新型自供能电致变色材料和器件的探索及研发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自供能电致变色器件一方面可以吸收太阳能并转化为电能,另一方面可以利用这部分电能驱动自身颜色改变。相较于传统的电致变色器件来说,这种新型的器件无需外加任何能源驱动,仅依靠太阳光提供的能量就能够实现颜色的转变,在营造出舒适、安全和美好环境的同时又能节约能源。目前国际上类似的研究主要集中在将无机电致变色材料和太阳能技术结合上,器件的变色速率较慢,不同状态下透过率对比度较低。在就读博士期间,本人探索了如何获得新型高性能自供能电致变色器件及材料,主要展开了以下工作:
     首先,我们提出将高分子电致变色窗技术和染料敏化太阳能技术相结合,利用高分子电致变色材料和钉配位化合物染料,配合LiI/I2作为电解液,设计研发出一种新型自供能电致变色器件。这种器件在光照条件下,通过切换外电路所处的状态,无需外加任何能源就能够实现颜色的改变,变色速度快,在可见光区域对比度较高。除此之外器件在光照条件下还能够通过光电转换功能向外电路输出电能。
     由于这种自供能电致变色器件使用了LiI/I2溶液作为电解液,其颜色较深,影响了器件在透明态的透过率。我们随后又设计并合成出数种基于有机物的氧化还原对,这些有机物的溶液颜色较浅,利用这些有机物制备的电解液替代LiI/I2溶液应用于自供能电致变色器件,能够有效的提高器件在透明状态下的透过率。
     除了上述探索和设计新型结构的器件外,我们还倡议合成一种新的同时具有光电转换和电致变色双功能材料。我们设计并合成出一种新的三苯胺衍生物,将这种分子吸附在二氧化钛纳米颗粒上后表现出良好的电致变色性能和光电转换性能,基于这种材料的自供能电致变色器件还在设计研发之中。
     为了增强高分子电致变色薄膜和基板间的作用力,提高器件的稳定性和工作寿命,我们利用2-膦酸噻吩和2-羧酸噻吩对高分子电致变色器件中的导电玻璃进行了修饰。修饰后的导电玻璃表面除了亲水性发生了优化和表面粗糙度略有下降以外,方电阻、透过率等性能均未显示明显变化。在修饰后的基板上电聚合得到的高分子电致变色薄膜表现出优异的机械稳定性和附着力,除此之外其电致变色性能也有提高。使用修饰后的导电玻璃制作的器件变色速度变快,循环寿命突破35万次(常规器件10万次左右)。
Self-powered electrochromic device represents a special kind of smart window, which can change transmittance using electrical energy that itself converted from solar energy. In this area, most researches are based on inorganic materials and solar cell technology, which lead to a slow switching speed and low contrast in different states. During my graduate study, I focus on how to achieve a novel self-powered electrochromic material and device. The main research wroks are as follows:
     We first designed and fabricated a novel self-powered electrochromic window based on electrochromic polymer and ruthenium complex together with LiI/I2.The device can change its color by switching the state of the external circuit under illumination, without any external power. It shows fast switching speed and high contrast in the visible region.
     As the electrolyte based on LiI/I2shows its natural deep brown color, which makes self-powered electrochromic device performing a low transmittance in bleached state. We synthesized several colorless organic redox couple electrolytes, and these electrolyte can improve the transmittance of self-powered electrochromic device in bleached state.
     To achieve a kind of material which can realize dual functions of electrochromic and solar-energy conversion, we designed and synthesized a new molecule based on triphenylamine. The material performs the two functions as we expected while absorbed on titanium dioxide nano-particle. This material is a good candidate for designing and developing new self-powered electrochromic devices.
     To improve the stability and life time of electrochromic device,2-thienyl phosphonic acid and2-thiophene carboxylic acid were used to modify ITO substrate. Optical and electrical properties of the modified substrates had little change compared with bare one. Furthermore, the modification greatly improves the stability and electrochromic response of the electrochromic films deposited on these modified substrates. Electrochromic device based on modified ITO performed fast color-changing speed and a good stability even after cycling for350,000times.
引文
[1]S.K.. Deb, A Novel Electrophotographic System, Applied Optics, Suppl.3 (1969) 192.
    [2]C.G. Granqvist, Electrochromic tungsten oxide films:Review of progress 1993-1998, Sol Energ Mat Sol C,60 (2000) 201-262.
    [3]D.R. Rosseinsky, R.J. Mortimer, Electrochromic systems and the prospects for devices, Adv Mater,13(2001)783-793.
    [4]C. Santato, M. Odziemkowski, M. Ulmann, J. Augustynski, Crystallographically oriented Mesoporous WO3 films:Synthesis, characterization, and applications, J Am Chem Soc,123 (2001) 10639-10649.
    [5]S.H. Baeck, K.S. Choi, T.F. Jaramillo, G.D. Stucky, E.W. McFarland, Enhancement of photocatalytic and electrochromic properties of electrochemically fabricated mesoporous WO3 thin films, Adv Mater,15 (2003) 1269-1273.
    [6]G.A. Niklasson, C.G. Granqvist, Electrochromics for smart windows:thin films of tungsten oxide and nickel oxide, and devices based on these, J Mater Chem,17 (2007) 127-156.
    [7]J. Nagai, T. Kamimori, M. Mizuhashi, Electrochromism in Amorphous Lithium Tungsten-Oxide Films, Sol Energ Mater,13 (1986) 279-295.
    [8]C.G. Granqvist, E. Avendano, A. Azens, Electrochromic coatings and devices:survey of some recent advances, Thin Solid Films,442 (2003) 201-211.
    [9]C.G Granqvist, Electrochromic devices, JEur Ceram Soc,25 (2005) 2907-2912.
    [10]Y. Wang, G.Z. Cao, Li+-intercalation electrochemical/electrochromic properties of vanadium pentoxide films by sol electrophoretic deposition, Electrochim Acta,51 (2006) 4865-4872.
    [11]T. Yamase, Photo-and electrochromismr qf polyoxometalates and related materials, Chem Rev,98 (1998) 307-325.
    [12]H.J. Yen, H.Y. Lin, G.S. Liou, Novel Starburst Triarylamine-Containing Electroactive Aramids with Highly Stable Electrochromism in Near-Infrared and Visible Light Regions, Chem Mater,23 (2011) 1874-1882.
    [13]E. Dayalan, S. Qutubuddin, A. Hussam, Electrochemical Investigations in Microemulsion Media.1. Methylviologen Reduction,Langmuir,6(1990)715-721.
    [14]R.J. Mortimer, A.L. Dyer, J.R. Reynolds, Electrochromic organic and polymeric materials for display applications, Displays,27 (2006) 2-18.
    [15]M.O. Liu, I.M. Chen, J.L. Lin, Microwave-assisted synthesis of viologens and polyviologens and their preliminary electrochromic effects, Mater Lett,61 (2007) 5227-5231.
    [16]L.Y. Zhang, S.X. Xiong, J. Ma, X.H. Lu, A complementary electrochromic device based on polyaniline-tethered polyhedral oligomeric silsesquioxane and tungsten oxide, Sol Energ Mat Sol C,93 (2009) 625-629.
    [17]C.L. Gaupp, K.W. Zong, P. Schottiand, B.C. Thompson, C.A. Thomas, J.R. Reynolds, Poly(3,4-ethylenedioxypyrrole):Organic electrochemistry of a highly stable electrochromic polymer, Macromolecules,33 (2000) 1132-1133.
    [18]P. Schottland, K. Zong, C.L. Gaupp, B.C. Thompson, C.A. Thomas, I. Giurgiu, R. Hickman, K.A. Abboud, J.R. Reynolds, Poly(3,4-alkylenedioxypyrrole)s:Highly stable electronically conducting and electrochromic polymers, Macromolecules,33 (2000) 7051-7061.
    [19]C. Xu, L. Liu, S.E. Legenski, D. Ning, M. Taya, Switchable window based on electrochromic polymers, JMater Res,19 (2004) 2072-2080.
    [20]C. Ma, M. Taya, C. Xu, Flexible electrochromic device based on poly (3,4-(2,2-dimethylpropylenedioxy)thiophene), Electrochim Acta,54 (2008) 598-605.
    [21]D.M. Welsh, A. Kumar, M.C. Morvant, J.R. Reynolds, Fast electrochromic polymers based on new poly(3,4-alkylenedioxythiophene) derivatives, Synthetic Met,102 (1999) 967-968.
    [22]H.N. Wanka, M.B. Schubert, E. Lotter, Growth of a-Si:H on transparent conductive oxides for solar cell applications, Sol Energ Mat Sol C,41-2 (1996) 519-527.
    [23]X.X. Xu, J. Yang, S. Guha, Hydrogen dilution effects on a-Si:H and a-SiGe:H materials properties and solar cell performance, JNon-Cryst Solids,200 (1996) 60-64.
    [24]B.G. Budaguan, A.A. Aivzov, M.N. Meytin, A.G. Radosel'sky, The perspectives of high-rate low frequency a-Si:H films deposition:Solar cell application and stability control, Thin-Film Structures for Photovoltaics,485 (1998) 297-302.
    [25]J.H. Petermann, D. Zielke, J. Schmidt, F. Haase, E.G. Rojas, R. Brendel,19%-efficient and 43mu m-thick crystalline Si solar cell from layer transfer using porous silicon, Prog Photovoltaics,20 (2012) 1-5.
    [26]J. Gao, H. Zhu, Y. Wang, Z. Wang, F. Guan, J. Ni, J. Yin, L. Lan, Y. Bai, Y. Ma, Y. Mai, M. Wan, Y. Huang, Improvement of a-Si:H solar cell performance by SiH4 purging treatment, Vacuum,89(2013)7-11.
    [27]R. Davis, J.R. Knight, Operation of Gaas Solar Cell at High Solar Flux-Density, Sol Energy, 17(1975) 145-145.
    [28]N. Usami, Y. Azuma, T. Ujihara, G. Sazaki, K. Nakajima, Y. Yakabe, T. Kondo, S. Koh, Y. Shiraki, B. Zhang, Y. Segawa, S. Kodama, SiGe bulk crystal as a lattice-matched substrate to GaAs for solar cell applications, Appl Phys Lett,11 (2000) 3565-3567.
    [29]N. de Angelis, J.C. Bourgoin, T. Takamoto, A. Khan, M. Yamaguchi, Solar cell degradation by electron irradiation. Comparison between Si, GaAs and GalnP cells, Sol Energ Mat Sol C, 66(2001)495-500.
    [30]K. Tanabe, A.F.I. Morral, H.A. Atwater, D.J. Aiken, M.W. Wanlass, Direct-bonded GaAs/InGaAs tandem solar cell, Appl Phys Lett,89 (2006).
    [31]H.W. Yu, C.C. Chung, C.T. Wang, H.Q. Nguyen, B.T. Tran, K.L. Lin, C.F. Dee, B.Y. Majlis, E.Y. Chang, InGaP/GaAs Dual-Junction Solar Cell with AlGaAs/GaAs Tunnel Diode Grown on 10 degrees off Misoriented GaAs Substrate, Jpn JAppl Phys,51 (2012).
    [32]B. Oregan, M. Gratzel, A Low-Cost, High-Efficiency Solar-Cell Based on Dye-Sensitized Colloidal Tio2 Films, Nature,353 (1991) 737-740.
    [33]B.W. Jing, M.H. Zhang, T. Shen, Advances in dye-sensitized solar cell, Chinese Sci Bull,42 (1997)1937-1948.
    [34]K. Tennakone, G.R.R.A. Kumara, I.R.M. Kottegoda, V.P.S. Perera, An efficient dye-sensitized photoelectrochemical solar cell made from oxides of tin and zinc, Chem Commun, (1999) 15-16.
    [35]G.R.R.A. Kumara, A. Konno, G.K.R. Senadeera, P.V.V. Jayaweera, D.B.R.A. De Silva, K. Tennakone, Dye-sensitized solar cell with the hole collector p-CuSCN deposited from a solution in n-propyl sulphide, Sol Energ Mat Sol C,69 (2001) 195-199.
    [36]T.M.W.J. Bandara, M.A.K.L. Dissanayake,1. Albinsson, B.E. Mellander, Dye-sensitized, nano-porous TiO2 solar cell with poly(acrylonitrile):MgI2 plasticized electrolyte, J Power Sources,195 (2010) 3730-3734.
    [37]S.Q. Fan, B. Fang, H. Choi, S. Paik, C. Kim, B.S. Jeong, J.J. Kim, J. Ko, Efficiency improvement of dye-sensitized tandem solar cell by increasing the photovoltage of the back sub-cell, Electrochim Acta,55 (2010) 4642-4646.
    [38]X.Z. Liu, W. Zhang, S. Uchida, L.P. Cai, B. Liu, S. Ramakrishna, An Efficient Organic-Dye-Sensitized Solar Cell with in situ Polymerized Poly(3,4-ethylenedioxythiophene) as a Hole-Transporting Material, Adv Mater,22 (2010) E150-E154.
    [39]M. Matsui, Y. Asamura, Y. Kubota, K. Funabiki, J.Y. Jin, T. Yoshida, H. Miura, Highly efficient substituted triple rhodanine indoline dyes in zinc oxide dye-sensitized solar cell, Tetrahedron,66 (2010) 7405-7410.
    [40]S. Higashijima, H. Miura, T. Fujita, Y. Kubota, K. Funabiki, T. Yoshida, M. Matsui, Highly efficient new indoline dye having strong electron-withdrawing group for zinc oxide dye-sensitized solar cell, Tetrahedron,67 (2011) 6289-6293.
    [41]J.C. Tinguely, R. Solarska, A. Braun, T. Graule, Low-temperature roll-to-roll coating procedure of dye-sensitized solar cell photoelectrodes on flexible polymer-based substrates, Semicond Sci Tech,26 (2011).
    [42]S.A. Agarkar, V.V. Dhas, S. Muduli, S.B. Ogale, Dye sensitized solar cell (DSSC) by a novel fully room temperature process:a solar paint for smart windows and flexible substrates, Rsc Adv,2 (2012) 11645-11649.
    [43]X. Guo, M.J. Zhang, J.H. Tan, S.Q. Zhang, L.J. Huo, W.P. Hu, Y.F. Li, J.H. Hou, Influence of D/A Ratio on Photovoltaic Performance of a Highly Efficient Polymer Solar Cell System, Adv Mater,24 (2012) 6536-6541.
    [44]H.M. Qin, L.S. Li, Y. Li, X.B. Peng, J.B. Peng, Y. Cao, N. Ismayil, W. Shi, Enhancing the performance of a thieno[3-4-b]pyrazine based polymer solar cell by introducing ethynylene linkages, Eur Polym J,48 (2012) 2076-2084.
    [45]A.P.L. Bottiger, M. Jorgensen, A. Menzel, F.C. Krebs, J.W. Andreasen, High-throughput roll-to-roll X-ray characterization of polymer solar cell active layers, J Mater Chem,22 (2012)22501-22509.
    [46]A. Pershin, S. Donets, S.A. Baeurle, A new multiscale modeling method for simulating the loss processes in polymer solar cell nanodevices, J Chem Phys,136 (2012).
    [47]M. Neophytou, H.A. Ioannidou, T.A. Ioannou, C.L. Chochos, S.P. Economopoulos, P.A. Koutentis, G. Itskos, S.A. Choulis,2-(2,3,4,5,6-Pentafluorophenyl)-1H-benzo[d] imidazole, a fluorine-rich building block for the preparation of conjugated polymer donors for organic solar cell applications, Polym Chem-Uk,3 (2012) 2236-2243.
    [48]A. Jarkov, S. Bereznev, K. Laes, O. Volobujeva, R. Traksmaa, A. Opik, E. Mellikov, Conductive polymer PEDOT:PSS back contact for CdTe solar cell, Thin Solid Films,519 (2011)7449-7452.
    [49]B. Ray, M.R. Khan, M.A. Alam, Performance Improvement of Polymer Based Solar Cell by Ordered Nano-morphology, U Gov Ind Micro Nano, (2010).
    [50]Y.H. Chang, S.R. Tseng, C.Y. Chen, H.F. Meng, E.C. Chen, S.F. Horng, C.S. Hsu, Polymer solar cell by blade coating, Organic Electronics,10 (2009) 741-746.
    [51]X.L. Mo, T. Mizokuro, H. Mochizuki, N. Tanigaki, T. Hiraga, Polymer solar cell prepared by a novel vacuum spray method, Jpn JAppl Phys 1,44 (2005) 656-657.
    [52]M. Chandrasekharam, G. Rajkumar, C.S. Rao, T. Suresh, P.Y. Reddy, Phenothiazine conjugated bipyridine as ancillary ligand in Ru(II)-complexes for application in dye sensitized solar cell, Synthetic Met,161 (2011) 1469-1476.
    [53]S.J. Wu, C.Y. Chen, J.Y. Li, J.G. Chen, K.M. Lee, K.C. Ho, C.G. Wu, Carbazole Containing Ru-based Photo-sensitizer for Dye-sensitized Solar Cell, J Chin Chem Soc-Taip,57 (2010) 1127-1130.
    [54]H.J. Park, H.M. Kim, K.H. Kim, S.Y. Choi, Y.K. Kang, W.I. Lee, Y.K. Chung, First asymmetric ru(Ⅱ) complexes of n-heterocyclic carbenes and terpyridine:Synthesis, characterization, and their properties as sensitizers for dye-sensitized solar cell, Abstr Pap Am Chem 5,239 (2010).
    [55]H. Kusama, H. Arakawa, Influence of aminothiazole additives in I-/I-3(-) redox electrolyte solution on Ru(Ⅱ)-dye-sensitized nanocrystalline TiO2 solar cell performance, Sol Energ Mat Sol C,82 (2004) 457-465.
    [1]A.V. Davie W. Deberry, Photoelectrochromic Behavior of Prussian Blue-Modified TiO2 Electrodes, Journal of The Electrochemical Society,130 (1983) 249-251.
    [2]C. Bechinger, S. Ferrer, A. Zaban, J. Sprague, B.A. Gregg, Photoelectrochromic windows and displays, Nature,383 (1996) 608-610.
    [3]A. Hauch, A. Georg, S. Baumgartner, U.O. Krasovec, B. Orel, New photoelectrochromic device, Electrochim Acta,46 (2001)2131-2136.
    [4]A. Georg, A. Georg, U.O. Krasovec, Photoelectrochromic window with Pt catalyst, Thin Solid Films,502(2006)246-251.
    [5]C.Y. Hsu, K.M. Lee, J.H. Huang, K.R.J. Thomas, J.T. Lin, K.C. Ho, A novel photoelectrochromic device with dual application based on poly(3,4-alkylenedioxythiophene) thin film and an organic dye, J Power Sources,185(2008) 1505-1508.
    [6]C. Xu, H. Tamagawa, M.B. Uchida, M. Taya, Enhanced contrast ratios and rapid switching color changeable devices based on poly(3,4-propylenedioxythiophene) derivative and counterelectrode, P Soc Photo-Opt Ins,4695 (2002) 442-450
    [7]C. Xu, L. Liu, S.E. Legenski, D. Ning, M. Taya, Switchable window based on electrochromic polymers, J Mater Res,19 (2004) 2072-2080.
    [8]M. Adachi, M. Sakamoto, J.T. Jiu, Y. Ogata, S. Isoda, Determination of parameters of electron transport in dye-sensitized solar cells using electrochemical impedance spectroscopy, J Phys Chem B,110 (2006)13872-13880.
    [9]F. Sundfors, J. Bobacka, A. Ivaska, A. Lewenstam, Kinetics of electron transfer between Fe(CN)(6)(3-/4-) and poly(3,4-ethylenedioxythiophene) studied by electrochemical impedance spectroscopy, Electrochim Acta,47 (2002) 2245-2251.
    [10]C. Ma, J. Zheng, S. Yang, D. Zhu, Y. Bin, C. Xu, Electrochromic kinetics of nanostructured poly (3,4-(2,2-dimethylpropylenedioxy)thiophene) film on plastic substrate, Organic Electronics,12 (2011) 980-987.
    [11]B. Oregan, M. Gratzel, A Low-Cost, High-Efficiency Solar-Cell Based on Dye-Sensitized Colloidal Tio2 Films, Nature,353 (1991) 737-740.
    [12]Q.J. Yu, Y.H. Wang, Z.H. Yi, N/N. Zu, J. Zhang, M. Zhang, P. Wang, High-Efficiency Dye-Sensitized Solar Cells:The Influence of Lithium Ions on Exciton Dissociation, Charge Recombination, and Surface States, Acs Nano,4 (2010) 6032-6038.
    [13]S. Hattori, Y. Wada, S. Yanagida, S. Fukuzumi, Blue copper model complexes with distorted tetragonal geometry acting as effective electron-transfer mediators in dye-sensitized solar cells, JAm Chem Soc,127 (2005) 9648-9654.
    [14]M.J. DeVries, M.J. Pellin, J.T. Hupp, Dye-Sensitized Solar Cells:Driving-Force Effects on Electron Recombination Dynamics with Cobalt-Based Shuttles, Langmuir,26 (2010) 9082-9087.
    [15]H. Nusbaumer, J.E. Moser, S.M. Zakeeruddin, M.K. Nazeeruddin, M. Gratzel, Co-Ⅱ(dbbiP)(2)(2+) complex rivals tri-iodide/iodide redox mediator in dye-sensitized photovoltaic cells, J Phys Chem B,105 (2001) 10461-10464.
    [16]H. Nusbaumer, S.M. Zakeeruddin, J.E. Moser, M. Gratzel, An alternative efficient redox couple for the dye-sensitized solar cell system, Chem-Eur J,9 (2003) 3756-3763.
    [17]S.M. Feldt, U.B. Cappel, E.M.J. Johansson, G. Boschloo, A. Hagfeldt, Characterization of Surface Passivation by Poly(methylsiloxane) for Dye-Sensitized Solar Cells Employing the Ferrocene Redox Couple, JPhys Chem C,114 (2010) 10551-10558.
    [18]B.A. Gregg, F. Pichot, S. Ferrere, C.L. Fields, Interfacial recombination processes in dye-sensitized solar cells and methods to passivate the interfaces, J Phys Chem B,105 (2001) 1422-1429.
    [19]Y. Bai, Q.J. Yu, N. Cai, Y.H. Wang, M. Zhang, P. Wang, High-efficiency organic dye-sensitized mesoscopic solar cells with a copper redox shuttle, Chem Commun,47 (2011) 4376-4378.
    [20]T.C. Li, A.M. Spokoyny, C.X. She, O.K. Farha, C.A. Mirkin, T.J. Marks, J.T. Hupp, Ni(Ⅲ)/(Ⅳ) Bis(dicarbollide) as a Fast, Noncorrosive Redox Shuttle for Dye-Sensitized Solar Cells, JAm Chem Soc,132 (2010) 4580-4582.
    [21]S.A. Sapp, C.M. Elliott, C. Contado, S. Caramori, C.A. Bignozzi, Substituted polypyridine complexes of cobalt(Ⅱ/Ⅲ) as efficient electron-transfer mediators in dye-sensitized solar cells, J Am Chem Soc,124(2002) 11215-11222.
    [22]D. Martineau, M. Beley, P.C. Gros, S. Cazzanti, S. Caramori, C.A. Bignozzi, Tuning of ruthenium complex properties using pyrrole-and pyrrolidine-containing polypyridine ligands, Inorg Chem,46 (2007) 2272-2277.
    [23]S. Caramori, J. Husson, M. Beley, C.A. Bignozzi, R. Argazzi, P.C. Gros, Combination of Cobalt and Iron Polypyridine Complexes for Improving the Charge Separation and Collection in Ru(terpyridine)(2)-Sensitised Solar Cells, Chem-Eur J,16 (2010) 2611-2618.
    [24]Z. Zhang, P. Chen, T.N. Murakami, S.M. Zakeeruddin, M. Gratzel, The 2,2,6,6-tetramethyl-l-piperidinyloxy radical:An efficient, iodine-free redox mediator for dye-sensitized solar cells, Adv Funct Mater,18 (2008) 341-346.
    [25]M.K. Wang, N. Chamberland, L. Breau, J.E. Moser, R. Humphry-Baker, B. Marsan, S.M. Zakeeruddin, M. Gratzel, An organic redox electrolyte to rival triiodide/iodide in dye-sensitized solar cells, Nat Chem,2 (2010) 385-389.
    [26]H.N. Tian, Z. Yu, A. Hagfeldt, L. Kloo, L. Sun, Organic Redox Couples and Organic Counter Electrode for Efficient Organic Dye-Sensitized Solar Cells, J Am Chem Soc,133 (2011)9413-9422.
    [1]S. Roquet, A. Cravino, P. Leriche, O. Aleveque, P. Frere, J. Roncali, Triphenylamine-thienylenevinylene hybrid systems with internal charge transfer as donor materials for heteroj unction solar cells, J Am Chem Soc,128 (2006) 3459-3466.
    [2]C. He, Q. He, G. Wu, F. Bai, Y. Li, High open-circuit-voltage organic solar cell based on two solution-processible triphenylamine-containing compounds, Organic Photovoltaics ⅷ,6656 (2007) Z6560-Z6560.
    [3]A. lto, H. lno, K. Tanaka, K. Kanemoto, T. Kato, Facile synthesis, crystal structures, and high-spin cationic states of all-para-brominated oligo(N-phenyl-m-aniline)s, J Org Chem,67 (2002)491-498.
    [4]H.J. Yen, S.M. Guo, J.M. Yeh, G.S. Liou, Triphenylamine-Based Polyimides with Trimethyl Substituents for Gas Separation Membrane and Electrochromic Applications, J Polym Sci Pol Chem,49 (2011) 3637-3646.
    [5]K.Y. Law, Organic Photoconductive Materials-Recent Trends and Developments, Chem Rev, 93(1993)449-486.
    [6]K.R.J. Thomas, J.T. Lin, Y.T. Tao, C.W. Ko, New star-shaped luminescent triarylamines: Synthesis, thermal, photophysical, and electroluminescent characteristics, Chem Mater,14 (2002) 1354-1361.
    [7]H.J. Yen, H.Y. Lin, G.S. Liou, Novel Starburst Triarylamine-Containing Electroactive Aramids with Highly Stable Electrochromism in Near-Infrared and Visible Light Regions, Chem Mater,23 (2011) 1874-1882.
    [8]K. Katsuma, Y. Shirota, A novel class of pi-electron dendrimers for thermally and morphologically stable amorphous molecular materials, Adv Mater,10 (1998)223-226.
    [9]Y. Shirota, M. Kinoshita, T. Noda, K. Okumoto, T. Ohara, A novel class of emitting amorphous molecular materials as bipolar radical formants: 2-{4-[bis(4-methylphenyl)amino]phenyl}-5-(dimesitylboryl)thiophene and 2-(4-[bis(9,9-dimethylfluorenyl)amino]phenyl}-5-(dimesitylborly) thiophene, J Am Chem Soc,122(2000)11021-11022.
    [10]Y. Shirota, K. Okumoto, H. Inada, Thermally stable organic light-emitting diodes using new families of hole-transporting amorphous molecular materials, Synthetic Met,111 (2000) 387-391.
    [11]K. Okumoto, Y. Shirota, New class of hole-blocking amorphous molecular materials and their application in blue-violet-emitting fluorescent and green-emitting phosphorescent organic electroluminescent devices, Chem Mater,15 (2003) 699-707.
    [12]M. Behl, E. Hattemer, M. Brehmer, R. Zentel, Tailored semiconducting polymers:Living radical polymerization and NLO-functionalization of triphenylamines, Macromol Chem Physic,203 (2002) 503-510.
    [13]Y. Kim, K. Han, C.S. Ha, Synthesis and characteristics of poly[N,N' -diphenyl-N,N '-bis(4-aminobiphenyl)-(1,1'-biphenyl)-4,4'-diamine pyromellitimide] as a hole injecting and transporting layer for hybrid organic light-emitting device, Macromolecules,35 (2002) 8759-8767.
    [14]M.Y. Chou, M.K. Leung, Y.L.O. Su, C.L. Chiang, C.C. Lin, J.H. Liu, C.K. Kuo, C.Y. Mou, Electropolymerization of Starburst triarylamines and their application to electrochromism and electroluminescence, Chem Mater,16 (2004) 654-661.
    [15]R. Kisselev, M. Thelakkat, Synthesis and characterization of poly(triarylamine)s containing isothianaphthene moieties, Macromolecules,37 (2004) 8951-8958.
    [16]M. Nomura, Y. Shibasaki, M. Ueda, K. Tugita, M. Ichikawa, Y. Taniguchi, Synthesis and properties of poly[di(1-naphthyl)-4-tolylamine] as a hole transport material, Macromolecules, 37(2004)1204-1210.
    [17]G.S. Liou, S.H. Hsiao, T.H. Su, Synthesis, luminescence and electrochromism of aromatic poly(amine-amide)s with pendent triphenylamine moieties, J Mater Chem,15 (2005) 1812-1820.
    [1]H. Ma, H.L. Yip, F. Huang, A.K.Y. Jen, Interface Engineering for Organic Electronics, Adv Fund Mater,20 (2010) 1371-1388.
    [2]S.C.J. Peter J. Hotchkiss, Sergio A. Paniagua, Asha Sharma, Bernard Kippelen, Neal R. Armstrong and Seth T, Marder, The Modification of Indium Tin Oxide with Phosphonic Acids: Mechanism of Binding, Tuning of Surface Properties, and Potential for Use in Organic Electronic Applications, Account of Chemical Research,45 (2011) 337-346.
    [3]R.D. Ramsier, P.N. Henriksen, A.N. Gent, Adsorption of Phosphorus-Acids on Alumina, Surf Sci,203(1988)72-88.
    [4]W. Gao, L. Dickinson, C. Grozinger, F.G. Morin, L. Reven, Self-assembled monolayers of alkylphosphonic acids on metal oxides, Langmuir,12 (1996) 6429-6435.
    [5]S.F.J. Appleyard, S.R. Day, R.D. Pickford, M.R. Willis, Organic electroluminescent devices: enhanced carrier injection using SAM derivatized 1TO electrodes, J Mater Chem,10 (2000) 169-173.
    [6]E.L. Hanson, J. Guo, N. Koch, J. Schwartz, S.L. Bernasek, Advanced surface modification of indium tin oxide for improved charge injection in organic devices, J Am Chem Soc,127 (2005) 10058-10062.
    [7]N.W. Polaske, H.C. Lin, A. Tang, M. Mayukh, L.E. Oquendo, J.T. Green, E.L. Rateliff, N.R. Armstrong, S.S. Saavedra, D.V. McGrath, Phosphonic Acid Functionalized Asymmetric Phthalocyanines:Synthesis, Modification of Indium Tin Oxide, and Charge Transfer, Langmuir,27 (2011) 14900-14909.
    [8]C. Xu, L. Liu, S.E. Legenski, D. Ning, M. Taya, Switchable window based on electrochromic polymers, J Mater Res,19 (2004) 2072-2080.
    [9]C. Xu, H. Tamagawa, M.B. Uchida, M. Taya, Enhanced contrast ratios and rapid switching color changeable devices based on poly(3,4-propylenedioxythiophene) derivative and counterelectrode, P Soc Photo-Opt Ins,4695 (2002) 442-450
    [10]M. Chockalingam, N. Darwish, G. Le Saux, J.J. Gooding, Importance of the Indium Tin Oxide Substrate on the Quality of Self-Assembled Monolayers Formed from Organophosphonic Acids, Langmuir,27 (2011) 2545-2552.
    [11]C. Ma, J. Zheng, S. Yang, D. Zhu, Y.Z. Bin, C. Xu, Electrochromic kinetics of nanostructured poly(3,4-(2,2-dimethylpropylenedioxy)thiophene) film on plastic substrate, Organic Electronics,12 (2011) 980-987.
    [12]R.S. Nicholson, I. Shain, Theory of Stationary Electrode Polarography:Single Scan and Cyclic Methods Applied to Reversible, Irreversible, and Kinetic Systems, Anal Chem,36 (1964)706-723.
    [13]I.H. Campbell, J.D. Kress, R.L. Martin, D.L. Smith, N.N. Barashkov, J.P. Ferraris, Controlling charge injection in organic electronic devices using self-assembled monolayers, Appl Phys Lett,71 (1997) 3528-3530.
    [14]D.M. Welsh, A. Kumar, E.W. Meijer, J.R. Reynolds, Enhanced contrast ratios and rapid switching in electrochromics based on poly(3,4-propylenedioxythiophene) derivatives, Adv Mater,11 (1999) 1379-1382.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700