不同种属动物尿浓缩功能和红细胞膜通透性的差异研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的:通过研究不同种属动物肾脏解剖结构、尿浓缩能力和红细胞膜尿素通透性,以及不同蛋白质摄取量对尿浓缩能力和相关蛋白表达的调节,阐明尿素对尿浓缩能力和肾脏结构进化的作用及其机制。
     技术路线:1通过对不同种属间的肾脏结构、尿浓缩功能的比较研究,分析尿素水平在动物肾脏结构和功能进化过程中的作用;2通过给大鼠饲喂不同量蛋白,研究尿素对尿浓缩功能的影响和相关蛋白的基因表达调控;3通过红细胞膜的通透性实验,对比分析不同种属间的尿素代谢水平与红细胞膜通透性的相关性。
     实验方法:RT-PCR,Western-blot,Stopped-flow,免疫组化等多种方法。
     主要结论:1长期高蛋白摄入量产生的高尿素水平会导致进化过程中肾脏结构和功能发生适应性改变;2高蛋白摄入量所产生的高尿素水平,显著调控尿浓缩能力和尿浓缩相关通道蛋白的表达水平;3血尿素水平差异可导致在进化过程中长期红细胞膜尿素通透性发生适应性改变,但红细胞膜对水的通透性则不受影响。
The kidney is the main excretory organ in the body, and responsible for theexcretion of various metabolic end products, as well as drugs and foreign matters intothe body. Moreover, the kidney is also an important regulatory system for the internalenvironment of the body, regulating the body fluid capacity and the excretion ofmetabolites in the body to maintain the internal homeostasis of the body. Mammaliankidney can not only excrete diluted urine but also have the ability to concentrate urine,namely, the ability to excrete the urine with higher osmotic pressure than that ofplasma. Urinary concentrating abilities of kidneys are quite different in differentspecies of animals and this difference is related to a variety of factors. In this study,various technical means of comparative physiology, comparative anatomy andmolecular biology were applied to compare the renal anatomy and physiology, bodyfluids and contents of metabolic ions in the kidneys, permeabilities of water and ureaacross red cell membrane, similarities and differences in gene expressions of ureatransport and aquaporin in10different species of animals, and analyze the correlationbetween the factors described above and the urine concentration function of kidney.The study may not only lay a foundation for further revealing the urine concentratingmechanism of mammalian kidney, but also provide the data of basic research for thescreening of kidney animal models in the study of human kidney diseases.
     First, the renal physiology and anatomical structure were compared and observedin10different species of animals, including donkey, cow, sheep, pig, cat, fox, dog, rabbit,rat and mouse, and some renal physiological and anatomical indexes, such as the bodyweight and renal cortex, absolute thickness of outer medulla, inner medulla and medullarytip, and ratio of these different parts that accounted for in the kidney, were measured andcalculated. The results showed that both the physiology and anatomical structure weredifferent among the different species of animals, and the research on these differences instructure could lay the foundation for further experimental studies.
     Secondly, the urine, serum, and sodium, potassium, chloride ion and ureanitrogen contents in different anatomical parts of the kidneys of the10kinds of animalswere detected in the experiment. The results showed that the differences in the serumsodium and chloride ion contents of the different species of animals were not significant different, while the differences in serum potassium and urea nitrogen contents among thespecies were found; there was no difference in contents of sodium, potassium and chlorideions in the urine among the species, but the urea nitrogen contents in the urine weresignificantly different among the species; the differences in the sodium ion contents in therenal cortex, outer medulla and inner medulla among the species were not significant, andthere was a species specificity in the sodium ion contents in the medullary tips of onlyrodents compared with those of other species; there was no difference in the potassiumcontents in the different parts of kidneys among the species, but the overall content levels ofpotassium in them were significantly higher than those in the serum; the differences inchloride ion contents in different anatomical parts of kidney were not significant among thespecies, only chloride ion contents in the medullary tips of rodents was significantly higherthan those of the other species; the overall levels of urea nitrogen in the different anatomicalparts of the kidney were comparatively lower, and only those in the medullary tips of therodents were higher and there was a significant difference compared with those of the otherspecies. The differences in the ion and urea contents in the urine of different parts ofkidneys among the different species of animals indicate the differences in the urineconcentration function, and its mechanism may be associated with multiple factors, such asrenal papillary length, the number of renal units, the percentage of long-loop nephron, theheterogeneity of nephron, the formation of the renal sinus, the degree of fusion of thecollecting duct, the formation of vascular bundle in the outer medulla, the epithelialstructure of medullary loop descending thin segment and the development of medulla.
     Thirdly, in our study, the rat model with different feeding amounts of proteinswas established, in which the different feeding amounts of proteins were taken as theinfluence factors, real-time fluorescent quantitative RT-PCR, Western blot andimmunohistochemistry and other molecular biology techniques were applied to do acomprehensive research, such as the relationship between the different amounts of proteinintake and urine concentration function, the comparison on the general signs of rats fed withdifferent amount of proteins, the analysis on related detection indicators in urine and blood,and the expressions of renal urea transport and aquaporin at the gene and protein level, andthe location of their expressions. The results verified that with the increase in the feedingamount of protein to the rats, their body weights, and amounts of water intake and urineexcretion increased significantly; changes in the serum ion, serum urea nitrogen andcreatinine in the different groups of animals fed with different amounts of protein were not so obvious; however, changes in urea nitrogen, osmotic pressure, and clearances of urea andcreatinine increased with the increase of feeding amount of protein, and only the urinecreatinine concentration was opposite (reduced with the increase of feeding amount ofprotein); simultaneously, AQP2and UT-A3were found to be the important transportsresponsible for regulating the renal urine concentration function. This study may provide anscientific experimental animal model and some basic research data for the treatment ofhuman kidney diseases and the development of the drugs.
     In summary, the differences in the permeability of water and urea across the redblood cell membrane among the different species of animals were compared toexplore whether the permeability was related to the urine concentration function. Thestopped-flow light scattering was employed in the experiment to detect thepermeability of urea across the red cell membrane of10different species of animals.The results showed that the red cell membranes of dogs, foxes and cats and othercarnivorous animals have a higher urea permeability, and measured Pureavalues(×10~(-5)cm/s) were5.3±0.6,3.8±0.5and2.8±0.7respectively; the values in theherbivorous animals, such as cow, donkey and sheep were lower, and0.8±0.2,0.7±0.2and1.0±0.1respectively; those in the omnivorous animals (pig) were between thoseof two species described above, and the Pureavalue was1.5±0.1; Those in the rodentanimals (mice, rats and rabbits) were between the carnivorous animals andomnivorous animals, and the Pureavalues were3.3±0.4,2.5±0.3and2.4±0.3,respectively, which presented great differences among the species. At the same timewhen Pureavalues in the different species of animals were measured, the waterpermeability was also examined. The results demonstrated that among the differentspecies of animals, the red cell membrane permeabilities of water were similar andthere was no significant difference. The above description indicates that thedifferences in the urea permeability across the erythrocyte membrane among thedifferent species of animal should be related to the long-term diet, and also closely tothe kidney’s ability to concentrate urea.
引文
[1] A.S.罗默, T.S.帕尔森著,杨白仑译.脊椎动物身体[M].北京:科学出版社,1985.
    [2]马克勤,郑光美.脊椎动物比较解剖学[M].北京:高等教育出版社,1984.
    [3]曲漱惠等.动物胚胎学[M].北京:人民教育出版社,1980.
    [4]斯托凯.禽类生理学[M].北京:科学出版社,1982.
    [5]张孟闻.脊椎动物比较解剖学[M].北京:高等教育出版社,1988.
    [6] Lipschutz JH. Molecular dovelopment of the kidney: a review of the results ofgene disruption studies. Am J Kidney Dis [J].1998;31:383-397.
    [7] Miner JH, Sanes JR. Molecular and functional defects in kidneys of micelacking collagen alpha3(IV): implications for Alport syndrome [J].J Cell Biol.1996;135:1403-1413.
    [8] Engle SJ, Stockelman MG, Chen J, et al. Adenine phosphoribosyltransferase-deficient mice develop2,8-dihydroxyadenine nephrolithiasis[J].Proc Natl Acad Sci USA.199628;93:5307-5312.
    [9] Veis DJ, Sorenson CM, Shutter JR, Korsmever SJ. Bcl-2-deficient micedemonstrate fulminant lymphoid apoptosis, polycystic kidneys, andhypopigmented hair [J]. Cell.1993;75:229-240.
    [10] Morham SG, Langenbach R, Loftin CD, Tiano HF, Vouloumanos N, Jennette JC,Mahler JF, Kluckman KD, Ledford A, Lee CA, Smithies O. Prostaglandinsynthase2gene disruption causes severe renal pathology in the mouse [J]. Cell.1995;83:473-482.
    [11]陈嘉绩.牛的肾段动脉和肾段[J].畜牧兽医学报.1994;25:145-149.
    [12]陈嘉绩.猪肾段动脉与肾段的观察[J].中国兽医学报.1994;14:68-71.
    [13]陈嘉绩.山羊肾、肾段动脉及肾段的观察[J].畜牧兽医学报.1996;27:183-187.
    [14] Takahashi T, Huynh-Do U, Daniel TO. Renal microvascular assembly and repair:power and promise of molecular definition [J]. Kidney Int.1998;53:826-835.
    [15] Kimura kenjira, Suzuki Naoe, Kamijo Atuko. Differential effects of comparativestudy using hydronephrotic rats [J]. Current the rapeutic Research.2000;61:367-375.
    [16] Soriano P. Abnormal kidney development and hematological disorders inPDGF beta-receptor mutant mice [J]. Genes Dev.1994;8:1888-1896.
    [17] Ford MD, Cauchi J, Greferath U, Bertram JF. Expression of fibroblast growthfactors and their receptors in rat glomeruli [J]. Kidney Int.1997;51:1729-1738.
    [18] Kee N, McTavish AJ, Papillon J, Cybulsky AV. Receptor protein tyrosinekinases in perinatal developing rat kidney [J]. Kidney Int.1997;52:309-317.
    [19] Ivar Sperber. Studies on the mammalian kidney[J]. Zool Bidrag Uppsala.1944;22:249-432.
    [20] Schmidt-Nielsen B. Urea excretion in mammals[J]. Physiol Rev.1958Apr;38(2):139-168.
    [21] Abrahams S, Greenwald L, Stetson DL. Contribution of renal medullarymitochondrial density to urinary concentrating ability in mammals[J].Am JPhysiol.1991;261:R719-R726.
    [22] Hulbert AJ, Else PL. Membranes and the setting of energy demand[J]. J ExpBiol.2005;208:1593-1599.
    [23] Casotti G, Braun EJ. Renal anatomy in sparrows from different environments[J].J Morphol.2000;243:283-291.
    [24] Goldstein DL, Braun EJ. Structure and concentrating ability in the aviankidney[J]. Am J Physiol.1989;256:R501-R509.
    [25] Braun EJ, Dantzler WH. Function of mammalian-type and reptilian-typenephrons in kidneys of desert quail[J]. Am J Physiol.1972;222:617-629.
    [26] Inscho EW, Ohishi K, Navar LG. Effects of ATP on pre-and postglomerularjuxtamedullary microvasculature[J]. Am J Physiol.1992;263:F886-F893.
    [27] Inscho EW, Mitchell KD, Navar LG. Extracellular ATP in the regulation ofrenal microvascular function[J]. FASEB J.1994;8:319-328.
    [28] Bell CJ, Manfredi G, Griffiths EJ, Rutter GA. Luciferase expression for ATPimaging: application to cardiac myocytes[J]. Methods Cell Biol.2007;80:341-352.
    [29] Scheuermann TH, Keeler C, Hodsdon ME. Consequences of binding anS-adenosylmethionine analogue on the structure and dynamics of the thiopurinemethyltransferase protein backbone[J]. Biochemistry.2004;43:12198-12209.
    [30] Shen XY, Xue YY, Meng JR, Xiang QL, Xie BS, Wang YQ, Chen J. The studyon the mechanism of G intolerance of rabbits after simulated weightlessness[J].J Gravit Physiol.1995;2:P23-P24.
    [31] Mise N, Kimura K, Kurabayashi M, Nagai R, Okuda T, Ohba S, Suzuki N,Miyashita K, Kamijo A, Tojo A, Goto A, Omata M. Angiotensin II enhancesglomerular expression of a nonmuscle myosin heavy chain, SMemb, withextracellular matrix accumulation[J]. Nephron.2002;90:477-483.
    [32] Heyman SN, Fuchs S, Jaffe R, Shina A, Ellezian L, Brezis M, Rosen S. Renalmicrocirculation and tissue damage during acute ureteral obstruction in the rat:effect of saline infusion, indomethacin and radiocontrast. Kidney Int[J].1997;51:653-663.
    [33] Cairns HS, Rogerson ME, Westwick J, Neild GH. Regional heterogeneity ofendothelium-dependent vasodilatation in the rabbit kidney[J]. J Physiol.1991;436:421-429.
    [34] Arendshorst WJ, Br nnstr m K, Ruan X. Actions of angiotensin Ⅱon the renalmicrovasculature. J Am Soc Nephrol[J].1999;10suppl11:S149-S161.
    [35] Weihprecht H, Lorenz JN, Briggs JP, Schnermann J. Synergistic effects ofangiotensin and adenosine in the renal microvasculature[J]. Am J Physiol.1994;266:F227-F239.
    [36] László F, Whittle BJ. Endogenous nitric oxide in the maintenance of ratmicrovascular integrity against widespread plasma leakage followingabdominal laparotomy[J]. Br J Pharmacol.1999;126:515-521.
    [37] Heyman SN, Goldfarb M, Shina A, Karmeli F, Rosen S. N-acetylcysteineameliorates renal microcirculation: studies in rats[J]. Kidney Int.2003;63:634-641.
    [38] Wang GX, Cai SX, Wang PQ, Ouyang KQ, Wang YL, Xu SR. Shear-inducedchanges in endothelin-1secretion of microvascular endothelial cells[J].Microvasc Res.2002;63:209-217.
    [39] Tóth-Heyn P, Guignard JP. Endogenous bradykinin regulates renal function inthe newborn rabbit[J]. Biolo Neonate.1998;73:330-336.
    [40]西山成.肾微循环-管球反馈机制及肾微循环的研究法[J].日本医学介绍.2002;23:502-503.
    [41] Layton HE, Knepper MA, Chou CL. Permeability criteria for effective functionof passive countercurrent multiplier[J]. Am J Physiol.1996;270:F9-F20.
    [42] Pannabecker TL, Dantzler WH. Three-dimensional lateral and verticalrelationships of inner medullary loops of Henle and collecting ducts[J]. Am JPhysiol Renal Physiol.2004;287:F767-F774.
    [43] Pannabecker TL, Abbott DE, Dantzler WH. Three-dimensional functionalreconstruction of inner medullary thin limbs of Henle's loop[J]. Am J PhysiolRenal Physiol.2004;286:F38-F45.
    [44] Lemley KV, Kriz W. Cycles and separations: the histotopography of the urinaryconcentrating process[J]. Kidney Int.1987;31:538-548.
    [45] Pannabecker TL, Dantzler WH. Three-dimensional architecture of innermedullary vasa recta[J]. Am J Physiol Renal Physiol.2006;290:F1355-F1366.
    [46] Knepper MA, Roch-Ramel F. Pathways of urea transport in the mammaliankidney[J]. Kidney Int.1987;31:629-633.
    [47] Wade JB, Lee AJ, Liu J, Ecelbarger CA, Mitchell C, Bradford AD, Terris J,Kim GH, Knepper MA. UT-A2: a55-kDa urea transporter in thin descendinglimb whose abundance is regulated by vasopressin[J]. Am J Physiol RenalPhysiol.2000;278:F52-F62.
    [48]王生余,朱学军.尿浓缩功能检查及影响因素[J].肾脏病与透析肾移植杂志.2001;10:564-568.
    [49] Sands JM, Layton HE. The Physiology of urinary concentration: an update.Semin Nephrol[J].2009;29:178-195.
    [50] Fenton RA, Chou CL, Stewart GS, Smith CP, Knepper MA. Urinaryconcentrating defect in mice with selective deletion of phloretin-sensitive ureatransporters in the renal collecting duct[J]. Proc Natl Acad Sci USA.2004;101:7469-7474.
    [51] Uchida S, Sohara E, Rai T, Ikawa M, Okabe M, Sasaki S. Impaired ureaaccumulation in the inner medulla of mice lacking the urea transporterUT-A2[J]. Mol Cell Biol.2005;25:7357-7363.
    [52] Yang B, Bankir L, Gillespie A, Epstein CJ, Verkman AS. Urea-selectiveconcentrating defect in transgenic mice lacking urea transporter UT-B[J]. J BiolChem.2002;277:10633-10637.
    [53] Yang B, Verkman AS. Analysis of double knockout mice lacking aquaporin-1and urea transporter UT-B. Evidence for UT-B-facilitated water transport inerythrocytes[J]. J Biol Chem.2002;277:36782-36786.
    [54] Klein JD, Sands JM, Qian L, Wang X, Yang B. Upregulation of urea transporterUT-A2and water channels AQP2and AQP3in mice lacking urea transporterUT-B[J]. J Am Soc Nephrol.2004;15:1161-1167.
    [55] Sands JM, Schrader DC. An independent effect of osmolality on urea transportin rat terminal inner medullary collecting ducts[J]. J Clin Invest.1991;88:137-142.
    [56] Gillin AG, Sands JM. Characteristics of osmolarity-stimulated urea transport inrat IMCD[J]. Am J Physiol.1992;262:F1061-F1067.
    [57] Kudo LH, César KR, Ping WC, Rocha AS. Effect of peritubular hypertonicityon water and urea transport of inner medullary collecting duct[J]. Am J Physiol.1992;262:F338-F347.
    [58] Chou CL, Sands JM, Nonoguchi H, Knepper MA. Concentration dependenceof urea and thiourea transport in rat inner medullary collecting duct[J]. Am JPhysiol.1990;258:F486-F494.
    [59] Gillin AG, Star RA, Sands JM. Osmolarity-stimulated urea transport in ratterminal IMCD: role of intracellular calcium[J]. Am J Physiol.1993;265:F272-F277.
    [60] Kato A, Klein JD, Zhang C, Sands JM. Angiotensin II increasesvasopressin-stimulated facilitated urea permeability in rat terminal IMCDs[J].Am J Physiol Renal Physiol.2000;279:F835-F840.
    [61] Blessing NW, Blount MA, Sands JM, Martin CF, Klein JD. Urea transportersUT-A1and UT-A3accumulate in the plasma membrane in response toincreased hypertonicity[J]. Am J Physiol Renal Physiol.2008;295:F1336-F1341.
    [62] Klein JD, Fr hlich O, Blount MA, Martin CF, Smith TD, Sands JM.Vasopressin increases plasma membrane accumulation of urea transporterUT-A1in rat inner medullary collecting ducts[J]. J Am Soc Nephrol.2006;17:2680-2686.
    [63] Reynolds CK, Kristensen NB. Nitrogen recycling through the gut and thenitrogen economy of ruminants: an asynchronous symbiosis[J]. J Anim Sci.2008;86:E293-E305.
    [64] Parker DS, Lomax MA, Seal CJ, Wilton JC. Metabolic implications ofammonia production in the ruminant[J]. Proc Nutr Soc.1995;54:549-563.
    [65]王文娟,汪水平,谭支良.反刍动物瘤胃氮代谢研究进展[J].华中农业大学学报.2007;26:747-754.
    [66] Nolan JV, Leng RA. Isotope techniques for studying the dynamics of nitrogenmetabolism in ruminants[J]. Proc Nutr Soc.1974;33:1-8.
    [67] Russell JB, Rychlik JL. Factors that alter rumen microbial ecology[J]. Science.2001;292:1119-1122.
    [68] Visek WJ. Some aspects of ammonia toxicity in animal cells[J]. J Dairy Sci.1968;51:286-295.
    [69] Atasoglu C, Guliye AY, Wallace RJ. Use of stable isotopes to measure de novosynthesis and turnover of amino acid-C and-N in mixed micro-organisms fromthe sheep rumen in vitro[J]. Br J Nutr.2004;91:235-262.
    [70]汪水平,王文娟,左福元.反刍动物对淀粉的利用[M].第三届畜牧科技论坛论文集.北京:中国农业出版社.2007;353-360.
    [71] Younes H, Alphonse JC, Hadj-Abdelkader M, Rémésy C. Fermentablecarbohydrate and digestive nitrogen excretion[J]. J Ren Nutr.2001;11:139-148.
    [72] Fondren LD, McLain J, Jackson DM, et al. Studies of reactions of a series ofions with nitrogen containing heterocyclic molecules using a selected ion flowtube[J]. Inter J Mass Spect.2007;265:60-67.
    [73] Elliott J, Mulvihill E, Duncan C, Forsythe R, Kritchevsky D. Effects of tomatopomace and mixed-vegetable pomace on serum and liver cholesterol in rats[J]. JNutr.1981;111:2203-2211.
    [74] NRC. Nutrient requirements of dairy cattle[M]. Washington(DC): NationalAcademies Press.2001;44-49.
    [75]冯仰廉.反刍动物营养学[M].北京:科学出版社.2004;233-234,522-531,536-547.
    [76] Lobley GE, Milano GD. Regulation of hepatic nitrogen metabolism inruminants[J]. Proc Nutr Soc.1997;56:547-563.
    [77] Visek WJ. Ammonia: its effects on biological systems, metabolic hormones,and reproduction[J]. J Dairy Sci.1984;67:481-498.
    [78] H ussinger D, Lamers WH, Moorman AF. Hepatocyte heterogeneity in themetabolism of amino acids and ammonia[J]. Enzyme.1992;46:72-93.
    [79] Reynolds CK. Metabolism of nitrogenous compounds by ruminant liver[J]. JNutr.1992;122:850-854.
    [80] Maltby SA, Reynolds CK, Lomax MA, et al. The effect of increased absorptionof ammonia and arginine on splanchnic metabolism of beef steers[J]. AnimProd.1993;56:462-463.
    [81] Lobley GE, Connell A, Lomax MA, et al. Hepatic detoxification of ammonia inthe ovine liver: possible consequences for amino acid catabolism[J]. Br J Nutr.1995;73:667-685.
    [82] Alio A, Theurer CB, Lozano O, et al. Splanchnic nitrogen metabolism bygrowing beef steers fed diets containing sorghum grain flaked at differentdensities[J]. J Anim Sci.2000;78:1355-1363.
    [83] Sarraseca A, Milne E, Metcalf MJ, Lobley GE. Urea recycling in sheep: effectsof intake[J]. Br J Nutr.1998;79:79-88.
    [84] Nolan JV, Norton BW, Leng RA. Further studies of dynamics of nitrogenmetabolism in sheep[J]. Br J Nutr.1976;35:127-147.
    [85] Makkar HPS. A review of the use of isotopic and nuclear techniques in animalproduction[J]. Anim Feed Sci Tech.2008;140:418-443.
    [86] Koenig KM, Newbold CJ, Mclntosh FM, Rode LM. Effect s of protozoa onbacterial nitrogen recycling in the rumen[J]. J Anim Sci.2000;78:2431-2445.
    [87] Newbold CJ, Teferedegne B, Kim HS, et al. Effects of protozoa on nitrogenmetabolism in the rumen of sheep[J]. Repr Nutr Dev.2000;40:189-228.
    [88] Kennedy PM, Milligan LP. Transfer of urea from the blood to the rumen ofsheep[J]. Br J Nutr.1978;40:149-154.
    [89]汪水平.日粮淀粉来源对山羊消化代谢、肉品质、机体抗氧化能力及小肠消化酶活性的影响[D].北京:中国科学院研究生院.2007.
    [90] Chapa AM, Fernandez JM, White TW, et al. Influence of dietary carnitine ingrowing sheep fed diets containing non-protein nitrogen[J]. Small Rumin Res.2001;40:13-28.
    [91] Sands JM, Layton HE. The physiology of urinary concentration: an update[J].Semin Nephrol.2009;29:178-195.
    [92] Bankir L, de Rouffignac C. Urinary concentrating ability: insights fromcomparative anatomy[J]. Am J Physiol.1985;249:R643-R666.
    [93] Abrahams S, Greenwald L, Stetson DL. Contribution of renal medullarymitochondrial density to urinary concentrating ability in mammals[J]. Am JPhysiol.1991;261:R719-R726.
    [94] van Meer G, Voelker DR, Feigenson GW. Membrane lipids: where they areand how they behave[J]. Nat Rev Mol Cell Biol.2008;9:112-124.
    [95] Zahler P. The structure of the erythrocyte membrane[J]. Experientia.1969;25:449-456.
    [96] Galla HJ, Luisetti J. Lateral and transversal diffusion and phase transitions inerythrocyte membranes. An excimer fluorescence study[J]. Biochim BiophysActa.1980;596:108-117.
    [97] Gallagher PG, Forget BG. Spectrin genes in health and disease[J]. SeminHematol.1993;30:4-20.
    [98] Peters LL, Lux SE. Ankyrins: structure and function in normal cells andhereditary spherocytes[J]. Semin Hematol.1993;30:85-118.
    [99] Mandal D, Moitra PK, Basu J. Mapping of a spectrin-binding domain of humanerythrocyte membrane protein4.2[J]. Biochem J.2002;364:841-847.
    [100] Beauchamp-Nicoud A, Morle L, Lutz HU, et al. Heavy transfusions andpresence of an anti-protein4.2antibody in4.2(-) hereditary spherocytosis(949delG)[J]. Haematologica.2000;85:19-24.
    [101] Bhattacharyya R, Das AK, Moitra PK, et al. Mapping of a palmitoylatable band3-binding domain of human erythrocyte membrane protein4.2[J]. Biochem J.1999;340:505-512.
    [102] Korsgren C, Lawler J, Lambert S, et al. Complete amino acid sequence andhomologies of human erythrocyte membrane protein band4.2[J]. Proc NatlAcad Sci USA.1990;87:613-617.
    [103] Remus R, Kanzaki A, Yawata A, et al. Relationships between DNA methylationand expression in erythrocyte membrane protein (band3, protein4.2, andbeta-spectrin) genes during human erythroid development and differentiation[J].Int J Hematol.2005;82:422-429.
    [104] Friedrichs B, Koob R, Kraemer D, et al. Demonstration of immunoreactiveforms of erythrocyte protein4.2in nonerythroid cells and tissues[J]. Eur J CellBiol.1989;48:121-127.
    [105] Sung LA, Lo WK. Immunodetection of membrane skeletal protein4.2in bovineand chicken eye lenses and erythrocytes[J]. Curr Eye Res.1997;16:1127-1133.
    [106] Risinger MA, Dotimas EM, Cohen CM. Human erythrocyte protein4.2, a highcopy number membrane protein, is N-myristylated[J]. J Biol Chem.1992;267:5680-5685.
    [107]卢义钦,刘俊凡.人红细胞膜骨架蛋白的相互作用(上)[J].生命微观.1987;7:453-458.
    [108] LU Y, Liu J. Five types of glycophorin variants found in southern china. ChinMed J(Engl)[J].1999;112:579-582.
    [109] Diez-Silva M, Dao M, Han J, Lim CT, Suresh S. Shape and biomechanicalcharacteristics of human red blood cells in health and disease[J]. MRS Bull.2010;35:382-388.
    [111] Gilligan DM, Bennett V. The junctional complex of the membrane skeleton[J].Semin Hamatol.1993;30:74-83.
    [112] Tse WT, Lux SE. Red blood cell membrane disorders[J]. Br J Haematol.1999;104:2-13.
    [113] Shikama K, Matsuoka A. Human haemoglobin: a new paradigm for oxygenbinding involving two types of alphabeta contacts[J]. Eur J Biochem.2003;270:4041-4051.
    [114] Furuta H, Ohe M, Kajita A. Subunit structure of hemoglobins from erythrocytesof the blood clam, Anadara broughtonii[J]. J Biochem.1977;82:1723-1730.
    [115] Benga G, Popescu O, Borza V, et al. Water permeability in human erythrocytes:identification of membrane proteins involved in water transport[J]. Eur J CellBiol.1986;41:252-262.
    [116] Benga G. Birth of water channel proteins-the aquaporins[J]. Cell Biol Int.2003;27:701-709.
    [117] Yang B. The human aquaporin gene family(review)[J]. Current Genomics.2000;1:91-102.
    [118] Verkman AS. Physiological importance of aquaporin water channels[J]. AnnMed.2002;34:192-200.
    [119] Hatakeyama S, Yoshida Y, Tani T, et al. Cloning of a new aquaporin(AQP10)abundantly expressed in duodenum and jejunum[J]. Biochem Biophys ResCommun.2001;287:814-819.
    [120] Preston GM, Carroll TP, Guggino WB, et al. Appearance of water channels inXenopus oocytes expressing red cell CHIP28protein[J]. Science.1992;256:385-387.
    [121] Andrews S, Reichow SL, Gonen T. Electron Crystallography of Aquaporins[J].IUBMB Life.2008;60:430-436.
    [122] Prasad GV, Coury LA, Finn F, et al. Reconstituted aquaporin1water channelstransport CO2across membranes[J]. J Biol Chem.1998;273:33123-33126.
    [123]李学军,于和鸣.水通道的分子生物学研究[J].生理科学进展.1996;27:19-24.
    [124] Kozono D, Yasui M, King LS, et al. Aquaporin water channels: atomic structureand molecular dynamics meet clinical medicine[J]. J Clin Invest.2002;109:1395-1399.
    [125] Agre p, Preston GM, Smith BL, et al. Aquaporin CHIP: the archetypalmolecular water channel. Am J physiol[J].1993;265:F463-F476.
    [126] Krane CM, Goldstein DL. Comparative functional analysis of aquaporins/glyceroporins in mammals and anurans[J]. Mamm Genome.2007;18:452-462.
    [127] Sha'afi RI, Gary-Bobo CM. Water and nonelectrolytes permeability inmammalian red cell membranes[J]. Prog Biophys Mol Biol.1973;26:103-146.
    [128] Rich GT, Sha'afi I, Romualdez A, Solomon AK. Effect of osmolality on thehydraulic permeability coefficient of red cells[J]. J Gen Physiol.1968;52:941-954.
    [129] Eylar EH, Madoff MA, Brody OV, Oncley JL. The contribution of sialic acid tothe surface charge of the erythrocyte[J]. J Biol Chem.1962;237:1992-2000.
    [130] Narahashi T, Deguchi T, Urakawa N, Ohkubo Y. Stabilization and rectificationof muscle fiber membrane by tetrodotoxin[J]. Am J Physiol.1960;198:934-938.
    [131] Rottenberg H, Solomon AK. Energy pathways for potassium accumulation inmitochondria[J]. Ann N Y Acad Sci.1966;137:685-699.
    [132] Tosteson DC, Cook P, Andreoli T, Tieffenberg M. The effect of valinomycin onpotassium and sodium permeability of HK and LK sheep red cells[J]. J GenPhysiol.1967;50:2513-2525.
    [133] Sirs JA. The rate of osmotic influx of water by flexible and inflexibleerythrocytes[J]. J Physiol.1969;205:147-157.
    [134] Jacobs WA, Fleck EE. Strophanthin. Xix. The dehydrogenation ofstrophanthidin and gitoxigenin[J]. Science.1931;73:133-134.
    [135] Berg G, Zeller W, Rügheimer E, Elster K. Studies on toxicity and compatibilityof fat emulsions in dwarf pigs[J]. Arzneimittelforschung.1965;15:1472-1474.
    [136] Hunter AR. Basic considerations in the conservative of head injuries[J].Postgrad Med J.1960;36:370-375.
    [137] Seeman IM. Undiagnosed abdominal pain[J]. Br Med J.1970;4:682.
    [138] Clifford CE. Dose distributions in phantoms exposed to2.95-MeV neutrons[J].Health Phys.1968;15:527-534.
    [139] Finean JB, Coleman R, Green WA. Studies of isolated plasma membranepreparations[J]. Ann N Y Acad Sci.1966;137:414-420.
    [140] Benedetti E, Kossoy A, Falxa ML, Goodman M. Conformational aspects ofpolypeptide structure. XXVII. Solvent effects on azoaromatic polypeptides[J].Biochemistry.1968;7:4234-4242.
    [141] Hunter LD. A new method of supporting chromatographic columns[J]. JChromatogr.1965;20:596.
    [142] Jacobs WA, Craig LC. The Ergot Alkaloids.Synthesis Of4-Carboline CarbonicAcids[J]. Science.1935;82:421-422.
    [143] Nevis AH. Water transport in invertebrate peripheral nerve fibers[J]. J GenPhysiol.1958;41:927-958.
    [144] Hempling HG, Hare D. The effect of glycine transport on potassium fluxes inthe Ehrlich mouse ascites tumor cell[J]. J Biol Chem.1961;236:2498-2502.
    [145] Hays RM, Leaf A. Studies on the movement of water through the isolated toadbladder and its modification by vasopressin[J]. J Gen Physiol.1962;45:905-919.
    [146] Vieira FL, Sha'afi RI, Solomon AK. The state of water in human and dog redcell membranes[J]. J Gen Physiol.1970;55:451-466.
    [147] Macey RI, Farmer RE. Inhibition of water and solute permeability in human redcells. Biochim Biophys Acta[J].1970;211:104-106.
    [148] Hempling HG. Application of irreversible thermodynamics to a functionaldescription of the tumor cell membrane[J]. J Cell Physiol.1967;70:237-256.
    [149] Benga G. Water transport in red blood cell membranes[J]. Prog Biophys MolBiol.1988;51:193-245.
    [150] Redwood WR, Haydon DA. Influence of temperature and membranecomposition on the water permeability of lipid bilayers[J]. J Theor Biol.1969;22:1-8.
    [151] Yang B, Verkman AS. Analysis of double knockout mice lacking aquaporin-1and urea transporter UT-B:Evedence for UT-B facilitated water transport inerythrocytes[J]. J Biol Chem.2002;277:36782-36786.
    [152] Sha'afi RI, Gary-Bobo CM. Water and nonelectrolytes permeability inmammalian red cell membranes. Prog Biophys Mol Biol[J].1973;26:103-146.
    [153] Bagnasco SM. Role and regulation of urea transporters[J]. Pflugers Arch.2005;450:217-226.
    [154] Yang B, Bankir L, Gillespie A, et al. Urea-selective concentrating defect intransgenic mice lacking urea transporter UT-B[J]. J Biol Chem.2002;277:10633-10637.
    [155]孟艳,赵雪俭,杨宝学.尿素通道蛋白的研究进展[J].国外医学(生理、病理科学与临床分册).2004.
    [156] Yang B, Bankir L. Urea and urine concentrating ability: new insights fromstudies in mice[J]. Am J Physiol Renal Physiol.2005;288:F881-F896.
    [157] Smith CP, Rousselet G. Facilitative urea transporters[J]. J Membranc Biol.2001;183:1-14.
    [158] You G, Smith CP, Kanai Y, Lee WS, Stelzner M, Hediger MA. Cloning andcharacterization of the vasopressin-regulated urea transporter[J]. Nature.1993;365:844-847.
    [159] Cottingham CA, Fenton RA, Howorth A, et al. Characterization of the mouseUT-A urea transporter gene[J]. J Am Soc Nephrol.1999;10:13A.
    [160] Zhang C, Sands JM, Klein JD. Vasopressin rapidly increases phosphorylationof UT-A1urea transporter in rat IMCDs through PKA[J]. Am J Physiol RenalPhysiol.2002;282:F85-F90.
    [161] Karakashian A, Timmer RT, Klein JD, Gunn RB, Sands JM, Bagnasco SM.Cloning and characterization of two new isoforms of the rat kidney ureatransporter: UT-A3and UT-A4[J]. J Am Soc Nephrol.1999;10:230-237.
    [162] Terris JM, Knepper MA, Wade JB, et al. UT-A3: localization andcharacterization of an additional urea transporter protein isoform in IMCD[J].Am J Physiol.2001;280:F323-F325.
    [163] Tsukaguchi H, Shayakul C, Berger UV, et al. Molecular Characterization of abroad selectivily neutral solute channel[J]. J BiolChem.1999;18:24737-24743.
    [164] Berger UV, Tsukaguchi H, Hediger MA. Distribution of mRNA for thefacilitated urea transporter UT3in the rat nervous system[J]. AnatEmbryol(berl).1998;197:405-414.
    [165] Fenton RA, Cooper GJ, Morris ID, et al. Coordinated expression of UT-A andUT-B urea transporters in rat testis[J]. Am J Physiol Cell Physiol.2002;282:C1492-C1501.
    [166] Ranade K, Wu KD, Hwu CM, et al. Genetic variation in the human ureatransporter-2is associated with variation in blood pressure[J]. Hum Mol Genet.2001;15,10:2157-2164.
    [167] Hu MC, Bankir L, Trinh MM. MRNA expression of renal urea transporters innormal and Brattleboro rats: effect of dietary protein intake[J]. Exp Nephrol.1999;7:44-51.
    [168] Kim YH, Kim DU, Han KH, et al. Expression of urea transporters in thedeveloping rat kidney[J]. Am J Physiol Renal Physiol.2002;282:F530-F540.
    [169] Duchesne R, Klein JD, Velotta JB, et al. UT-A urea transporter protein in heart:increased abundance during uremia, hypertension, and heart failure[J]. Circ Res.2001;20,89:139-145.
    [170] Yang B, Bankir L, Gillespie A, Epstein CJ, Verkman AS. Urea-selectiveconcentrating defect in transgenic mice lacking urea transporter UT-B[J]. J BiolChem.2002;277:10633-10637.
    [171]孟艳,张学新,杨宝学,等.尿素通道蛋白B基因敲除对小鼠心电图与心肌动作电位的影响[J].中国科学(C辑:生命科学).2007;37:447-451.
    [172] Brownfield MS, Wunder BA. Relative medullary area: a new structural indexfor estimating urinary concentrating capacity of mammals[J]. Comp BiochemPhysiol.1976;55:69-75.
    [173] Gutman Y, Beyth Y. Chinchilla laniger-discrepancy between concentratingability and kidney structure[J].Life Sci.1970;9:37-42.
    [174] Tisher CC. Relationship between renal structure and concentrating ability in therhesus monkey[J]. Am J Physiol.1971;220:1100-1106.
    [175] Weisser F, Lacy FB, Weber H, Jamison RL. Renal function in the chinchilla[J].Am J Physiol.1970;219:1706-1713.
    [176] Rytand DA. The renal factor in arterial hypertension with coarctation of theaorta[J]. J Clin Invest.1938;17:391-399.
    [177] Stephenson JL. Renal concentrating mechanism[J]. Introduction. Fed Proc.1983;42:2377-2378.
    [178] Walker LA, Valtin H. Biological importance of nephron heterogeneity[J]. AnnuRev Physiol.1982;44:203-219.
    [179] Kriz W, Koepsell H. The structural organization of the mouse kidney[J]. Z AnatEntwicklungsgesch.1974;144:137-163.
    [180] Kaissling B, Kriz W. Structural analysis of the rabbit kidney[J]. Adv AnatEmbryol Cell Biol.1979;56:1-123.
    [181] Baines AD, de Rouffignac C. Functional heterogeneity of nephrons. Ⅱ.Filtrationrates, intraluminal flow velocities and fractional water reabsorption[J]. PflugersArch.1969;308:260-276.
    [182] Berry CA. Heterogeneity of tubular transport processes in the nephron[J]. AnnuRev Physiol.1982;44:181-201.
    [183] Bonvalet JP, de Rouffignac C. Functional heterogeneity of nephrons[J]. JPhysiol(Paris).1975;71:73A-121A.
    [184] Barajas L. Anatomy of the juxtaglomerular apparatus[J]. Am J Physiol.1979;237:F333-F343.
    [185] Imbert MJ, Berjal G, Moss N, de Rouffignac C, Bonvalet JP. Number ofnephrons in hypertrophic kidneys after unilateral nephrectomy in young andadult rats. A functional study[J]. Pflugers Arch.1974;346:279-290.
    [186] de Rouffignac C, Bonvalet JP. Study of variations in the glomerular filtrationrate of single superficial and deep nephrons as a function of sodium intake inthe rat[J]. Pflugers Arch.1970;317:141-156.
    [187] Lacy ER. The mammalian renal pelvis: physiological implications frommorphometric analyses[J]. Anat Embryol(Berl).1980;160:131-144.
    [188] Lacy ER, Schmidt-Nielsen B. Anatomy of the renal pelvis in the hamster[J]. AmJ Anat.1979;154:291-320.
    [189] Pfeiffer EW. Comparative anatomical observations of the mammalian renalpelvis and medulla[J]. J Anat.1968;102:321-331.
    [190] Fongi EG, Giusta G, Herrero H, et al. Electrolyte disorders caused by theintravenous infusion of urea. Prensa Med Argent[J].1961;48:593-598.
    [191] Oliver RE, Roy DR, Jamison RL. Urinary concentration in the papillarycollecting duct of the rat. Role of the ureter[J]. J Clin Invest.1982;69:157-164.
    [192] Rocha AS, Kokko JP. Permeability of medullary nephron segments to urea andwater: Effect of vasopressin[J]. Kidney Int.1974;6:379-387.
    [193] Kaissling B, de Rouffignac C, Barrett JM, Kriz W. The structural organizationof the kidney of the desert rodent Psammomys obesus[J]. Anat Embryol(Berl).1975;148:121-143.
    [194] Kriz W. Structural organization of the renal medulla: comparative andfunctional aspects[J]. Am J Physiol.1981;241:R3-R16.
    [195] Kriz W, Taugner R. Intercellular junctions of cells of the juxtaglomerularapparatus[J]. Verh Anat Ges.1978;(72):227.
    [196] Bankir L, Kaissling B, de Rouffignac C, Kriz W. The vascular organization ofthe kidney of Psammomys obesus[J]. Anat Embryol(Berl).1979;155:149-160.
    [197] Munkácsi I, Palkovits M. Volumetric analysis of glomerular size in kidneys ofmammals living in desert, semidesert or water-rich environment in the Sudan[J].Circ Res.1965;17:303-311.
    [198] Dantzler WH, Braun EJ. Comparative nephron function in reptiles, birds andmammals[J]. Am J Physiol.1980;239:R197-R213.
    [199] Bachmann S, Kriz W. Histotopography and ultrastructure of the thin limbs ofthe loop of Henle in the hamster[J]. Cell Tissue Res.1982;225:111-127.
    [200] Barrett JM, Kriz W, Kaissling B, de Rouffignac C. The ultrastructure of thenephrons of the desert rodent(Psammomys obesus)kidney.Ⅱ.Thin limbs ofHenle of long-looped nephrons[J]. Am J Anat.1978;151:499-514.
    [201] Schiller A, Taugner R, Kriz W. The thin limbs of Henle's loop in the rabbit.Afreeze fracture study[J]. Cell Tissue Res.1980;207:249-265.
    [202] Bankir L, de Rouffignac C. Urinary concentrating ability: insights fromcomparative anatomy[J]. Am J Physiol.1985;249:R643-R666.
    [203] Bouby N, Trinh-Trang-Tan MM, Douté M, Bankir L. Effects of osmolality andantidiuretic hormone on prostaglandin synthesis by renal papilla.Study inBrattleboro rats with diabetes insipidus[J]. Pflugers Arch.1984;400:96-99.
    [204] Schwartz IL, Shlatz LJ, Kinne-Saffran E, Kinne R. Target cell polarity andmembrane phosphorylation in relation to the mechanism of action ofantidiuretic hormone[J]. Proc Natl Acad Sci USA.1974;71:2595-2599.
    [205] Garg LC, Knepper MA, Burg MB. Mineralocorticoid effects on Na-K-ATPasein individual nephron segments[J]. Am J Physiol.1981;240:F536-F544.
    [206] Brown D, Stow JL. Protein trafficking and polarity in kidney epithelium: fromcell biology to physiology[J]. Physiol Rev.1996;76:245-297.
    [207] Caplan MJ. Membrane polarity in epithelial cells: protein sorting andestablishment of polarized domains[J]. Am J Physiol.1997;272:F425-F429.
    [208] Kawakami K, Nojima H, Ohta T, Nagano K. Molecular cloning and sequenceanalysis of human Na, K-ATPase beta-subunit. Nucleic Acids Res[J].1986;14:2833-2844.
    [209] Shamraj OL, Lingrel JB. A putative fourth Na+,K(+)-ATPase alpha-subunitgene is expressed in testis[J]. Proc Natl Acad Sci USA.1994;91:12952-12956.
    [210] Shull GE, Lane LK, Lingrel JB. Amino-acid sequence of the beta-subunit ofthe(Na++K+)ATPase deduced from a cDNA[J]. Nature.1986;321:429-431.
    [211] Shull GE, Schwartz A, Lingrel JB. Amino-acid sequence of the catalytic subunitof the(Na++K+)ATPase deduced from a complementary DNA[J]. Nature.1985;316:691-695.
    [212] Agalakova NI, Lapin AV, Gusev GP. Potassium ion transport in the erythrocytesof the frog Rana ridibunda[J]. Zh Evol Biokhim Fiziol.1995;31:161-169.
    [213] van Driel IR, Callaghan JM. Proton and potassium transport byH+/K(+)-ATPases. Clin Exp Pharmacol Physiol[J].1995;22:952-960.
    [214]FérailleE,DoucetA.Sodium-potassium-adenosinetriphosphatase-dependentsodium transport in the kidney: hormonal control[J]. Physiol Rev.2001;81:345-418.
    [215] Muto S. Potassium transport in the mammalian collecting duct[J]. Physiol Rev.2001;81:85-116.
    [216] Brandst tter A, Kiechl S, Kollerits B, Hunt SC, Heid IM, Coassin S, Willeit J,Adams TD, Illig T, Hopkins PN, Kronenberg F. Sex-specific association of theputative fructose transporter SLC2A9variants with uric acid levels is modifiedby BMI[J]. Diabetes Care.2008;31:1662-1667.
    [217] D ring A, Gieger C, Mehta D, et al. SLC2A9influences uric acidconcentrations with pronounced sex-specific effects[J]. Nat Genet.2008;40:430-436.
    [218] Bagnasco SM, Peng T, Janech MG, Karakashian A, Sands JM. Cloning andcharacteri-zation of the human urea transporter UT-A1and mapping of thehuman Slc14a2gene[J]. Am J Physiol Renal Physiol.2001;281:F400-F406.
    [219] Bunting LD, Boling JA, MacKown CT. Effect of dietary protein level onnitrogen metabolism in the growing bovine: I.Nitrogen recycling and intestinalprotein supply in calves[J]. J Anim Sci.1989;67:810-819.
    [220] Koenig KM, Newbold CJ, Mclntosh FM, Rode LM. Effects of protozoa onbacterial nitrogen recycling in the rumen[J].J Anim Sci.2000;78:2431-2445.
    [221] Isozaki T, Gillin AG, Swanson CE, Sands JM. Protein restriction sequentiallyinduces new urea transport processes in rat initial IMCD[J]. Am J Physiol.1994;266:F756-F761.
    [222] Kanai Y, Smith CP, Hediger MA. A new family of neurotransmittertransporters:the high-affinity glutamate transporters.FASEB j.1993Dec:7(15):1450-9.
    [223] Yang B and Bankir L. Urea and urine concentrating ability: new insights fromstudies in mice. Am J Physiol Renal Physiol288: F881–F896,2005.
    [224] Bagnasco SM, Sands JM, Pallone TL, Turner MR, Edwards A, Jamison RL,Zhang Z, and Rhinehart K. Gene structure of urea transporters. Am J PhysiolRenal Physiol284: F3–F10,2003.
    [225] Bankir L, Bouby N, and Trinh-Trang-Tan MM. The role of the kidney in themaintenance of water balance. Baillie`res Clin Endocrinol Metab3:249–311,1989.
    [226] Bankir L and de Rouffignac C. Urinary concentrating ability: insights fromcomparative anatomy. Am J Physiol Regul Integr Comp Physiol249:R643–R666,1985.
    [227] Bankir L and Trinh-Trang-Tan MM. Urea and the kidney. In: The Kidney (6thed.), edited by Brenner BM. Philadelphia, PA: Saunders,2000, p.637–679.
    [228] Bouby N, Ahloulay M, Nsegbe E, Dechaux M, Schmitt F, and Bankir L.Vasopressin increases glomerular filtration rate in conscious rats through itsantidiuretic action. J Am Soc Nephrol7:842–851,1996.
    [229] Bouby N, Tring-Trang-Tan MM, Laouari D, Kleinknecht C, Gru¨ nfeld JP, KrizW, and Bankir L. Role of the urinary concentrating process in the renal effectsof high protein intake. Kidney Int43:4–12,1988.
    [230] Crawford JD, Doyle AP, and Probst JH. Service of urea in renal waterconservation. Am J Physiol196:545–548,1959.
    [231] Epstein FH, Kleeman CR, Pursel S, and Hendrikx A. The effect of feedingprotein and urea on the renal concentrating process. J Clin Invest36:635–641,1957.
    [232] Gamble JL, McKhann CF, Butler AM, and Tuthill E. An economy of water inrenal function referable to urea. Am J Physiol109:139–154,1934.
    [233] Hendrikx A and Epstein FH. Effect of feeding protein and urea on renalconcentrating ability in the rat. Am J Physiol195:539–542,1958.
    [234] Knepper MA and Roch-Ramel F. Pathways of urea transport in the mammaliankidney. Kidney Int31:629–633,1987.
    [235] Kriz W. Structural organization of the renal medulla: comparative andfunctional aspects. Am J Physiol Regul Integr Comp Physiol241: R3–R16,1981.
    [236] Kriz W. Structural organization of the renal medullary counterflow system.Federation Proc42:2379–2385,1983.
    [237] Lassiter WE, Gottschalk CW, and Mylle M. Micropuncture study of nettranstubular movement of water and urea in nondiuretic mammalian kidney. AmJ Physiol200:1139–1146,1961.
    [238] Macey RI. Transport of water and urea in red blood cells. Am J Physiol CellPhysiol246: C195–C208,1984.
    [239] Marsh DJ and Knepper MA. Renal handling of urea. In: Handbook ofPhysiology. Renal Physiology. Bethesda, MD: Am Physiol Soc,1992, sect.8,vol. II, chapt.29, p.1317–1348.
    [240] Masilamani S, Knepper MA, and Burg MB. Urine concentration and dilution. In:The Kidney (6th ed.), edited by Brenner BM. Philadelphia, PA: Saunders,2000,p.595–635.
    [241] Morel F and de Rouffignac C. Micropuncture study of urea medullary recyclingin desert rodents. In: Urea and the Kidney, edited by Schmidt-Nielsen B.Amsterdam: Excerpta Medica Foundation,1970, p.401–413.
    [242] Nielsen S, Terris J, Smith CP, Hediger MA, Ecelbarger CA, and Knepper MA.Cellular and subcellular localization of the vasopressinregulated ureatransporter in rat kidney. Proc Natl Acad Sci USA93:5495–5500,1996.
    [243] Pallone TL, Turner MR, Edwards A, and Jamison RL. Countercurrent exchangein the renal medulla. Am J Physiol Regul Integr Comp Physiol284:R1153–R1175,2003.
    [244] Pallone TL, Work J, Myers RL, and Jamison RL. Transport of sodium and ureain outer medullary descending vasa recta. J Clin Invest93:212–222,1994.
    [245] Pennel JP, Sanjana V, Frey NR, and Jamison RL. The effect of urea infusion onthe urinary concentrating mechanism in protein-depleted rats. J Clin Invest55:399–409,1975.
    [246] Rabinowitz L, Gunther RA, Shoji ES, Freedland RA, and Avery EH. Effects ofhigh and low protein diets on sheep renal function and metabolism. Kidney Int4:188–207,1973.
    [247] Rasmussen SN. Intrarenal red cell and plasma volumes in the non-diuretic rat.Determination by means of51Cr labelled red cells and125I--Mimmunoglobulin. Pflu¨gers Arch342:61–72,1973.
    [248] Rouffignac de C, Bankir L, and Roinel N. Renal function and concentratingability in a desert rodent: the gundi (Ctenodactylus vali). Pflu¨gers Arch390:138–144,1981.
    [249] Sands JM, Bagnasco SM, Pallone TL, Turner MR, Edwards A, Jamison RL,Zhang Z, and Rhinehart K. Mammalian urea transporters. Annu Rev Physiol65:543–566,2003.
    [250] Schmidt-Nielsen B and Robinson RR. Contribution of urea to urineconcentrating ability in the dog. Am J Physiol218:1363–1369,1970.
    [251] Schwartz MM, Karnovsky MJ, and Venkatachalam MA. Ultrastructuraldifferences between rat inner medullary descending and ascending vasa recta.Lab Invest35:161–170,1976.
    [252] Shayakul C, Knepper MA, Smith CP, DiGiovanni SR, and Hediger MA.Segmental localization of urea transporter mRNAs in rat kidney. Am J PhysiolRenal Physiol272: F654–F660,1997.
    [253] Trimble ME. Renal anatomy and the effects of acute urea and salt loading onthe concentrating mechanism of infant rats. In: Urea and the Kidney, edited bySchmidt-Nielsen B and Kerr DWS. Amsterdam: Excerpta Medica Foundation,1970, p.366–374.
    [254] Trinh-Trang-Tan MM and Bankir L. Integrated function of urea transporters inthe mammalian kidney. Exp Nephrol6:471–479,1998.
    [255] Trinh-Trang-Tan MM, Lasbennes F, Gane P, Roudier N, Ripoche P, Cartron JP,and Bailly P. UT-B1proteins in rat: tissue distribution and regulation byantidiuretic hormone in kidney. Am J Physiol Renal Physiol283: F912–F922,2002.
    [256] Tsukaguchi H, Shayakul C, Berger UV, Tokui T, Brown D, and Hediger MA.Cloning and characterization of the urea transporter UT3: localization in ratkidney and testis. J Clin Invest99:1506–1515,1997.
    [257] Valtin H. Structural and functional heterogeneity of mammalian nephrons. Am JPhysiol Renal Fluid Electrolyte Physiol233: F491–F501,1977.
    [258] Wade JB, Lee AJ, Liu J, Ecelbarger CA, Mitchell C, Bradford AD, Terris J, KimGH, and Knepper MA. UT-A2: a55-kDa urea transporter in thin descendinglimb whose abundance is regulated by vasopressin. Am J Physiol Renal Physiol278: F52–F62,2000.
    [259] Wagner L, Klein JD, Sands JM, and Baylis C. Urea transporters are distributedin endothelial cells and mediate inhibition of L-arginine transport. Am J PhysiolRenal Physiol283: F578–F582,2002.
    [260] Yang B, Bankir L, Gillepsie A, Epstein CJ, and Verkman AS. Ureaselectiveconcentrating defect in transgenic mice lacking urea transporter UT-B. J BiolChem277:10633–10637,2002.
    [261] Yang B and Verkman AS. Urea transporter UT3functions as an efficient waterchannel. Direct evidence for a common water/urea pathway. J Biol Chem273:9369–9372,1998.
    [262] Zerbe RL and Robertson GL. Osmoregulation of thirst and vasopressinsecretion in human subjects: effect of various solutes. Am J Physiol EndocrinolMetab244: E607–E614,1983.
    [263] Agre P. Aquaporin water channels in kidney. J Am Soc Nephrol11:764–777,2000.
    [264] Bagnasco SM. Role and regulation of urea transporters. Pflu¨gers Arch450:217–226,2005.
    [265] Bankir L. Antidiuretic action of vasopressin: quantitative aspects and interactionbetween V1a and V2receptor-mediated effects. Cardiovasc Res51:372–390,2001.
    [266] Bankir L, Chan K, and Yang B. Lack of UT-B in vasa recta and red blood cellsprevents the urea induced improvement in urinary concentrating ability. Am JPhysiol Renal Physiol286: F144–F151,2004.
    [267] Bray GA and Scott-Preston A. The role of urea in the concentration of non-ureasolutes by the kidney. In: Urea and the Kidney, edited by Schmidt-Nielsen B.Amsterdam: Excerpta Medica,1970, p.284–292.
    [268] Ecelbarger CA, Terris J, Frindt G, Echevarria M, Marples D, Nielsen S, andKnepper MA. Aquaporin-3water channel localization and regulation in ratkidney. Am J Physiol Renal Fluid Electrolyte Physiol269: F663–F672,1995.
    [269] Echevarria M, Windhager EE, Tate SS, and Frindt G. Cloning and expression ofAQP3, a water channel from the medullary collecting duct of rat kidney. ProcNatl Acad Sci USA91:10997–11001,1994.
    [270] Fenton RA, Chou CL, Stewart GS, Smith CP, and Knepper MA. Urinaryconcentrating defect in mice with selective deletion of phloretinsensitive ureatransporters in the renal collecting duct. Proc Natl Acad Sci USA101:7469–7474,2004.
    [271] Fenton RA, Flynn A, Shodeinde A, Smith CP, Schnermann J, Knepper MA.Renal phenotype of UT-A urea transporter knockout mice. J Am Soc Nephrol16:1583–1592,2005.
    [272] Gamble JL, McKhann CF, Butler AM, and Tuthill E. An economy of water inrenal function referable to urea. Am J Physiol109:139–154,1934.
    [273] Hellera′J, Kleinova′M, Jana′cek K, and Rybova′R. High concentration ofurea in renal cortex. In: Kidney Metabolism and Function, edited by Dzu′rik R,Lichardus B, and Guder W. Boston, MA: Martinus Nijhoff,1985, p.298–302.
    [274] Ishibashi K, Sasaki S, Fushimi K, Uchida S, Kuwahara M, Saito H, Furukawa T,Nakajima K, Yamaguchi Y, Gojobori T, and Marumo F. Molecular cloning andexpression of a member of the aquaporin family with permeability to glyceroland urea in addition to water expressed at thebasolateral membrane of kidneycollecting duct cells. Proc Natl Acad Sci USA91:6269–6273,1994.
    [275] Klein JD, Sands JM, Qian L, Wang X, and Yang B. Upregulation of ureatransporter UT-A2and water channels AQP2and AQP3in mice lacking ureatransporter UT-B. J Am Soc Nephrol15:1161–1167,2004.
    [276] Levinsky NG and Berliner RW. Changes in composition of the urine in ureterand bladder at low urine flow. Am J Physiol196:549–553,1959.
    [277] Levinsky NG and Berliner RW. The role of urea in the urine concentratingmechanism. J Clin Invest38:741–748,1959.
    [278] Ma T, Song Y, Yang B, Gillespie A, Carlson EJ, Epstein CJ, and Verkman AS.Nephrogenic diabetes insipidus in mice lacking aquaporin-3water channels.Proc Natl Acad Sci USA97:4386–4391,2000.
    [279] Ma T, Yang B, Gillespie A, Carlson EJ, Epstein CJ, and Verkman AS. Severelyimpaired urinary concentrating ability in transgenic mice lacking aquaporin-1water channels. J Biol Chem273:4296–4299,1998.
    [280] Nielsen S, Fr ki r J, Marples D, Kwon TH, Agre P, and Knepper MA.Aquaporins in the kidney: from molecules to medicine. Physiol Rev82:205–244,2002.
    [281] Roch-Ramel F, Chome′ty F, and Peters G. Urea concentrations in tubular fluidand in renal tissue of nondiuretic rats. Am J Physiol215:429–438,1968.
    [282] Roch-Ramel F and Peters G. Intrarenal urea and electrolyte concentrations asinfluenced by water diuresis and by hydrochlorothiazide. Eur J Pharmacol1:124–139,1967.
    [283] Sands JM. Renal urea transporters. Curr Opin Nephrol Hypertens13:525–532,2004.
    [284] Shayakul C and Hediger MA. The SLC14gene family of urea transporters.Pflu¨gers Arch447:603–609,2004.
    [285] Spector DA, Wade JB, Dillow R, Steplock DA, and Weinman EJ. Expression,localization, and regulation of aquaporin-1to-3in rat urothelia. Am J PhysiolRenal Physiol282: F1034–F1042,2002.
    [286] Steinmetz PR and Smith HW. Urea and the renal concentrating operation in man.Am J Med35:727–736,1963.
    [287] Terris JM, Knepper MA, and Wade JB. UT-A3: localization and characterizationof an additional urea transporter isoform in the IMCD. Am J Physiol RenalPhysiol280: F325–F332,2001.
    [288] Verkman AS. Renal concentrating and diluting function in deficiency of specificaquaporin genes. Exp Nephrol10:235–240,2002.
    [289] Verkman AS and Mitra AK. Structure and function of aquaporin water channels.Am J Physiol Renal Physiol278: F13–F28,2000.
    [290] Yang B, Ma T, Verkman AS. Erythrocyte water permeability and renal functionin double knockout mice lacking aquaporin-1and aquaporin-3[J]. J Biol Chem.2001;276:624-628.
    [291] Yang B, Bankir L. Urea and urine concentrating ability: new insights fromstudies in mice[J]. Am J Physiol Renal Physiol.2005;288:F881-F896.
    [292] Wagner L, Klein JD, Sands JM, Baylis C. Urea transporters are distributed inendothelial cells and mediate inhibition of L-arginine transport[J]. Am J PhysiolRenal Physiol.2002;283:F578-F582.
    [293] Macey RI. Transport of water and urea in red blood cells[J]. Am J Physiol.1984;246:C195-C203.
    [294] Hunter FR. Facilitated diffusion in pigeon erythrocytes[J]. Am J Physiol.1970;218:1765-1770.
    [295] Yang B, Verkman AS. Analysis of double knokout mice lacking aquaporin-1andurea transporter UT-B: evidence for UT-B facilitated water transport inetythrocytes[J]. J Biol Chem.2002;277:36782-36786.
    [296] Schmidt-Nielsen B, Osaki H, Murdaugh HV, O'dell R. Urea excretion inmammals[J]. Am J Physiol.1958;194:221-228.
    [297] Schmidt-Nielsen B. Urea nitrogen salvage mechanisms and their relevance toruminants, non-ruminants and man[J]. Physiol Rev.1958;38:139-168.
    [298] Stewart GS, Smith CP. Urea nitrogen salvage mechanisms and their relevance toruminants, non-ruminants and man[J]. Nutr Res Rev.2005;18:49-62.
    [299] Sands JM, Martial S, Isozaki T. Active urea transport in the rat inner medullarycollecting duct: functional characterization and initial expression cloning[J].Kidney Int.1996;49:1611-1614.
    [300] Simmons NL. Dietary regulation of ruminal bovine UT-B urea transporterexpression and localization[J]. J Anim Sci.2009;87:3288-3299.
    [301] Hoover WH, Heitmann RN. Cecal nitrogen metabolism and amino acidabsorption in the rabbit[J]. J Nutr.1975;105:245-252.
    [302] Viallard V. Cecal nitrogen metabolism and amino acid absorption in therabbit[J]. Ann Nutr Metab.1984;28:151-155.
    [303] Nelson RA. Protein and fat metabolism in hibernating bears[J]. Fed Proc.1980;39:2955-2958.
    [304] Sands JM, Gargus JJ, Frohlich O, Gunn RB, Kokko JP. Urinary concentratingability in patients with Jk(a-b-) blood type who lack carrier-mediated ureatransport[J]. J Am Soc Nephrol.1992;2:1689-1696.
    [305] Bankir L, Chen K, Yang B. Lack of UT-B in vasa recta and red blood cellsprevents urea-induced improvement of urinary concentrating ability[J]. Am JPhysiol Renal Physiol.2004;286:F144-F151.
    [306] Yang B, Bankir L, Gillespie A, Epstein CJ, Verkman AS. Urea-selectiveconcentrating defect in transgenic mice lacking urea transporter UT-B[J]. J BiolChem.2002;277:10633-10637.
    [307] Bankir L, Trinh-Trang-Tan MM. Urea and the kidney[M]. In: Brenner BM (ed)The kidney,6th edn. Saunders, Philadelphia, pp.2000;637-679.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700