guyot, C. Goutaudier, M.T. Cohen-Adad, G Metrat, N. Muhlstein, J. Alloy. Compd.341 (2002)2.
    [4]A. Brenier, G. Boulon, J. Alloy. Compd.210 (2001) 323; A. Brenier, GBoulon, Europhys. Lett.55 (2001) 647.
    [5]W. Koechner:Solid-State Lser Engineering 4th ed.,Springer (1996)
    [6]J. Hecht:Understading Lasers, IEEE Press (1994)
    [7]张学建.掺镱钇铝石榴石激光材料[D].中国博士学位论文全文数据库,2009
    [8]K. Shimamura, Na Mujilatu, K. Nakano, et al. Growth and characterization of Ce-doped LiCaAlF6 single crystals. Journal of crystal growth,1999,197:896-900
    [9]D. Klimm, P. Reiche. Nonstoichiometry of the new laser host LiCaAlF6. Crystal. Res. Technol.,1998,33:409-416
    [10]J. J. De Yoreo, L J. Atherton and D. H. Roberts. Elimination of scattering centers from Cr:LiCaAlF6. Journal of crystal growth,1991,113:691-697
    [11]Steven Duffy, Jon-Paul R. Wells, Hugh G Gallagher, et al. Bridgman growth and laser excitation of LiYF4:Sm3+. Journal of crystal growth,1999,203:405-411
    [12]Rogin, J. hulliger. Liquid phase epitaxy of LiYF4. Journal of crystal growth,1997.179:551-558
    [13]I. M. Ranieri, S. L doped with holmium,423-428 Boldochi, A. M. E. Santo, et al. Growth of LiYF4 crystal erbium and thulium. Journal of crystal growth,1996,166:
    [14].F. Okada, S. Togawa, K. Ohta, et al. Solid-state ultraviolet tunable laser:A Ce3+:doped LiYF4 crystal. J. Appl. Phys., 1994,75(1):49-53
    [15]S L Baldonchi. K Shimamaura. K Nakano, et al. Ce-doped LiYF4 Growth under CF4 atmosphere [J]. Journal of Crystal Growth,1999,205:537-542.
    []6]陈红兵,范世铠,徐家跃,等.氟化物激光晶体Nd3+:YLF的坩埚下降法生长[J].无机材料学报,2000(s1),15:917-920.
    [17]Rogin, J Hullinger. Growth of LiYF4 by the seeded vertical gradient freezing technique [J]. Journal of Crystal Growth. 1997,172:200-208.
    [18]H Sato, A Bensalah, H Machida, et al. Growth and characterization of 3-in size Tm, Ho-codoped LiYF4 and LiLuF4 single crystals by the Czochralski method [J]. Journal of Crystal Growth.2003,253:221-229.
    [19]邵怀宗,张振亚,陈广民Nd:YLF激光晶体生长的研究[J].激光与红外,1994,24(6):38-41.
    [20]Louis, M., Simoni, E., Hubert, S., Gesland, J.Y Reduction by gamma-irradiation of tetravalent uranium in LiYF4 crystals for laser application. Opt. Mater.,1995,4(5) 57-62; Sonia Licia Boldochi, K. Shimamura, K. Nakano, Na Mujilatu, et al. Ce-doped LiYF4 growth under CF4 atmosphere. Journal of crystal growth,1999,205:537-542
    [21]R. Uhrin, R. F. Belt, V Rosati. Preparation and crystal growth of Lithium yttrium fluoride for laser applications. Journal of crystal growth,1977,38:38-44
    [22]R. c. pastor, M. Robinson, W M. Akutagawa. Congruent melting and crystal growth of LiRF4. Mat. Res. Bull.,1975, 10:501-510
    [23]B. Cochayne. Stockbarger crystal growth optical assessment and laser performance of Holmium-doped Yttrium Erbium Lithium Fluoride. Journal of crystal growth,1975,30:21-26
    [24]P. Rogin, J. Hulliger. Liquid phase epitaxy of LiYF4. Journal of crystal growth,1997,179:551-558
    [25]B. Cockayne, J. G Plant, R. A. Clay. The Czochralski growth and laser characteristics of Li (Y, Er, Tm, Ho) F4 and Li (Lu, Er, Tm, Ho) F4 Scheelite single crystals. Journal of crystal growth,1981,54:407-413
    [26]那木吉拉图.新型紫外可调谐激光材料氟化物晶体生长与性能的研究[D].中国优秀博硕士学位论文全文数据库(博士),2003,(04)
    [27].N. Chichkov, C. Momma S. Nolte, F. von Alvensleben and A. Tunnermann. Femtosecond, picosecond and nanosecond laser ablation of solids. Appl. Phys. A 63,109-115(1996)
    [28].Dragomir, D. N. Nikogosyan, K. A. Zagorulko, P. G. Kryukov, and E. M. Dianov. Inscription of fiber Bragg gratings by ultraviolet femtosecond radiation. Opt. Lett.28,2171-2173 (2003)
    [29]K. Minoshima, A. M. Kowalevicz, I. Hartl, E. P. Ippen, and J. G. Fujimoto. Photonic device fabrication femtosecond laser oscillator. Opt. Lett. of nonlinear materials processing with a 1516-1518 (2001)
    [30]P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du and G. Mourou. Machining of sub-micron holes using a femtosecond laser at 800 nm. Opt. Commun.114,106-110 (1995)
    [31]F. Auzel. On the maximum splitting of the (2F7/2) ground state in Yb3+-doped solid state laser materials. J. Lumin.93, 129-135 (2001)
    [32]R. Selvas, J. K. Sahu, I. B. Fu, J. N. Jang, J. Nilsson, A. B. Jarkko, S. A. Alam, P. W. Turner, and J. Moore. High-power, cladding-pumped, (2003) three-level fiber sources at 980 nm. Opt Grudinin, K. H. Ylalow-noise, Yb-doped, Lett.28, 1093-1095
    [33]A. J. Bayramian, C. Bibeau, R. J. Beach, C. D. Marshall W. F. Krupke. Three-level Q-switched laser operation Sr5 (PO4)3F at 985 nm. Opt. Lett.25,622-624 (2000), S. A. Payne, and of ytterbium-doped
    [34]V. Lupei, N. Pavel, and T. Taira. Efficient Laser Emission in Concentrated Nd Laser Materials Under Pumping Into the Emitting Level. IEEE J. Quantum Electron.38,240-245 (2002)
    [35]T. Y. Fan. Optimizing the Efficiency and Stored Energy in Quasi-Three-Level Lasers. IEEE J. Quantum Electron.28, 2692-2697(1992)
    [36]N. P. Barnes, M. E. Storm, P. L. Cross, and M. W. Skolaut. Efficiency of Nd Laser Materials with Laser Diode Pumping. IEEE J. Quantum Electron.26,558-569 (1990)
    [37]F. Morier-Genoud, M. Moser, U. Keller, L. R. Brovelli and C. Harder. Efficient and tunable diode-pumped femtosecond Yb:glass lasers. Opt. Lett.23,126-128 (1998)
    [38]J. Aus der Au, D. K. F. Morier-Genoud, M. Moser, and U. Keller.60-fs pulses from a diode-pumped Nd:glass laser. Opt. Lett.22,307-309(1997)
    [39]M. H. Ober, E. Sorokin, I. Sorokina, F. Krausz, E. Wintner, and I. A. Shcherbakov. Subpicosecond mode locking of a Nd3+ -doped garnet laser. Opt. Lett.17,1364-1366 (1992)
    [40]H. Yang, D. Shen, S. C. Tam, Y. L. Lam, J. Liu, K. Ueda, W. Xie, and J. Gu. Femtosecond Self-Mode-Locked L. Lam, J. Liu, K La1-xMgNdxAI11O19 Laser Pumped by a Laser Diode. Jpn. J. Appl. Phys.39,6542-6545 (2000)
    [41]C. Honninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller. Q-switching stability limits of continuous-wave passive mode locking. J. Opt. Soc Am. B 16,46-56(1999)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700