含硼二元团簇几何结构与成键特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着计算机技术和计算方法的飞速发展,理论计算已成为预测和研究新型团簇结构与性质的重要手段。近年来,纯硼和含硼二元团簇研究受到广泛关注,但其结构规则和性质变化规律尚不清楚。本文采用密度泛函理论和从头算方法,基于等瓣相似性和等价电子原理,对系列硼氢团簇、碳金团簇、硼金团簇和硼氧团簇的几何结构、成键特征、热力学稳定性及光谱性质等进行了系统研究,为其实验和应用研究提供理论基础。
     1.含端η1-Au及桥η2-Au的硼金和碳金团簇
     基于从头算理论和密度泛函理论,对BAun-/0(n=1-4)金硼烷的几何结构、电子结构特征和阴离子基态结构的光电子能谱进行了研究。研究发现,BAun-/0(n=1-4)团簇具有与BHn-/0相似的几何结构,进一步证明了H/Au相似性;自然振动理论(NRT)分析证明在BAun-/0簇(n=2-4)中,端η1-Au与中心硼原子间的相互作用主要是共价作用。探讨了BAu4-作为结构单元形成LiBAu4的可能性,为在实验室中合成LiBAu4及其它含有[BAu4]-结构单元的固体无机盐提供了理论基础。
     采用密度泛函理论对含双碳的碳金二元团簇C2Aun+(n=1,3,5)和C2Aun(n=2,4)的结构和性质进行了研究。碳金二元团簇低能量异构体中,Au原子既可以作为端η1-Au也可以作为桥η2-Au,其形成规则是:当Au原子数少于3时,Au原子优先选择端配的方式与-C≡C-结合;当Au原子数等于3时,第3个Au原子更倾向于以侧配的方式与Au-C≡C-Au结合形成稳定的路易斯酸碱电子对结构[Au-C≡C-Au]Au+(C2v);当Au原子数超过3时,开始出现-Au3结构单元,该三角形结构单元类似于H,可以采取端配或侧配的不同方式与-C≡C-及Au-C≡C-Au结合。Au3+结构单元的稳定性源于离域3c-2e6键的存在。我们的研究结果将H/Au相似性扩展到H+/Au3+相似性,对于设计含金催化剂和纳米材料具有重要意义。
     2.平面π芳香性C3h B6H3+、C2vB10H5-及π反芳香性C2h B8H4
     对缺氢体系B2nHn(n=3,4,5)的电子结构和成键特征等进行了研究。研究发现具有完美平面结构、C3h对称性的B6H3+和具有双链结构、C2h对称性的B8H4及C2v对称性的B10H5-,分别对应于环丙烯阳离子D3h C3H3+、环丁二烯D2h C4H4和环戊二烯阴离子D5h C5H5-。平面结构中顶点共享的B3三角形单元相当于环状碳氢化合物中的一个C原子。详细的AdNDP分析和核独立化学位移(NICS)数值分析进一步揭示了该类硼氢化物及其相应碳氢化合物的成键特征和芳香性。
     3.芳香性共轭双链硼烯D2h B4H2、C2h B8H2和C2hB12H2
     在密度泛函水平上,B2nH2芳香性共轭双链D2h B4H2,C2h B8H2和C2h B12H2均为体系的最低能量异构体,这些链状共轭硼烯分别对应于链状共轭烯烃CnHn+2中的乙烯、1,3-丁二烯和1,3,5-已三烯。共轭硼烯链中的一个B4菱形单元相当于不饱和碳氢链中的一个C=C结构单元。详细的AdNDP和ELF分析结果进一步揭示了该类硼烯的成键特征和芳香性。成键分析还表明,双链状的B3H2-,B5H2-和B6H2有一个离域π轨道,B7H2-,B9H2-和B10H2有两个离域π轨道,B11H2-有三个离域π轨道也分别类似于乙烯、1,3-丁二烯和1,3,5-已三烯。该研究丰富了硼氢化合物和碳氢化合物间的对应关系,有助于理解双链交织全硼纳米结构的稳定性。
     基于上述对B8H20/-和B9H20/-结构与性质的研究,进一步分析B8A20/-和B9A20/-(A=Au和BO)的结构及热力学稳定性。研究表明:在双链结构的裸B8-/0和B9-/0团簇两端不饱和B上键合端η1-Au或-BO基,均可以得到完美平面的类似其相应硼氢化合物的基态稳定结构,端η1-Au及-BO基不改变B8-/0和B9-/0骨架及离域π键分布;Au/H相似性及H/BO相似性在BsA2-/0和B9A2-/0(A=H,Au和BO)中依然存在,BO可以作为稳定的结构单元存在于富硼的硼氧化合物中。该计算结果对硼氧化合物或硼金化合物的结构及成键特征研究具有指导作用。
     4.含桥η2-BO和η2-BS的B2A60/-团簇(A=BO和BS)
     对B2(BO)6和B2(BS)6的几何结构和电子特征及其阴离子的几何结构进行了研究。表明在D2h对称性的B2(Bo)60/-和B2(BS)60/-的稳定结构中,B≡O和B≡S类似于D2h对称性的B2H6中的H原子,既可以作为端基,又可以作为桥基。AdNDP分析进一步揭示了其成键特征。与D3d对称性的B2H6-不同,B2(BO)6-和B2(BS)6-的阴离子的D2h对称性结构稳定,说明B≡O和B≡S与H原子相比,更容易作为桥基。为方便将来的实验室研究,对D2h B2(BO)6和B2(BS)6的红外(IR)和紫外(UV-vis)谱图进行了模拟。该部分的研究与之前我们对硼氧化合物的研究结合在一起,为将来硼的氧化物及硼的硫化物的结构研究进一步拓展了研究思路。
     5.环硼氧烷B3O3X3(X=H和BO)及其过渡金属夹心化合物
     计算结果表明,B606簇的基态结构与人们所熟知的无机苯D3h B303H3类似,具有和苯相似的几何结构和电子结构。D3h对称性的B3O3(BO)3与B3O3H3都可以作为稳定配体与Cr原子形成热力学上的稳定夹心化合物,Cr原子3d轨道与B3O3X3(X=H,BO)离域π轨道间的相互作用使得系列半夹心、夹心和三层夹心化合物保持稳定。B3O3X3(X=H,BO)配体可以进一步生成[B3O3X3]nCrn-1(X=H,BO)(n≥4)一维链状夹心化合物。本文研究结果引入了一类含B3O3六元环的新颖无机配体,丰富了配位化学的内容。
Along with the rapid development of computer technology and computational methodologies, theoretical computation has become an important way for predicting and studying the structures and characteristics of novel clusters. Recently, pure boron and boron-containing binary clusters have attracted wide attention. However, the rules on structures and properties of the boron-containing binary clusters are not clear. A systematic density functional theory and wave function theory investigation on the geometrical structure, electronic structures, bonding characteristics, thermodynamic stabilities and spectrum characteristics of boron containing binary clusters, such as boron hydrides, boron oxides and boron-gold has been performed in this thesis. We aim to provide a theoretical basis for their experimental and applied researches.
     1. Terminal η1-Au and Bridging η2-Au in Boron-gold and Carbon-gold Clusters
     An ab initio theoretical investigation on the geometrical, electronic structures and photoelectron specctroscopies (PES) of BAun-/0(n=1-4) clusters has been performed. Density functional theory (DFT) and coupled cluster method (CCSD(T)) calculations indicate that BAun-/0(n=1-4) clusters with n η1-Au possess similar geometrical structures and bonding patterns with the corresponding boron hydrides BHn-/0(n=1-4). Natural resonant theory (NRT) analyses showed that the B-Au interactions in BAun-/0clusters (n=2-4) are mainly covalent. The PES spectra of the BAun-anions and the Au-B stretching vibrations of the BAun neutrals (n=1-4) are simulated. The investigation on BAu4-unit served as the building block provides a theoretical basis for the synthesis of LiBAu4and other [BAu4]--containing inorganic solids.
     A systematic density functional theory investigation on C2Aun+(n=1,3,5) and C2Aun (n=2,4,6) indicates that gold atoms serve as terminal η1-Au in the chain-like Cs C2Au+(C=C-Au+) and D∞h C2Au2(Au-C=C-Au) and as bridging η2-Au in the side-on coordinated C2v C2Au3+([Au-C=C-Au]Au+) and Cs C2HAu2+([Au-C=C-Au]Au+). However, when the number of gold atoms reaches four, they form stable gold triangles (-Au3) in the head-on coordinated C2v C2Au4(Au-C=C+Au3) and the side-on coordinated C2v C2Au5+([Au-C=C-Au]Au3+. The high stability of Au3triangles originates from the fact that an equilateral D3h Au3+cation possesses a completely delocalized three-center-two-electron (3c-2e) σ bond and therefore is σ-aromatic in nature. The extension from H/Au analogy to H/Au3analogy established in this work may have important implications in designing new gold-containing catalysts and nano-materials.
     2. Planar π-aromatic C3h B6H3+, C2v B10H5-and π-antiaromatic C2h B8H4
     Extensive structural searches and wave function theory calculations have been performed for B2nHn(n=3,4,5). We predict the existence of the perfectly planar triangle C3h B6H3+, the double-chain C2h B8H4and the planar C2v B10H5-which are the inorganic analogues of cyclopropene cation D3h C3H3+, cyclobutadiene D2h C4H4, and cyclopentadiene D5h C5H5-in both geometrical and electronic structures, respectively. Here, a vertex-sharing B3triangle in planar boron hydride clusters is equivalent to a C atom in the well-known hydrocarbon clusters. Detailed adaptive natural density partitioning (AdNDP) and the nucleus independent chemical shifts (NICS) analyses further unravel the bonding patterns and overall aromaticity of C3h B6H3+, C2h B8H4and C2v B10H5-.
     3. Aromatic Double-Chain Conjugated D2h B4H2, C2h B8H2and C2h B12H2
     Based upon comprehensive theoretical investigations and known experimental observations, we predict the existence of the aromatic double-chain (DC) planar D2h B4H2, C2h B8H2and C2h B12H2which all appear to be the lowest-lying isomers of the systems at DFT level. These conjugated aromatic borenes turn out to be the boron hydride analogues of the conjugated ethylene D2h C2H4,1,3-butadiene C2h C4H6, and1,3,5-hexatriene C2h C6H8, respectively, indicating that a B4rhombus in B2nH2borenes (n=2,4,6) is equivalent to a C=C double bond unit in the corresponding CnHn+2hydrocarbons. Detailed canonical molecular orbital (CMO), AdNDP, and electron localization function (ELF) analyses unravel the bonding patterns of these novel borene clusters and indicate that they are all overall aromatic in nature with the formation of islands of both σ-and π-aromaticity. The double-chain planar or quasi-planar C2v B3H2-, C2B5H2-, and C2h B6H2with one delocalized π orbital, C2v B7H2-, C2B9H2-, and C2h B10H2with two delocalized π orbitals, and C2v B11H2-with three delocalized π orbitals are found to be analogous in π-bonding to D2h B4H2, C2h B8H2, and C2h B12H2, respectively. The results obtained in this work enrich the analogous relationship between hydroborons and their hydrocarbon counterparts and help to understand the high stability of all-boron nanostructures which favor the formation of double-chain substructures.
     Theoretical evidences strongly suggest that the ground states of the BnA20/-(n=8,9; A=Au and BO) all can be obtained by connecting two terminal η1-Au or η1-BO to the corner B atoms. The distributions of the localized π bonds of the B8and B9skeleton have not been changed by the terminal η1-Au or η1-BO. The Au/H and H/BO analogy all still exist in BnA20/-(n=8,9; A=H,Au and BO). The BO group exists as stable unit in the boron-rich boron oxide.
     4. B2A60/-(A=BO and BS) Clusters with Bridging η2-BO or η2-BS
     The investigation on the geometrical and electronic properties of B2(BO)60/-and B2(BS)60/-have been performed by density functional theory (DFT) using the B3LYP and BP86methods, for comparison of their predicted structures with those of the well known B2H6. Similar to H atoms in the corresponding boranes, both BO and BS units can serve as terminal and bridging groups in D2h B2(BO)60/-and B2(BS)60/-,respectively. As analogues of diborane (B2H6), D2h B2(BO)6and B2(BS)6with two bridging η2-BO or η2-BS groups are the most interesting candidates possible to be targeted in future experiments. AdNDP analyses further unravel the bonding patterns. Different from that of classical D3d B2H6-,D2h B2(BO)6-and B2(BS)6-with two bridging η2-BO or η2-BS groups are more stable than their corresponding D3d structures. The IR spectra and UV-vis spectra of D2h B2(BO)6and B2(BS)6have been simulated to facilitate their future experimental characterizations. The boronyl pattern we proposed builds a clear structural link between boron oxides or boron sulfides and boron hydrides.
     5. Boroxine B3O3X3(X=H and BO) Clusters and Their Transition-metal Sandwich Compounds
     Based upon extensive density functional theory calculations, molecular analyses and natural resonance theory (NRT) analyses, we predict the existence of the perfectly planar D3h B6O6(1,1A1') we prefer to as boronyl boroxine which is the ground states of the systems and the boron oxide analogue of benzene D6h C6H6.A density functional theory investigation on half-sandwich-type C3v B3O3X3Cr, full-sandwich-type D3d [B3O3X3]2Cr, and triple-decker complexes [B3O3X3]3Cr2(X=H, BO) containing B3O3H3or B3O3(BO)3ligands has been performed. Both B3O3H3and B3O3(BO)3units serve as robust inorganic ligands in B3O3X3Cr,[B3O3X3]2Cr and [B3O3X3]3Cr2(X=H, BO) complex series. Effective d-π coordination interactions between the partially filled3d orbitals of the transition-metal center and the delocalized π orbitals of the B3O3X3(X=H, BO) ligands help maintain the stabilities of the complexes. The sandwich structural pattern developed in this work expands the structural domain of transition-metal complexes by introducing new inorganic B3O3H3and B3O3(BO)3with a B3O3core into traditional sandwich-type structures and may be extended to form [B3O3X3]nCrn-1(X=H, BO) multi-decker (n≥4) liner wires.
引文
[1]王广厚.团簇的结构和奇异性质.物理学进展[J].1993,266,1-2.
    [2]E.W. Becker, K. Bier, W. Henkes, Strahlen aus kondensierten Atomenund Molekeln im Hochvakuum[J]. Z.Phys.1956,146,333-338.
    [3]H.W. Kroto, J.R. Health, S.C. O'Brien, R.F.Curl, R.E. Smalley. C60: Buckminsterfullerene[J]. Nature,1985,318,162-163.
    [4]W. Kratschmer, L.D. Lamb, K. Fostiropoulos, D.R. Huffman. Solid C6o:a new form of carbon[J]. Nature,1990,347,354-358.
    [5]A. F. Hebard, M.J. Rosseinsky, R.C. Haddon. Superconductivity at 18 K in potassium-doped C60[J]. Nature,1991,350,600-601.
    [6]S. Iijima. Helical microtubules of graphitic carbon[J]. Nature,1991,354,56-58
    [7]O. Mishima, J. Tanaka, S. Yamaoko, O. Fukunaga. High-Temperature Cubic Boron Nitride P-N Junction Diode Made at High Pressure[J]. Science,1987,238,181-183.
    [8]M.I. Eremets, V.V. Struzhikin, H. Mao, R.J. Hemley. Superconductivity in Boron[J]. Science,2001,293,272-274.
    [9]R.B. King. Three-Dimensional Aromaticity in Polyhedral Boranes and Related Molecules[J]. Chem. Rev.2001,101,1119-1152.
    [10]J. D. Kennedy. In Advances in Boron Chemistry, Siebert, W. Ed., Royal Society of Chemistry, Cambridge, U. K.,1997,451.
    [11]T. D. McGrath, T. Jelinek, B. Stibr, P. M. Thornton, J. K. Kennedy. Macropolyhedral boron-containing cluster chemistry. Characterisation of rigid 77-atom [Pt(B18H20)2]2 dianion isomers and an unusual metallaborane homophilic interaction[J]. Chem. Soc., Dalton Trans.1997,2543-2546.
    [12]W. Sauerwein, K. Hideghety, D. Gabel, R. L. Moss, European clinical trials. of boron neutron capture therapy for glioblastoma[J]. Nucl. News.1998,41,54.
    [13]K. Haselberger, G. Pendl, H. Radner, In Progress in Radio-Oncology, H. D. Kogelnik, Ed.; Monduzzi Editore:Bologna, Italy,1994, Vol.V, p 321.
    [14]J. A. Coderre, M. S. Makar, P. L. Micca, M. M. Nawrocky, D. D. Joel, D. N. Slatkin, Abstracts of the Fifth International Symposium on Neutron Capture Therapy for Cancer; Columbus, OH,1992; p 26
    [15]K. Wade. Electron Deficient Compounds, Nelson, London,1971.
    [16]K. Wade, G. A. Olah, R. E. Wllianms. In Electron Deficient Boron and Carbon Clusters, Wiley, New York,1991.
    [17]Wade, K. Structural and Bonding Patters in Cluster Chemistry[J]. Nucl. News 1998, 41,54
    [18]Olah, G. A., Wade, K., Williams, R. E., Electron Deficient Boron and Carbon Clusters, Wiley, New York,1991
    [19]M. J. S. Dewar, M. L. McKee. Ground states of molecules.54. MNDO study of carboranes[J]. Inorg. Chem.1980,19,2662-2672.
    [20]J. J. Ott, B. M. Giamrc. Predictions of relative stabilities among series of carborane isomers by the criterion of topological charge stabilization[J]. J. Am. Chem. Soc. 1986,108,4303-4308.
    [21]J. J. Ott, B. M. Giamrc. Optimized Structures and Relative Stabilities of the Carboranes from Ab Initio Calculations[J]. Comput. Chem.1986,7,673-692.
    [22]D. Bartow. Systematization and structures of the boron hydrides[J]. Adv V Chem Ser, 1961,5,32-35
    [23]W. Dilthey. uber die Konstitution des Wassers. Z [J]. Angew. Chem.,1921,34,596.
    [24]W. C. Price, The Absorption Spectrum of Diborane[J]. J. Chem. Phys.,1948,16, 894-902.
    [25]S. H. Bauer. The Structure of Diborane[J]. J. Am. Chem. Soc.,1937,59,1096-1103
    [26]S.J. Daniel and N.L. William. X-Ray Evidence for Bonding Electrons in Diborane Evidence for Bonding Electrons in Diborane[J]. J. Chem. Phys.1969,51,3133-3134.
    [27](a) H.C. Longuet-Higgins. Some Studies in Molecular Orbital Theory Ⅲ.Substitution in Aromatic and Heteroaromatic Systems[J]. J. Chem. Phys.,1949,46,283-291. (b) W.H. Eberhardt, B. Crawford, W.N. Lipscomb. The Valence Structure of the Boron ydrides[J]. J. Chem. Phys.,1954,22,989-1001. (c) W.N. Lipscomb. Boron Hydride Chemistry, Academic Press:New,1998.
    [28]M. A. Vincent, H. F. Schaefer. Diborane B2H4:the boron hydride analog of ethylene[J]. J. Am. Chem. Soc.1981,103,5677-5680.
    [29]S. X. Tian. Ab Initio and Electron Propagator Theory Study of Boron Hydrides[J]. J. Phys. Chem. A.2005,109,5471-5480.
    [30]A. Ricca; C. W. Bauschlicher. The structure and stability of BnH+ clusters[J]. J. Chem. Phys.1997,106,2317-2322.
    [31]L. A. Curtiss; J. A. Pople. Theroretical study of B2H+3, B2H+2, and B2H+[J]. J. Chem. Phys.1989,91,4809-4812.
    [32]J. F. Dias; G. Rasul; P. R. Seidl; G. K. Surya Prakash; G. A. Olah. Structures and Stabilities of B2H2n2+ Dications (n=1-4)[J]. J. Phys. Chem. A,2003,107,7981-7984.
    [33](a) M. L. McKee; Z. X. Wang; P. v. R. Schleyer. Ab Initio Study of the Hypercloso Boron Hydrides BnHn and BnHn-. Exceptional Stability of Neutral B13H13[J]. J. Am. Chem.Soc.2000,122,4781. (b) P. v. R. Schleyer; G. Subramanian; A. Dransfeld. Decisive Evidence for Nonclassical Bonding in Five-Vertex closo-Boranes, X2B3H3, X=N, CH, P, SiH, BH-[J]. J. Am. Chem. Soc.1996,118,9988-9989.
    [34]H. J. Zhai, L. S. Wang, D. Y. Zubarev, A. I. Boldyrev. Gold Apes Hydrogen. The Structure and Bonding in the Planar B7Au2- and B7Au2 Clusters[J]. J. Phys Chem. A 2006,110,1689-1693.
    [35]A.N. Alexandrova, A.I. Boldyrev, H.J. Zhai, L.S. Wang. All-Boron Aromatic Clusters as Potential New Inorganic Ligands and Building Blocks in Chemistry[J]. Coord. Chem. Rev.2006,250,2811-2866.
    [36]A.N. Alexandrova, E. Koyle, A.I. Boldyrev. Theoretical Study of Hydrogenation of Doubly-Aromatic B7-[J]. J. Mol. Model.2006,12,569-576.
    [37]H. L. Yu; R. L. Sang; Y. Y. Wu. Structure and Aromaticity of B6H5+Cation:A Novel Borhydride System Containing Planar Pentacoordinated Boron [J]. J. Phys. Chem. A. 2009,113,3382-3386.
    [38]N. G. Szwacki; V. Weber, C. J. Tymczak. Aromatic borezene[J]. J. Nanoscale Res. Lett.2009,4,1085-1089.
    [39]H. Bai, S.D. Li. Hydrogenation of B120/-:A Planar-to-Icosahedral Structural Transition in B12Hn0/-(n=1-6) Boron Hydride Clusters[J]. J. Clust. Sci., 2011,22,525-535.
    [40]Sergeeva A P, Zubarev D Y, Hua-jin Zhai, Boldyrev A I, Lai-sheng Wang, A Photoelectron Spectroscopic and Theoretical Study of B16- and B162-:An All-Boron Naphthalene[J]. J. Am. Chem. Soc.,2008.130.7244-7246
    [41]Q. Chen, S.D. Li.π-Aromatic B16H6:A Neutral Boron Hydride Analogue of Naphthalene[J]. J. Clust. Sci.,2011,22,513-523.
    [42]Q. Chen, H. Bai, J.C. Guo, C.Q. Miao, S.D. Li. Perfectly planar concentric π-aromatic B18H3-, B18H4, B18H5+, and B18H62+ with [10]annulene character[J]. Phys. Chem. Chem. Phys.,2011,13,20620-20626.
    [43]Y. Ohishi, K. Kimura, M. Yamaguchi, N. Uchida, T. Kanayama. Formation of hydrogenated boron clusters in an external quadrupole static attraction ion trap[J]. J. Chem. Phys.,2008,128,124304-12310.
    [44]H.J. Zhai, S. D. Li, L.S. Wang. Boronyls as key structural units in boron oxide clusters:B(BO)2- and B(BO)3-[J]. J. Am. Chem. Soc.,2007,129,9254-9255.
    [45]S.D. Li, H.J. Zhai, L.S. Wang. B2(BO)22--diboronyl diborene:A linear molecule with a triple boron-boron bond[J]. J. Am. Chem. Soc.,2008,130,2573-2579.
    [46]W.Z. Yao, J.C. Guo, H.G. Lu, S.D. Li. Td B(BO)4-:A tetrahedral boron oxide cluster analogous to boron hydride Td BH4-[J]. J. Phys. Chem. A,2009,113,2561-2564
    [47]Y.D. Zubarev, A.I. Boldyrev, J Li, H.J. Zhai, L.S. Wang. On the Chemical Bonding of Gold in Auro-Boron Oxide Clusters AunBO-(n= 1-3)[J]. J. Phys. Chem. A,2007, 111,1648-1658.
    [48]M.F. Zhou, N. Tsumori, Z. Li, K. Fan, L. Andrews, Q. Xu. OCBBCO:A Neutral Molecule with Some Boron-Boron Triple Bond Character[J]. J. Am. Chem. Soc. 2002,124,12936-12937.
    [49]M.F. Zhou, L. Jiang, Q. Xu. C=C Double-and Triple-Bond Formation from Reactions of B Atoms with CO:Experimental and Theoretical Characterization of OBBCCO and OBCCBO Molecules in Solid Argon[J]. Chem. Eur. J.2004, 10,5817-5822.
    [50]A.M. McAnoy, S. Dua, D. Schroder, J.H. Bowie, H. Schwarz. The Formation of CCBO and [CCBO]+from [CCBO]- in the Gas Phase:A Joint Experimental and Theoretical Study[J]. J. Phys. Chem. A 2003,107,1181-1187.
    [51]A.M. McAnoy, S. Dua, D. Schroder, J.H. Bowie, H. Schwarz. Generation of Neutral CCCCBO in the Gas Phase from [CCCCBO]- and Rearrangement of Energized CCCCBO to OCCCCB:A Joint Experimental and Theoretical Investigation[J]. J. Phys. Chem. A,2004,108,2426-2430.
    [52]M.L. Drummond, V. Meunier, B.G. Sumpter. Structure and Stability of Small Boron and Boron Oxide Clusters[J]. J. Phys. Chem. A,2007,111,6539-6551.
    [53]S.D. Li, J.C. Guo, G.M. Ren. Density functional theory investigations on boronyl-substituted ethylenes C2H4-m(BO)m(m=1-4) and acetylenes C2H2-m(BO)m (m=1,2)[J]. J. Mol. Struct:THEOCHEM,2007,821,153-159.
    [54]J.W. Lauher, K. Wald. Synthesis and structure of triphenylphosphine gold dodecacarbonyl tricobaltiron ([FeCo3(CO)12AuPPh3]):a trimetallic trigonal-bipyramidal cluster. Gold derivatives as structural analogs of hydrides[J]. J. Am. Chem. Soc.,1981,103,7648-7650.
    [55]K.P. Hall, D.M.P. Mingos. International Tables for X-ray Crystallography[J]. Prog Inorg Chem,1984,32,237-325.
    [56]F. Scherbaum, A. Grohmann, G. Muller, H. Schmidbaur. Synthesis, Structure, and Bonding of the Cation [((C6H5)3PAu)5C][J]. Angew. Chem., Int. Ed. Engl., 1989,28,463-465.
    [57]J. Li, P. Pyykko. Structure of tetrakis (phosphine) nitride-or-phosphinidyne or arsinidyneultragold (1+):Td or C4v[J]. Inorg.Chem,1993,32,2630-2634.
    [58]A. Grohmann, H. Schmidbaur. Electron-deficient bonding at pentacoordinate nitrogen[J].Aature,1990,345,140-142.
    [59]P. Pyykko, Y. Zhao. Relativistic pseudopotential calculation of bonding trends in XAum+n clusters (X=B-N,Al-S;n=4-6)[J]. Chem Phys Lett,1991,177,103-106.
    [60]W.Z. Yao, D.Z. Li, S.D. Li. Bridging Gold:B-Au-B Three-Center-Two-Electron Bonds in Electron-Deficient B2Aun-/0(n=1,3,5) and Mixed Analogues[J]. J. Comp. Chem.,2011,32,218-225.
    [61]A. Stock. Hydrides of Boron and Silicon. Cornell University Press, Ithaca, New York,1933.
    [62]A. Stock. C. Massanez. Die Dichte des Phosphordampfes[J]. Chem. Ber, 1912,45,3527-3539.
    [63](a)Flurry R F. Jr Quantum Chemistry-An introduction. Prentice-Hall, Inc. London, 1983. (b)Barden C J, Schaefer H F.Ⅲ Quantum Chemistry in the 21st century[J]. Pure and Applied Chemistry,2000,72:1405-1423.
    [64](a) Hohenberg P, Kohn W. Inhomogeneous Electron Gas. Phys Rev B,1964,136: 864-867. (b)Kohn W, Sham L J. Self-Consistent Equations Including Exchange and Correlation Effects[J]. Phys Rev A,1965,140:1133-1136.
    [65]R. Hoffmann. Building Bridges Between Inorganic and Organic Chemistry [J]. Angew. Chem. Int. Ed. Engl.,1982,21,711-724.
    [66]D.Y. Zubarev, A.I. Boldyrev. Developing paradigms of chemical bonding:adaptive natural density partitioning[J]. J. Phys. Chem. Chem. Phys.2008,10,5207-5217.
    [67](a) D Y Zubarev, A I Boldyrev, Revealing intuitively assessable chemical bonding patterns in organic aromatic molecules via adaptive natural density partitioning[J]. J. Org. Chem.,2008.73(23).9251-8; (b) D. Y. Zubarev and A. I. Boldyrev, Deciphering Chemical Bonding in Golden Cages[J]. J. Phys. Chem. A.,2009,113, 866-868; (c) Q. Chen, H. Bai, J.C. Guo, C.Q. Miao, S.D. Li. Perfectly planar concentric π-aromatic B18H3, B18H4, B18H5+, and B18H62+ with [10]annulene character[J]. Phys. Chem. Chem. Phys.,2011,13,20620-20626.
    [68]M. Haruta. Size-and support-dependency in the catalysis of gold[J]. Catal. Today. 1997,36,153-166.
    [69]F.F. Fan, A.J. Bard. An Electrochemical Coulomb Staircase:Detection of Single Electron-Transfer Events at Nanometer Electrodes[J].Science,1997,277,1791-1793.
    [70]A.C. Templeton, W.P. Wuelfing, R.W. Murray. Monolayer-Protected Cluster Molecules[J]. Acc. Chem. Res.2000,33,27-36.
    [71]R. Elghanian, J.J. Storhoff, R.C. Mucic, R.L. Letsinger, C.A. Mirkin, Selective Colorimetric Detection of Polynucleotides Based on the Distance-Dependent Optical Properties of Gold Nanoparticle[J]. Science,1997,277,1078-1081.
    [72]M. Valden, X. Lai, Onset of Catalytic Activity of Gold Clusters on Titania with the Appearance of Nonmetallic Properties[J]. Science,1998,281,1647-1650.
    [73]P. Pyykko. Angew. Chem. Int. Ed.2002,41,3573 and references therein.
    [74]F.A. Cotton, G. Wikinson, C.A. Murillo, M. Bochmann. Advanced Inorganic Chemistry,6th ed., Wiley, New York,1999.
    [75]B. Kiran, X. Li, H.J. Zhai, L. F. Cui, L.S. Wang. SiAu4:Aurosilane[J]. Angew. Chem. Int. Ed.2004,43,2125-2129.
    [76]X. Li, B. Kiran, L.S. Wang. Gold as Hydrogen. An Experimental and Theoretical Study of the Structures and Bonding in Disilicon Gold Clusters Si2Aun- and Si2Aun(n =2 and 4) and Comparisons to Si2H2 and Si2H4[J]. J. Phys. Chem. A 2005,109, 4366-4374.
    [77]B. Kiran, X. Li, H.J. Zhai, L.S. Wang. Gold as hydrogen. Structural and electronic properties and chemical bonding in Si3Au3+/0/- and comparisons to Si3H3+/0/-[J]. J. Chem. Phys.2006,125,133204-1-7.
    [78]H.G. Lu. In GXYZ Ver 1.0, A Random Cartesian Coordinates Generating Program; Shanxi University:Taiyuan,2008.
    [79](a) C. Lee, W. Yang, R.G Parr. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J]. Phys. Rev. B,1988,37:785-789. (b) A.D. Becke. Density-functional thermochemistry. III. The role of exact exchange[J]. J. Chem. Phys.,1993,98,5648-5652.
    [80]J.P. Perdew, K. Burke, M. Ernzerhof. Generalized Gradient Approximation Made Simple[J]. Phys. Rev. Lett.1996,77,3865-3868.
    [81]G.E. Scuseria, H.F. Schaefer. Is coupled cluster singles and doubles (CCSD) more computationally intensive than quadratic configuration interaction (QCISD)?[J]. J. Chem. Phys.,1989,90,3700-3703.
    [82](a) M. Dolg, U. Wedig, H. Stoll, H. Preuss. Energy-adjusted ab initio pseudopotentials or the first row transition elements[J]. J. Chem. Phys.,1987, 86,866-872. (b) J.M. L. Martin, A. Sundermann. Correlation consistent valence basis sets for use with the Stuttgart-Dresden-Bonn relativistic effective core potentials:The atoms Ga-Kr and In-Xe[J]. J. Chem. Phys.,2001,114,3408-3420.
    [83]R.A. Kendall, T.H. Dunning, R.J. Harrison. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions[J]. J. Chem. Phys.,1992, 96,6796-6806.
    [84]F. David, A. D. David. Heats of Formation of Simple Boron Compound[J]. J. Phys. Chem. A.1998,102,7053-7059.
    [85]W.E. Palke, W.N. Lipscomb. Molecular SCF Calculations on CH4, C2H2, C2H4, C2H6, BH3, B2H6, NH3, and HCN[J]. J. Am. Chem. Soc.,1966,88,2384-2393.
    [86]M.-B. Krogh-Jespersen, J. Chandrasekhar, E.-U. Wiirthwein, J. B. Collins, P.V. R. Schleyer. Molecular orbital study of tetrahedral, planar, and pyramidal structures of the isoelectronic series BH4-, CH4, NH4+, AIH4-, SiH4, and PH4+[J]. J. Am. Chem. Soc.1980,102,2263-2268.
    [87]F. Furche, R. Ahlrichs, P. Weis, C. Jacob, S. Gilb, T. Bierweiler, M.M. Kappes. The structures of small gold cluster anions as determined by a combination of ion mobility measurements and density functional calculations[J]. J. Chem. Phys.2002, 117,6982-6990.
    [88](a) Pyykk, P.; Riedel, S.; Patzschke, M. Triple-Bond covalent radii[J].Chem Eur J 2005,11,3511-3520; (b) Pyykko, P.; Atsumi, M. Molecular double-bond covalent radii for elements Li-E112[J].Chem Eur J 2009,15,12770-12779.
    [89]E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J.A. Bohmann, C.M. Morales, F. Weinhold. NBO 5.0; Theoretical Chemistry Institute, University of Wisconsin:Madison, WI,2001.
    [90]X. Li, B. Kiran, L.S. Wang. Gold as Hydrogen. An Experimental and Theoretical Study of the Structures and Bonding in Disilicon Gold Clusters Si2Aun- and Si2Aun (n =2 and 4) and Comparisons to Si2H2 and Si2H4[J]. J. Phys. Chem. A,2005, 109,4366-4374.
    [91]H.J. Zhai, L.S. Wang, D.Y. Zubarev, A.I. Boldyrev. Gold Apes Hydrogen. The Structure and Bonding in the Planar B7Au2- and B7Au2 Clusters[J]. J. Phys. Chem. A, 2006,110,1689-1693.
    [92]D.Z. Li, S.D. Li. An Ab Initio Theoretical Investigation on the Geometrical and Electronic Structures of BAun-1/0(n=1-4) Clusters[J]. Int. J. Quant. Chem., 2011,111,4418-4424.
    [93]Largo A., Barrientos C. A theoretical study of the C2H, C2F and C2Cl radicals and their positive ions[J]. J. Chem. Phys.1989,138,291-301.
    [94]K. Lammertsma, T. Ohwada. Three-Center, Two-Electron Systems. Origin of the Tilting of Their Substituents[J]. J. Am. Chem. Soc.1996,118,7247-7254.
    [95]G. Stefan, W. Patrick, F. Filip, A. Reinhart, M. K. Manfred. Structures of small gold cluster cation (Aun+,n< 14):Ion mobility measurements versus density functional calculations[J]. J. Chem. Phys.2002,116,4094-4101.
    [96]S. Zhao, Y. L. Ren, J. J. Wang, W. P. Yin. Density Functional Study of Hydrogen Binding on Gold and Silver-Gold Clusters[J]. J. Phys. Chem. A 2010,114, 4917-4923.
    [97]Y. Liu, D. W. Shao, X. C. Xian. Theoretical study of aromaticity in small hydrogen and metal cation clusters X3+(X=H, Li, Na, K, and Cu)[J]. Int. J. Quant. Chem. 2007,107,722-728.
    [98]R. W. A. Havenith, F. D. Proft, P. W. Fowler, P. Geerlings. σ-Aromaticity in H3+and Li3+ Insights from ring-current maps[J]. J. Chem. Phys. Lett.2005,407,391-396.
    [99]K Wolinski, J F Hilton, and P Pulay, Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations[J]. J. Am. Chem. Soc.,1990.112.8251-8260.
    [100](a) H Fallah-Bagher-Shaidaei, C S Wannere, C Corminboeuf, R Puchta, P R Schleyer, Which NICS Aromaticity Index for Planar p Rings Is Best?[J] Org. Lett.,2006.8(5). 863-866.(b) P R Schleyer, Nucleus-Independent Chemical Shifts (NICS):A Simple and Efficient Aromaticity Probe[J]. J. Am.Chem. Soc.,1996.118.6317-6318.
    [101]T. M. Krygowski, M. K. Cyranski, Z. Czarnocki, G. Hafelinger, A. R. Katritzky. Aromaticity-A Theoretical Concept of Immense Practical Importance[J]. J. Tetrahedron,2000,56,1783-1796.
    [102]F. Furche, R. Ahlrichs, P. Weis, C. Jacob, S. Gilb, T. Bierweiler, M. M. Kappes. The Structures of small gold cluster anions as determined by a combination of ion mobility measurements and density functional calculations[J]. J. Chem. Phys. 2002,117,6982-6990.
    [103]J. Li, X. Li, H.J. Zhai; L.S. Wang. Au20:A Tetrahedral Cluster[J]. Science 2003, 299,864-867.
    [104](a) A.N. Alexandrova; A.I. Boldyrev; Y.J. Fu; X.B. Wang; L.S Wang. Structure of the NaxClx+1-(x=1-4) Clusters via Ab Initio Genetic Algorithm and Photoelectron Spectroscopy[J]. J. Chem. Phys.2004,121,5709-5719. (b) A.N. Alexandrova, A.I. Boldyrev. Search for the Lin0/+1/-1(n=5-7) Lowest-Energy Structures Using the ab Initio Gradient Embedded Genetic Algorithm (GEGA). Elucidation of the Chemical Bonding in the Lithium Clusters[J]. J Chem Theory and Comput.2005,1,566.
    [105]A. P. Sergeeva, D. Y. Zubarev, H.J. Zhai, A. I. Boldyrev, L.S. Wang. A Photoelectron Spectroscopic and Theoretical Study of B16-and B162-:An All-Boron Naphthalene[J]. J. Am. Chem. Soc.,2008,130,7244-7246.
    [106]W. Huang, A.P. Sergeeva, H.J. Zhai, B.B. Averkiev, L.S.Wang, A.I. Boldyrev. A Concentric Planar Doubly π Aromatic B19- Cluster[J]. J. Nature. Chem.2010,2, 202-206.
    [107]S. Sahu, A. Shukla. Probing Aromaticity of Borozene Through Optical and Dielectric Response:A Theoretical Study[J]. Nanoscale Res. Lett.2010,5,714-719.
    [108](a) M. Head-Gordon, J.A. Pople, M.J. Frisch. MP2 energy evaluation by direct methods[J]. Chem. Phys. Lett.1988,153,503-506. (b) M.J. Frisch, M. Head-Gordon, J.A. Pople. A direct MP2 gradient method[J]. Chem. Phys. Lett.1990,166,275.
    [109](a) B. Silvi, A. Savin, Classification of chemical bonds based on topological analysis of electron localization functions[J]. Nature,1994,371,683-686. (b)A. Becke, K. Edgecombe. A simple measure of electron localization in atomic and molecular systems[J]. J. Chem. Phys.,1990,92,5397-5403.
    [110](a) M.E. Casida; C. Jamorski; K.C. Casida; D.R. Salahub. Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory:Characterization and correction of the time-dependent local density approximation ionization threshold[J]. J. Chem. Phys.1998,108,4439-4449. (b) R.E. Stratmann; G.E. Scuseria; M.J. Frisch. An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules[J]. J. Chem. Phys.1998,109,8218-8224.
    [111]M. J. Frisch, et al. Gaussian 03, revision, A.1; Gaussian, Inc.:Pittsburgh, PA,2003.
    [112]Z.H. Zhai, L.S. Wang, A.N. Alexandrova, A.I. Boldyrev, V.G. Zakrzewski. E. Steiner, P.W. Fowler. A Photoelectron Spectroscopy and Ab Initio Study of B3-and B4-Anions and Their Neutrals[J]. J. Phys. Chem. A,2003,107,9319-9328.
    [113]H.J Zhai, A.N Alexandrova, K.A Birch, A.I. Boldyrev, L.S. Wang. Hepta-and Octa-Coordinated Boron in Molecular Wheels of 8-and 9-Atom Boron Clusters: Observation and Confirmation[J]. Angew. Chem. Int. Ed.,2003,42,6004-6008.
    [114]H.J. Zhai, L.S. Wang, A.N. Alexandrova, A.I. Boldyrev. On the Electronic Structure and Chemical Bonding of B5-and B5 by Photoelectron Spectroscopy and Ab Initio Calculations[J]. J. Chem. Phys.2002,117,7917-7924.
    [115]H.J. Zhai, L.S. Wang. Probing the Electronic Structure and Aromaticity of Pentapnictogen Cluster Anions Pns (Pn= P, As, Sb, and Bi) Using Photoelectron Spectroscopy and Ab Initio Calculations[J]. J. Phys. Chem. A,2002,106,5600-5606.
    [115]J.C.Santos, J.Andres, A.Aizman, P. Fuentealba, An Aromaticity Scale Based on the Topological Analysis of the Electron Localization Function Including σ and π Contributions[J]. J. Chem. Theor. Comput.2005,1,83-86.
    [116]A.N. Alexandrova, H.J. Zhai, L.S. Wang, A.I. Boldyrev. Molecular Wheel Bg2-as a New Inorganic Ligand. Photoelectron Spectroscopy and Ab Initio Characterization of LiB8-[J]. Inorg. Chem.2004,43,3552-3554.
    [117](a) P. v. R. Schleyer, C. Maerker, A. Dransfeld, H.-J. Jiao and N. J. R. E. Hommes, Nucleus-Independent Chemical Shifts:A Simple and Efficient Aromaticity Probe [J] J. Am. Chem. Soc.,1996,118,6317-6318; (b) P. v. R. Schleyer, H. Jiao, N. J. R. v. E. Hommes, V. G. Malkin and O. Malkina, An Evaluation of the Aromaticity of Inorganic Rings:Refined Evidence from Magnetic Properties [J] J. Am. Chem. Soc., 1997,119,12669-12670.
    [118](a) A.D. Becke. Density-functional exchange-energy approximation with correct asymptotic behavior[J]. Phys. ReV. A,1988,38,3098-3100. (b) J.P. Perdew. Density-functional approximation for the correlation energy of the inhomogeneous electron gas[J]. Phys. ReV. B,1986,33,8822-8824.
    [119]H.J. Zhai, L.M. Wang, S.D. Li, L.S. Wang. Vibrationally-Resolved Photoelectron Spectroscopy of BO- and BO2-:A Joint Experimental and Theoretical Study[J]. J. Phys. Chem. A,2007,111,1030-1035.
    [120]W.Z. Yao, J.C. Guo, H.G. Lu, S.D. Li. D∞h B2(BS)2-/2-and Td B(BS)4-:Boron Sulfide Clusters Containing BB Multiple Bonds and B-Tetrahedral Centers[J]. Int. J. Quant. Chem.,2010,110,2689-2696.
    [121]T. P. Fehlner, W.S. Koski. The Dissociation of BH3CO into BH3 and CO[J]. J. Am. Chem. Soc.1965,87,409-413.
    [122]A. B. Burg, Y.C. Fu. Kinetics of the Decomposition of BH3 PF3 and Related Compounds. A Revised Estimate of the Dissociation Energy of Diborane[J]. J. Am. Chem. Soc.1966,88,1147-1151.
    [123]C.W. Bock, M. Trachtman, C. Murphy, B. Muschert, G.J. Mains. Ab initio molecular orbital study of boron, aluminum, gallium mu.-hydrido-bridged hexahydrides[J]. J. Phys. Chem.1991,95,2339-2344.
    [124]V. Barone, L. Orlandini, C. Adamo. Density Functional Study of Diborane, Dialane, and Digallane [J]. J. Phys. Chem.1994,98,13185-13188.
    [125]J.A. Tossell, J.H. Moore.2D 13C-coupled HMQC-ROESY:a probe for NOEs between equivalent protons [J]. J. Am. Chem. Soc.1992,114,1115-1117.
    [126]L. Barton, F.A. Grimm, R.F. Porter. Boroxine:A Simplified Preparation[J]. Inorg. Chem.1966,5,2076-2078.
    [127]W. Harshbarger, G. Lee, R.F. Forter, S.H. Bauer. Structure of borazine[J]. Inorg. Chem.1969,8,1683-1689.
    [128]P.W. Fowler, E. Steiner. Ring Currents and Aromaticity of Monocyclic π-Electron Systems C6H6, B3N3H6, B3O3H3, C3N3H3, C5H5-, C7H7+,C3N3F3, C6H3F3, and C6F6[J]. J. Phys. Chem. A,1997,101,1409-1413.
    [129]J.J. Engelberts, R.W.A. Havenith, J.H. van Lenthe, L.W. Jenneskens, P. Fowler. The Electronic Structure of Inorganic Benzenes:Valence Bond and Ring-Current Descriptions[J]. Inorg. Chem.,2005,44,5266-5272.
    [130]C.H. Chakg, R.F. Porter, S.H. Baler. Molecular structure of boroxin, H3B3O3, determined by electron diffraction[J]. Inorg. Chem.1969,8,1689-1693.
    [131]J.A. Tossell, P. Lazzeretti. Calculation of the structure, vibrational spectra, and polarizability of boroxine, H3B3O3, a model for boroxol rings in vitreous B2O3[J]. J. Phys. Chem.1990,94,1723-1724.
    [132]L.B. Krishna, D.M. George, D.L. Joseph, W.B. Charles. Thermodynamics of Boroxine Formation from the Aliphatic Boronic Acid Monomers R-B(OH)2 (R=H, H3C, H2N, HO, and F):A Computational Investigation[J]. J. Phys. Chem. A, 2011,115,7785-7793.
    [133]L.Y. Zhu, J.L. Wang. Ab Initio Study of Structural, Electronic, and Magnetic Properties of Transition Metal-Borazine Molecular Wires[J]. J. Phys. Chem. C, 2009,113,8767-8771.
    [134]H.J. Xiang, J.L. Yang, J.G. Hou, Q.S. Zhu. One-Dimensional Transition Metal-Benzene Sandwich Polymers:Possible Ideal Conductors for Spin Transport[J]. J. Am. Chem. Soc.,2006,128,2310-2314.
    [135]J.L. Wang, L.Y. Zhu, X.Y. Zhang, M.L. Yang. Size-and Shape-Dependent Polarizabilities of Sandwich and Rice-Ball Con Bzm Clusters from Density Functional Theory[J]. J. Phys. Chem. A,2008,112,8226-8230.
    [136]J.L. Wang, P.H. Acioli, J. Jellinek. Structure and Magnetism of VnBzn+1 Sandwich Cluster[J]. J. Am. Chem. Soc.,2005,127,2812-2813.
    [137]Stuttgart RSC 1997 ECP basis sets used in this work and the related references therein can be obtained from https://bse.pnl.gov/bse/portal.
    [138]T. Yasuike, S. Yabushita. Ionization Energies and Bonding Scheme of Multiple-Decker Sandwich Clusters:Mn(C6H6)n+1[J]. J. Phys. Chem. A,1999,103, 4533-4542.
    [139]P.v.R. Schleyer, B. Kiran, D.V. Simion, T.S. Sorensen. Does Cr(CO)3 Complexation Reduce the Aromaticity of Benzene?[J]. J. Am. Chem. Soc.2000,122,510-513.
    [140]H. Xiang, J. Yang, J.G. Hou, Q. Zhu. One-Dimensional Transition Metal-Benzene Sandwich Polymers:Possible Ideal Conductors for Spin Transport[J]. J. Am. Chem. Soc.,2006,128,2310-2314.
    [141]S. Sairam, P.P. Mallajosyula, K.P. Swapan. Organometallic vanadium-borazine systems:efficient one-dimensional half-metallic spin filters [J].J. Mater. Chem. 2009,19,1761-1766.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700