β-arrestins在细胞凋亡和TLR4介导的先天性免疫反应中分子调控机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     研究β-arrestins在血清饥饿(SD)诱导的小鼠胚胎成纤维细胞(MEFs)凋亡中的作用,以及相关信号转导途径。
     方法:
     WT,β-arrestin1KO和β-arrestin2KOMEFs在无血清DMEM培养基中分别培养12h、24h、48h后,TUNEL检测细胞凋亡率。β-arrestin2KOMEFs转染β-arrestin2过表达质粒,转染48h后,SD诱导12h,24h、48h,TUNEL检测细胞凋亡情况。SD诱导12h、24h后,Westernblot检测WT,β-arrestin1KO和β-arrestin2KOMEFs内Caspase-3、ERK1/2、p38MAPKs、Akt蛋白的表达情况。
     结果:
     1.SD诱导不同时间后,β-arrestin1KO和β-arrestin2KOMEFs中凋亡细胞数目显著多于WTMEFs,并且在β-arrestin2KOMEFs中转染β-arrestin2质粒后能够明显减少细胞的凋亡。
     2.SD诱导不同时间后,β-arrestin1KO和β-arrestin2KOMEFs中cleavedCaspase-3活性显著高于WTMEFs。
     3.SD诱导不同时间后,β-arrestin1KO和β-arrestin2KOMEFs中p-ERK1/2、p-p38MAPKs水平显著高于WTMEFs,而p-Akt则明显低于WTMEFs。结论:
     1.β-arrestin1和2能够显著减少SD诱导的MEFs的凋亡。
     2.β-arrestin1和2通过调控促凋亡蛋白ERK1/2、p38MAPKs和抗凋亡蛋白Akt的信号途径参与SD介导的细胞凋亡信号通路的转导。
     目的:
     研究β-arrestins在脂多糖(LPS)、IL-1β诱导的MEFs、HEK293细胞炎症介质产生中的作用,以及相关信号转导途径。
     方法:
     LPS刺激WT,β-arrestin1/2DKOMEFs不同时间点后,RT-PCR测定细胞因子IL-6、IL-8和TNF-α的表达水平。β-arrestin1/2DKOMEFs分别转染β-arrestin1或β-arrestin2过表达质粒48h后,LPS刺激1h,RT-PCR及ELISA测定细胞因子IL-6、IL-8和TNF-α的表达水平,Westernblot测定细胞内ERK1/2、p38MAPKs、Akt的蛋白表达情况。IL-1β刺激HEK293细胞、转染了β-arrestin1或2过表达质粒的HEK293细胞及转染了β-arrestin1或2siRNA的HEK293细胞后,双荧光素酶报告基因检测转录因子NF-κB及AP-1的活性。
     结果:
     1.LPS刺激后,β-arrestin1/2DKOMEFs中IL-6、IL-8和TNF-α的表达水平显著高于WTMEFs,并且在β-arrestin1/2DKOMEFs中转染β-arrestin1或β-arrestin2质粒后能够明显减少IL-6、IL-8和TNF-α的表达水平。
     2.LPS刺激后,β-arrestin1/2DKOMEFs中p-ERK1/2、p-p38MAPKs水平显著高于WTMEFs,转染β-arrestin1或β-arrestin2质粒后则能显著抑制p-ERK1/2、p-p38MAPKs的活性。
     3.IL-1β刺激HEK293细胞后,能引起NF-κB及AP-1报告基因活性的增加,转染β-arrestin1或β-arrestin2质粒后能够抑制报告基因活性的增加。而转染了β-arrestin1或β-arrestin2siRNA后则能进一步增加NF-κB及AP-1报告基因活性。
     结论:
     1.β-arrestin1和2能够抑制LPS引起的细胞因子的表达,负调控TLR4介导的先天性免疫反应。
     2.β-arrestin1和2是通过抑制ERK、p38MAPKs来负调控TLR4的信号通路。
     3.β-arrestin1和2能够调控IL-1β引起的NF-κB及AP-1的激活
     目的:
     研究β-arrestin2在TLR4介导的小鼠肝脏缺血再灌注损伤中的保护作用及其可能机制。
     方法:
     C57BL/6β-arrestin2WT、KO雄性小鼠随机分为四组,两组对照组(WT、β-arrestin2KO)和两组实验组(IR+WT、IR+β-arrestin2KO)。制作小鼠肝脏热缺血再灌注模型,再灌注6小时后处死小鼠,检测肝脏功能、肝组织形态学、肝细胞凋亡、细胞因子、生存率等指标。Westernblot检测TLR4、Akt/GSK3β,Bcl-2家族,MAPKs及转录因子NF-κB的表达。
     结果:
     1.再灌注6小时,β-arrestin2KO组ALT、AST,细胞凋亡数目及细胞因子的产生显著高于WT组,β-arrestin2KO组小鼠生存率明显低于WT组。
     2.Westernblot检测β-arrestin2KO组Akt/GSK、Bcl-2的活性显著低于WT组,而ERK1/2、p38MAPKs、NF-κB的活性高于WT组。
     结论:
     I/R后β-arrestin2通过调控Akt/GSK3β、MAPKs信号及影响转录因子NF-κB的活性,负调控TLR4的信号通路,保护I/R后肝组织的损伤。
Objective:
     To detect the effect of β-arrestins on SD-induced apoptosis and signaling pathway in MEFs
     Methods:
     WT, β-arrestinl KO and β-arrestin2KO MEFs were cultured in DMEM medium without serum for12h、24h and48h, Apoptotic cells were determined by TUNEL assay. β-arrestin2full-length plasmid and control vector were transfected into β-arrestin2KO MEFs and then detected the cell apoptosis. Caspase-3, ERK1/2, p38MAPKs and Akt phosphory-lation were determined in WT,β-arrestinl and2KO MEFs following SD in a different time point by Westernblot.
     Results:
     1. Significantly greater cell apoptosis was observed when β-arrestinl or β-arrestin2deficient MEFs were exposed to SD than WT MEFs were exposed to SD. Moreover, transfection with β-arrestin2full-length plasmid strongly rescued the number of apoptosis in a deficiency of β-arrestin2MEFs.
     2. The level of Caspase-3activation was significantly higher in the absence of β-arrestinl or2than in WT cells following SD treatment for12and24h.
     3. The levels of phospho-ERK1/2and phospho-p38MAPKs were significantly higher in β-arrestinl or2KO MEFs than in WT MEFs. While the levels of phospho-Akt in β-arrestinl or2KO MEFs were significantly lower compared to in WT cells.
     Conclusions:
     1. β-arrestinl and β-arrestin2significantly inhibit MEFs apoptosis following SD
     2.β-Arrestinl and β-arrestin2prevents cell apoptosis through pro-apoptotic ERKl/2and p38MAPKs and anti-apoptotic Akt pathways
     Objective:
     To detect the effect of β-arrestins on LPS、IL-1β-mediated the production of the cytokine and signaling pathway in MEFs and HEK293cells.
     Methods:
     RT-PCR analysis of relative IL-6、IL-8and TNF-a mRNA after LPS stimulation in WT and p-arrestinl/2DKO MEFs. p-arrestinl/2DKO MEFs were transfected with β-arrestinsl or β-arrestins2plasmid. Forty-eight hours posttransfection, cells were treated with or without LPS, mRNA and the concentration of IL-6、IL-8and TNF-a in culture supernatants were quantified by RT-PCR and ELISA, ERK1/2, p38MAPKs and Akt phosphorylation were determined by Westernblot. Dual-Luciferase reporter assay showing IL-1β-induced activation of transcription factor NF-κB and AP-1in HEK293cells.
     Results:
     1. Significantly increased production of IL-6、IL-8and TNF-a were dectected in β-arrestinl/2DKO MEFs than WT MEFs after LPS stimulation. Moreover, transfection with β-arrestinl or β-arrestin2full-length plasmid strongly reduced the producrion of IL-6、 IL-8and TNF-a in a deficiency of β-arrestinl/2MEFs.
     2. The levels of phospho-ERK1/2and phospho-p38MAPKs were significantly higher in β-arrestinl/2DKO MEFs than in WT MEFs after LPS stimulation. While transfection with β-arrestinl or β-arrestin2full-length plasmid strongly decreased the activation of ERK1/2and p38MAPKs in β-arrestinl/2DKO MEFs compared to in WT cells.
     3. IL-1β stimulation increased NF-κB and AP-1reported activity in HEK293cell-whereas transfection with β-arrestinl or β-arrestin2plasmid inhibit this increase.1 contrast, knockdown of β-arrestinl or β-arrestin2by siRNA increased the IL-1β-stimulated NF-κB and AP-1actication.
     Conclusions:
     1.β-arrestinl and β-arrestin2significantly inhibit the production of cytokine following LPS stimulation and negative regulate TLR4-mediated innate immune response.
     2. β-Arrestinl and β-arrestin2negative regulate TLR4-mediated innate immune response through ERK1/2and p38MAPKs signaling pathways
     3. β-Arrestinl and β-arrestin2inhibits IL-1β-induced NF-κB and AP-1activation.
     Objective:
     To determine the protection effect and possible mechanism of β-arrestin2in TLR4-mediated murine liver ischemia-reperfusion injury.
     Methods:
     C57BL/6β-arrestin2WT、KO male mice were randomly divided into four groups: control group (WT, β-arrestin2KO), experimental group (IR+WT, IR+β-arrestin2KO). Hepatic partial warm ischemia was performed for60minutes. After6h reperfusion, liver function, the degree of apoptosis, cytokine and the activation of TLR4、Akt/GSK3β, Bcl-2family, MAPKs, NF-κB were assessed. The survival rate was also investigated.
     Results:
     1. Serum ALT, AST, apoptotic cells and the production of cytokine were significantly higher in the I/R+P-arrestin2KO groups compared with those in WT group at6h after reperfusion. The survival rates of mice in I/R+P-arrestin2KO group significantly lower than in WT group.
     2. The activation of Akt/GSK, Bcl-2significantly lower in I/R+β-arrestin2K group than in WT group. In contrast the levels of phospho-ERK1/2, phosphc p38MAPKs and NF-κB were significantly higher in I/R+β-arrestin2KO group than in WT group.
     Conclusions:
     β-arrestin2can negative regulate TLR4signaling and attenuate hepatocellular injury after hepatic warm I/R injury through Akt/GSK3β、 MAPKs and NF-κB signaling pathway.
引文
1. DeWire, S.M., et al, Beta-arrestins and cell signaling. Annu Rev Physiol,2007.69:p.483-510.
    2. Reiter, E. and R.J. Lefkowitz, GRKs and beta-arrestins:roles in receptor silencing, trafficking and signaling. Trends Endocrinol Metab,2006.17(4):p.159-65.
    3. Lefkowitz, R.J., Historical review:a brief history and personal retrospective of seven-transmembrane receptors. Trends Pharmacol Sci,2004.25(8):p.413-22.
    4. Perry, S.J., et al., Targeting of cyclic AMP degradation to beta2-adrenergic receptors by beta-arrestins. Science,2002.298(5594):p.834-6.
    5. Nelson, C.D., et al., Targeting of diacylglycerol degradation to M1muscarinic receptors by beta-arrestins. Science,2007.315(5812):p.663-6.
    6. Ferguson, S.S., et al., Role of beta-arrestin in mediating agonist-promoted G protein-coupled receptor internalization. Science,1996.271(5247):p.363-6.
    7. Kohout, T.A., et al., beta-Arrestin1and2differentially regulate heptahelical receptor signaling and trafficking. Proc Natl Acad Sci U S A,2001.98(4):p.1601-6.
    8. Lin, F.T., Y. Daaka, and R.J. Lefkowitz, beta-arrestins regulate mitogenic signaling and clathrin-mediated endocytosis of the insulin-like growth factor Ⅰ receptor. J Biol Chem,1998.273(48):p.31640-3.
    9. Wu, J.H., et al., The adaptor protein beta-arrestin2enhances endocytosis of the low density lipoprotein receptor. J Biol Chem,2003.278(45):p.44238-45.
    10. Chen, W., et al., Beta-arrestin2mediates endocytosis of type Ⅲ TGF-beta receptor and down-regulation of its signaling. Science,2003.301(5638):p.1394-7.
    11. Revankar, C.M., et al., Arrestins block G.protein-coupled receptor-mediated apoptosis. J Biol Chem,2004.279(23):p.24578-84.
    12. DeFea, K.A., et al., beta-arrestin-dependent endocytosis of proteinase-activated receptor2is required for intracellular targeting of activated ERK1/2. J Cell Biol,2000.148(6):p.1267-81.
    13. Povsic, T.J., T.A. Kohout, and R.J. Lefkowitz, Beta-arrestinl mediates insulin-like growth factor1(IGF-1) activation of phosphatidylinositol3-kinase (PI3K) and anti-apoptosis. J Biol Chem,2003.278(51):p.51334-9.
    14. Ahn, S., et al,{beta}-Arrestin-2Mediates Anti-apoptotic Signaling through Regulation of BAD Phosphorylation. J Biol Chem,2009.284(13):p.8855-65.
    15. Zhao, M., et al., Arrestin regulates MAPK activation and prevents NADPH oxidase-dependent death of cells expressing CXCR2. Journal of Biological Chemistry,2004.279(47):p.49259-49267.
    16. Pyne, N.J., et al., Receptor tyrosine kinase-GPCR signal complexes. Biochem Soc Trans,2003.31(Pt6):p.1220-5.
    17. Imamura, T., et al., beta-Arrestin-mediated recruitment of the Src family kinase Yes mediates endothelin-1-stimulated glucose transport. J Biol Chem,2001.276(47):p.43663-7.
    18. Morrison, D.K. and R.J. Davis, Regulation of MAP kinase signaling modules by scaffold proteins in mammals. Annu Rev Cell Dev Biol,2003.19:p.91-118.
    19. Luttrell, L.M., et al., Activation and targeting of extracellular signal-regulated kinases by beta-arrestin scaffolds. Proc Natl Acad Sci U S A,2001.98(5):p.2449-54.
    20. Ahn, S., et al., Differential kinetic and spatial patterns of beta-arrestin and G protein-mediated ERK activation by the angiotensin II receptor. J Biol Chem,2004.279(34):p.35518-25.
    21. Eltzschig, H.K. and T. Eckle, Ischemia and reperfusion-from mechanism to translation. Nat Med,2011.17(11):p.1391-1401.
    22. Hotchkiss, R.S., et al., Mechanisms of Disease Cell Death. New England Journal of Medicine,2009.361(16):p.1570-1583.
    23. Elliott, M.R., et al., Nucleotides released by apoptotic cells act as afind-me signal to promotephagocytic clearance. Nature,2009.461(7261):p.282-U165.
    24. Chen, G. Y. and G. Nunez, Sterile inflammation:sensing and reacting to damage. Nat Rev Immunol,2010.10(12):p.826-37.
    25. McDonald, B., et al., Intravascular danger signals guide neutrophils to sites of sterile inflammation. Science,2010.330(6002):p.362-6.
    1. Lefkowitz, R.J. and S.K. Shenoy, Transduction of receptor signals by beta-arrestins. Science,2005.308(5721):p.512-7.
    2. Moore, C.A., S.K. Milano, and J.L. Benovic, Regulation of receptor trafficking by GRKs and arrestins. Annu Rev Physiol,2007.69:p.451-82.
    3. Buchanan, F.G. and R.N. DuBois, Emerging roles of beta-arrestins. Cell Cycle,2006.5(18):p.2060-3.
    4. Kovacs, J.J., et al, Arrestin development:emerging roles for beta-arrestins in developmental signaling pathways. Dev Cell,2009.17(4):p.443-58.
    5. Wang, P., et al., Beta-arrestin2functions as a G-protein-coupled receptor-activated regulator of oncoprotein Mdm2. J Biol Chem,2003.278(8):p.6363-70.
    6. Reiter, E. and R. J. Lefkowitz, GRKs and beta-arrestins:roles in receptor silencing, trafficking and signaling. Trends Endocrinol Metab,2006.17(4):p.159-65.
    7. Lymperopoulos, A. and A. Bathgate, Pharmacogenomics of the heptahelical receptor regulators G-protein-coupled receptor kinases and arrestins:the know and the unknown. Pharmacogenomics,2012.13(3):p.323-41.
    8. Ma, L. and G. Pei, Beta-arrestin signaling and regulation of transcription. J Cell Sci,2007.120(Pt2):p.213-8.
    9. Lymperopoulos, A., Beta-arrestin Biased Agonism/Antagonism at Cardio-vascular Seven Transmembrane-spanning Receptors. Curr Pharm Des,2012.18(2):p.192-8.
    10. Revankar, C.M., et al, Arrestins block G protein-coupled receptor-mediated apoptosis. J Biol Chem,2004.279(23):p.24578-84.
    11. Povsic, T.J., T.A. Kohout, and R.J. Lefkowitz, Beta-arrestinl mediates insulin-like growth factor1(IGF-1) activation of phosphatidylinositol3-kinase (PI3K) and anti-apoptosis. J Biol Chem,2003.278(51):p.51334-9.
    12. Li, Y, et al., Morphine promotes apoptosis via TLR2, and this is negatively regulated by beta-arrestin2. Biochem Biophys Res Commun,2009.378(4):p.857-61.
    13. Sun, X., et al., Beta-arrestin2modulates resveratrol-induced apoptosis and regulation of Akt/GSK3ss pathways. Biochim Biophys Acta,2010.1800(9):p.912-8.
    14. Ahn, S., et al.,{beta}-Arrestin-2Mediates Anti-apoptotic Signaling through Regulation of BAD Phosphorylation. J Biol Chem,2009.284(13):p.8855-65.
    15. Wang, X., et al., The cellular response to oxidative stress:influences of mitogen-activated protein kinase signalling pathways on cell survival. Biochem J,1998.333(Pt2):p.291-300.
    16. Huot, J., et al., SAPK2/p38-dependent F-actin reorganization regulates early membrane blebbing during stress-induced apoptosis. J Cell Biol,1998.143(5):p.1361-73.
    17. De Zutter, G.S. and R.J. Davis, Pro-apoptotic gene expression mediated by the p38mitogen-activated protein kinase signal transduction pathway. Proc Natl Acad Sci U S A,2001.98(11):p.6168-73.
    18. Aoki, H., et al., Direct activation of mitochondrial apoptosis machinery by c-Jun N-terminal kinase in adult cardiac myocytes. J Biol Chem,2002.277(12): 10244-50.
    19. Tang, D., et al, ERK activation mediates cell cycle arrest and apoptosis after DNA damage independently of p53. J Biol Chem,2002.277(15):p.12710-7.
    20. Pearson, G, et al., Mitogen-activated protein (MAP) kinase pathways:regulation and physiological functions. Endocr Rev,2001.22(2):p.153-83.
    21. Chang, L. and M. Karin, Mammalian MAP kinase signalling cascades. Nature,2001.410(6824):p.37-40.
    22. Ichijo, H., From receptors to stress-activated MAP kinases. Oncogene,1999.18(45):p.6087-93.
    23. Tegeder, I. and G. Geisslinger, Opioids as modulators of cell death and survival--unraveling mechanisms and revealing new indications. Pharmacol Rev,2004.56(3):p.351-69.
    24. Porras, A., et al., P38alpha mitogen-activated protein kinase sensitizes cells to apoptosis induced by different stimuli. Mol Biol Cell,2004.15(2):p.922-33.
    25. Xie, N., et al., Glycogen synthase kinase-3and p38MAPK are required for opioid-inducedmicroglia apoptosis. Neuropharmacology,2010.59(6):p.444-51.
    26. Liu, X., et al., Varicella-Zoster Virus ORF12Protein Triggers Phosphorylation of ERK1/2and Inhibits Apoptosis. J Virol,2012.86(6):p.3143-51.
    27. Cagnol, S. and J.C. Chambard, ERK and cell death:mechanisms of ERK-induced cell death--apoptosis, autophagy and senescence. FEBS J,2010.277(1):p.2-21.
    28. Murphy, L.O. and J. Blenis, MAPK signal specificity:the right place at the right time. Trends Biochem Sci,2006.31(5):p.268-75.
    29. Osaki, M., M. Oshimura, and H. Ito, PI3K-Akt pathway:its functions and alterations in human cancer. Apoptosis,2004.9(6):p.667-76.
    30. Hetman, M., et al., Role of glycogen synthase kinase-3beta in neuronal apoptosis induced by trophic withdrawal. J Neurosci,2000.20(7):p.2567-74.
    31. Yin, D., et al., Morphine promotes J urkat cell apoptosis through pro-apoptotic FADD/P53and anti-apoptotic PI3K/Akt/NF-kappaB pathways. J Neur-oimmunc 2006.174(1-2):p.101-7.
    32. Beaulieu, J.M., R.R. Gainetdinov, and M.G. Caron, The Akt-GSK-3signaling cascade in the actions of dopamine. Trends Pharmacol Sci,2007.28(4):p.166-72.
    33. Beaulieu, J.M., et al, An Akt/beta-arrestin2/PP2A signaling complex mediates dopaminergic neurotransmission and behavior. Cell,2005.122(2):p.261-73.
    1. DeWire, S.M., et al., Beta-arrestins and cell signaling. Annu Rev Physiol,2007.69:p.483-510.
    2. Lefkowitz, R.J., K. Rajagopal, and E.J. Whalen, New roles for beta-arrestins in cell signaling:not just for seven-transmembrane receptors. Mol Cell,2006.24(5):p.643-52.
    3. Lefkowitz, R.J. and E.J. Whalen, beta-arrestins:traffic cops of cell signaling. Curr Opin Cell Biol,2004.16(2):p.162-8.
    4. DeWire, S.M., et al., Beta-arrestin-mediated signaling regulates protein synthesis. J Biol Chem,2008.283(16):p.10611-20.
    5. Fereshteh, M., et al., beta-Arrestin2mediates the initiation and progression of myeloid leukemia. Proc Natl Acad Sci U S A,2012.
    6. Shenoy, S.K. and R.J. Lefkowitz, beta-Arrestin-mediated receptor trafficking and signal transduction. Trends Pharmacol Sci,2011.32(9):p.521-33.
    7. Whalen, E.J., S. Rajagopal, and R.J. Lefkowitz, Therapeutic potential of beta-arrestin-and G protein-biased agonists. Trends Mol Med,2011.17(3):p.126-39.
    8. Parameswaran, N., et al, Arrestin-2and G protein-coupled receptor kinase5interact with NFkappaBl pi05and negatively regulate lipopolysaccharide-stimulated ERK1/2activation in macrophages. J Biol Chem,2006.281(45):p.34159-70.
    9. Wang, Y, et al., Association of beta-arrestin and TRAF6negatively regulates Toll-like receptor-interleukin1receptor signaling. Nat Immunol,2006.7(2):p.139-47.
    10. Fan, H., et al., Beta-arrestins1and2differentially regulate LPS-induced signaling and pro-inflammatory gene expression. Mol Immunol,2007.44(12):p.3092-9.
    11. Akira, S., Toll-like receptor signaling. J Biol Chem,2003.278(40):p.38105-8.
    12. Hemmi, H., et al., A Toll-like receptor recognizes bacterial DNA. Nature,2000.408(6813):p.740-5.
    13. Smith, K.D., et al., Toll-like receptor5recognizes a conserved site on flagellin required for protofilament formation and bacterial motility. Nat Immunol,2003.4(12): p.1247-53.
    14. Hoebe, K., et al., Identification of Lps2as a key transducer of MyD88-independent TIR signalling. Nature,2003.424(6950):p.743-748.
    15. Shigeoka, A.A., et al., TLR2is constitutively expressed within the kidney and participates in ischemic renal injury through both MyD88-dependent and-independent pathways. Journal of Immunology,2007.178(10):p.6252-6258.
    16. Yamamoto, M., et al., TRAM is specifically involved in the Toll-like receptor4-mediated MyD88-independent signaling pathway. Nat Immunol,2003.4(11):p.1144-1150.
    17. Yamamoto, M., et al., Essential role for TIRAP in activation of the signalling cascade shared by TLR2and TLR4. Nature,2002.420(6913):p.324-9.
    18. Kawai, T. and S. Akira, The role of pattern-recognition receptors in innate immunity update on Toll-like receptors. Nat Immunol,2010.11(5):p.373-84.
    19. Beutler, B., Inferences, questions and possibilities in Toll-like receptor signalling. Nature,2004.430(6996):p.257-63.
    20. Dunne, A. and L.A. O'Neill, The interleukin-1receptor/Toll-like receptor superfamily: signal transduction during inflammation and host defense. Sci STKE,2003.2003(171): p. re3.
    21. Kawai, T. and S. Akira, TLR signaling. Cell Death Differ,2006.13(5):p.816-25.
    22. Roux, P.P. and J. Blenis, ERK and p38MAPK-activated protein kinases:a family of protein kinases with diverse biological functions. Microbiol Mol Biol Rev,2004.68(2): p.320-44.
    23. Rubinfeld, H. and R. Seger, The ERK cascade as a prototype of MAPK signaling pathways. Methods Mol Biol,2004.250:p.1-28.
    24. Rubinfeld, H. and R. Seger, The ERK cascade:a prototype of MAPK signaling. Mol Biotechnol,2005.31(2):p.151-74.
    25. Han, J., et al, Activation of the transcription factor MEF2C by the MAP kinase p38in inflammation. Nature,1997.386(6622):p.296-9.
    26. Liew, F.Y., et al., Negative regulation of toll-like receptor-mediated immune responses. Nat Rev Immunol,2005.5(6):p.446-58.
    27. Janssens, S., et al., Regulation of interleukin-1-and lipopolysaccharide-induced NF-kappaB activation by alternative splicing of MyD88. Curr Biol,2002.12(6):p.467-71.
    28. Kobayashi, K., et al., IRAK-M is a negative regulator of toll-like receptor signaling. Cell,2002.110(2):p.191-202.
    29. Nakagawa, R., et al., SOCS-1participates in negative regulation of LPS responses. Immunity,2002.17(5):p.677-87.
    30. Fukao, T., et al., PISK-mediated negative feedback regulation of'IL-12production in DCs. Nat Immunol,2002.3(9):p.875-81.
    31. Boone, D.L., et al., The ubiquitin-modifying enzyme A20is required for termination Toll-like receptor responses. Nat Immunol,2004.5(10):p.1052-1060.
    32. Kobayashi, K.S., et al, Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science,2005.307(5710):p.731-4.
    1. Luttrell, L.M. and R.J. Lefkowitz, The role of beta-arrestins in the termination and transduction of G-protein-coupled receptor signals. J Cell Sci,2002.115(Pt3):p.455-65.
    2. Luttrell, L.M., et al., Beta-arrestin-dependent formation of beta2adrenergic receptor-Src protein kinase complexes. Science,1999.283(5402):p.655-61.
    3. Ma, L. and G. Pei, Beta-arrestin signaling and regulation of transcription. J Cell Sci,2007.120(Pt2):p.213-8.
    4. Wilbanks, A.M., et al., Beta-arrestin2regulates zebrafish development through the hedgehog signaling pathway. Science,2004.306(5705):p.2264-7.
    5. Chen, W., et al., Activity-dependent internalization of smoothened mediated by beta-arrestin2and GRK2. Science,2004.306(5705):p.2257-60.
    6. Chen, W., et al., Dishevelled2recruits beta-arrestin2to mediate Wnt5A stimulated endocytosis of Frizzled4. Science,2003.301(5638):p.1391-4.
    7. Chen, W., et al., Beta-arrestin2mediates endocytosis of type Ⅲ TGF-bet receptor and down-regulation of its signaling. Science,2003.301(5638):p.1394-7.
    8. Gao, H., et al., Identification of beta-arrestin2as a G protein-coupled receptor-stimulated regulator of NF-kappaB pathways. Mol Cell,2004.14(3): p.303-17.
    9. Witherow, D.S., et al., beta-Arrestin inhibits NF-kappaB activity by means of its interaction with the NF-kappaB inhibitor IkappaBalpha. Proc Natl Acad Sci U S A,2004.101(23):p.8603-7.
    10. Lombardi, M.S., et al., Hypoxia/ischemia modulates G protein-coupled receptor kinase2and beta-arrestin-1levels in the neonatal rat brain. Stroke,2004.35(4):p.981-6.
    11. Bohn, L.M., et al., Mu-opioid receptor desensitization by beta-arrestin-2determines morphine tolerance but not dependence. Nature,2000.408(6813): p.720-3.
    12. Wang, Y., et al., Association of beta-arrestin and TRAF6negatively regulates Toll-like receptor-interleukin1receptor signaling. Nat Immunol,2006.7(2): p.139-47.
    13. Lefkowitz, R.J. and E.J. Whalen, beta-arrestins:traffic cops of cell signaling. Curr Opin Cell Biol,2004.16(2):p.162-8.
    14. Waters, C., S. Pyne, and N.J. Pyne, The role of G-protein coupled receptors and associated proteins in receptor tyrosine kinase signal transduction. Semin Cell Dev Biol,2004.15(3):p.309-23.
    15. Lefkowitz, R.J. and S.K. Shenoy, Transduction of receptor signals by beta-arrestins. Science,2005.308(5721):p.512-7.
    16. Zhang, Y., et al., Chronic restraint stress promotes immune suppression through toll-like receptor4-mediated phosphoinositide3-kinase signaling. J Neuroimmunol,2008.204(1-2):p.13-9.
    17. Osaki, M., M. Oshimura, and H. Ito, PISK-Akt pathway:its functions an alterations in human cancer. Apoptosis,2004.9(6):p.667-76.
    18. Beaulieu, J.M., R.R. Gainetdinov, and M.G. Caron, The Akt-GSK-3signaling cascade in the actions of dopamine. Trends Pharmacol Sci,2007.28(4):p.166-72.
    19. Jope, R.S. and G.V. Johnson, The glamour and gloom of glycogen synthase kinase-3. Trends Biochem Sci,2004.29(2):p.95-102.
    20. Woodgett, J.R. and PS. Ohashi, GSK3:an in-Toll-erant protein kinase? Nat Immunol,2005.6(8):p.751-2.
    21. Beaulieu, J.M., et al., An Akt/beta-arrestin2/PP2A signaling complex mediates dopaminergic neurotransmission and behavior. Cell,2005.122(2): p.261-73.
    22. Satoh, M.S. and T. Lindahl, Role of poly(ADP-ribose) formation in DNA repair. Nature,1992.356(6367):p.356-8.
    23. Lazebnik, Y.A., et al., Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature,1994.371(6495):p.346-7.
    24. Cohen, G.M., Caspases:the executioners of apoptosis. Biochem J,1997.326(Pt1):p.1-16.
    25. Eltzschig, H.K. and T. Eckle, Ischemia and reperfusion--from mechanism to translation. Nat Med,2011.17(11):p.1391-401.
    26. Thomas, J.O. and A.A. Travers, HMGI and2, and related 'architectural' DNA-bindingproteins. Trends Biochem Sci,2001.26(3):p.167-74.
    27. Muller, S., L. Ronfani, and M.E. Bianchi, Regulated expression and subcellular localization of HMGB1, a chromatin protein with a cytokine function. J Intern Med,2004.255(3):p.332-43.
    28. Campana, L., L. Bosurgi, and P. Rovere-Querini, HMGB1:a two-headed signal regulating tumor progression and immunity. Curr Opin Immunol,2008.20(5):p.518-23.
    29. Klune, J.R., et al., HMGB1:endogenous danger signaling. Mol Med,2001 14(7-8):p.476-84.
    30. Yang, S.H., A. Galanis, and A.D. Sharrocks, Targeting of p38mitogen-activated protein kinases to MEF2transcription factors. Mol Cell Biol,1999.19(6):p.4028-38.
    31. Murphy, L.O. and J. Blenis, MAPK signal specificity:the right place at the right time. Trends Biochem Sci,2006.31(5):p.268-75.
    32. Ichijo, H., From receptors to stress-activated MAP kinases. Oncogene,1999.18(45):p.6087-93.
    1. Lefkowitz, R.J., Historical review:a brief history and personal retrospective of seven-transmembrane receptors. Trends Pharmacol Sci,2004.25(8):p.413-22.
    2. Lohse, M.J., et al, beta-Arrestin:a protein that regulates beta-adrenergic receptor function. Science,1990.248(4962):p.1547-50.
    3. Attramadal, H., et al., Beta-arrestin2, a novel member of the arrestin/beta-arrestin gene family. J Biol Chem,1992.267(25):p.17882-90.
    4. Smith, W.C., et al., Cloning and functional characterization of salamander rod and cone arrestins. Invest Ophthalmol Vis Sci,2000.41(9):p.2445-55.
    5. Kuhn, H. and U. Wilden, Deactivation of photoactivated rhodopsin by rhodopsin-kinase and arrestin. J Recept Res,1987.7(1-4):p.283-98.
    6. Neves, S.R., P.T. Ram, and R. Iyengar, G protein pathways. Science,2002.296(5573): p.1636-9.
    7. Perry, S.J., et al., Targeting of cyclic AMP degradation to beta2-adrenergic receptors by beta-arrestins. Science,2002.298(5594):p.834-6.
    8. Nelson, C.D., et al., Targeting of diacylglycerol degradation to MI muscarinic receptors by beta-arrestins. Science,2007.315(5812):p.663-6.
    9. Lefkowitz, R.J. and S.K. Shenoy, Transduction of receptor signals by beta-arrestins. Science,2005.308(5721):p.512-7.
    10. Benovic, J.L., et al., Functional desensitization of the isolated beta-adrenergic receptor by the beta-adrenergic receptor kinase:potential role of an analog of the retinal protein arrestin (48-kDa protein). Proc Natl Acad Sci U S A,1987.84(24):p.8879-82.
    11. Brown, M.S., P.T. Kovanen, and J.L. Goldstein, Receptor-mediated uptake lipoprotein-cholesterol and its utilization for steroid synthesis in the adrenal cortex. Recent Prog Horm Res,1979.35:p.215-57.
    12. Moore, C.A., S.K. Milano, and J.L. Benovic, Regulation of receptor trafficking by GRKs and arrestins. Annu Rev Physiol,2007.69:p.451-82.
    13. Ferguson, S.S., et al, Role of beta-arrestin in mediating agonist-promoted G protein-coupled receptor internalization. Science,1996.271(5247):p.363-6.
    14. Kohout, T.A., et al., beta-Arrestin1and2differentially regulate heptahelical receptor signaling and trafficking. Proc Natl Acad Sci U S A,2001.98(4):p.1601-6.
    15. Claing, A., et al., Endocytosis of G protein-coupled receptors:roles of G protein-coupled receptor kinases and beta-arrestin proteins. Prog Neurobiol,2002.66(2):p.61-79.
    16. Goodman, O.B., Jr., et al., Beta-arrestin acts as a clathrin adaptor in endocytosis of the beta2-adrenergic receptor. Nature,1996.383(6599):p.447-50.
    17. Shenoy, S.K., et al., Regulation of receptor fate by ubiquitination of activated beta2-adrenergic receptor and beta-arrestin. Science,2001.294(5545):p.1307-13.
    18. Oakley, R.H., et al., The cellular distribution of fluorescently labeled arrestins provides a robust, sensitive, and universal assay for screening G protein-coupled receptors. Assay Drug Dev Technol,2002.1(1Pt1):p.21-30.
    19. DeWire, S.M., et al., Beta-arrestins and cell signaling. Annu Rev Physiol,2007.69:p.483-510.
    20. Lin, F.T., Y. Daaka, and R.J. Lefkowitz, beta-arrestins regulate mitogenic signaling and clathrin-mediated endocytosis of the insulin-like growth factor I receptor. J Biol Chem,1998.273(48):p.31640-3.
    21. Wu, J.H., et al., The adaptor protein beta-arrestin2enhances endocytosis of the low density lipoprotein receptor. J Biol Chem,2003.278(45):p.44238-45.
    22. Chen, W., et al., Beta-arrestin2mediates endocytosis of type Ⅲ TGF-beta receptor and down-regulation of its signaling. Science,2003.301(5638):p.1394-7.
    23. Shenoy, S.K. and R.J. Lefkowitz, Multifaceted roles of beta-arrestins in the regulatic of seven-membrane-spanning receptor trafficking and signalling. Biochem J,2003.375(Pt3):p.503-15.
    24. Ma, L. and G. Pei, Beta-arrestin signaling and regulation of transcription. J Cell Sci,2007.120(Pt2):p.213-8.
    25. Kovacs, J.J., et al, Arrestin development:emerging roles for beta-arrestins in developmental signaling pathways. Dev Cell,2009.17(4):p.443-58.
    26. Pyne, N.J., et al., Receptor tyrosine kinase-GPCR signal complexes. Biochem Soc Trans,2003.31(Pt6):p.1220-5.
    27. Imamura, T., et al., beta-Arrestin-mediated recruitment of the Src family kinase Yes mediates endothelin-1-stimulated glucose transport. J Biol Chem,2001.276(47):p.43663-7.
    28. Morrison, D.K. and R.J. Davis, Regulation of MAP kinase signaling modules by scaffold proteins in mammals. Annu Rev Cell Dev Biol,2003.19:p.91-118.
    29. Pierce, K.L., R.T. Premont, and R.J. Lefkowitz, Seven-transmembrane receptors. Nat Rev Mol Cell Biol,2002.3(9):p.639-50.
    30. Luttrell, L.M., et al., Activation and targeting of extracellular signal-regulated kinases by beta-arrestin scaffolds. Proc Natl Acad Sci U S A,2001.98(5):p.2449-54.
    31. DeFea, K.A., et al., beta-arrestin-dependent endocytosis of proteinase-activated receptor2is required for intracellular targeting of activated ERK1/2. J Cell Biol,2000.148(6):p.1267-81.
    32. Ahn, S., et al., Differential kinetic and spatial patterns of beta-arrestin and G protein-mediated ERK activation by the angiotensin Ⅱ receptor. J Biol Chem,2004.279(34):p.35518-25.
    33. Tohgo, A., et al., The stability of the G protein-coupled receptor-beta-arrestin interaction determines the mechanism and functional consequence of ERK activation. JBiol Chem,2003.278(8):p.6258-67.
    34. Ahn, S., et al.,{beta}-Arrestin-2Mediates Anti-apoptotic Signaling through Regulation of BAD Phosphorylation. J Biol Chem,2009.284(13):p.8855-65.
    35. Wei, H., et al, Independent beta-arrestin2and G protein-mediated pathways for angiotensin Ⅱ activation of extracellular signal-regulated kinases1and2. Proc Natl Acad Sci U S A,2003.100(19):p.10782-7.
    36. Ahn, S., et al., Reciprocal regulation of angiotensin receptor-activated extracellular signal-regulated kinases by beta-arrestins1and2. J Biol Chem,2004.279(9):p.7807-11.
    37. Kohout, T.A., et al., Differential desensitization, receptor phosphorylation, beta-arrestin recruitment, and ERK1/2activation by the two endogenous ligands for the CC chemokine receptor7. J Biol Chem,2004.279(22):p.23214-22.
    38. Davis, R.J., Signal transduction by the J NK group of MAP kinases. Cell,2000.103(2): p.239-52.
    39. McDonald, P.H., et al., Beta-arrestin2:a receptor-regulated MAPK scaffold for the activation of JNK3. Science,2000.290(5496):p.1574-7.
    40. Yang, D.D., et al., Absence of excitotoxicity-induced apoptosis in the hippo-campus of mice lacking the Jnk3gene. Nature,1997.389(6653):p.865-70.
    41. Bruchas, M.R., et al., Kappa opioid receptor activation of p38MAPK is GRK3-and arrestin-dependent in neurons and astrocytes. J Biol Chem,2006.281(26):p.18081-9.
    42. Gong, K., et al., A novel protein kinase A-independent, beta-arrestin-1-dependent signaling pathway for p38mitogen-activated protein kinase activation by beta2-adrenergic receptors. J Biol Chem,2008.283(43):p.29028-36.
    43. Miller, W.E., et al., G-protein-coupled receptor (GPCR) kinase phosphory-lation and beta-arrestin recruitment regulate the constitutive signaling activity of the human cytomegalovirus US28GPCR. JBiol Chem,2003.278(24):p.21663-71.
    44. Luan, B., et al., Deficiency of a beta-arrestin-2signal complex contributes to insulin resistance. Nature,2009.457(7233):p.1146-9.
    45. Beaulieu, J.M., et al., An Akt/beta-arrestin2/PP2A signaling complex mediates dopaminergic neurotransmission and behavior. Cell,2005.122(2):p.261-73.
    46. Fong, A.M., et al., Defective lymphocyte chemotaxis in beta-arrestin2-ar. GRK6-deficient mice. Proc Natl Acad Sci U S A,2002.99(11):p.7478-83.
    47. Sun, Y., et al., Beta-arrestin2is critically involved in CXCR4-mediated chemotaxis, and this is mediated by its enhancement of p38MAPK activation. J Biol Chem,2002.277(51):p.49212-9.
    48. Ge, L., et al., A beta-arrestin-dependent scaffold is associated with prolonged MAPK activation in pseudopodia during protease-activated receptor-2-induced chemotaxis. J Biol Chem,2003.278(36):p.34418-26.
    49. Revankar, C.M., et al., Arrestins block G protein-coupled receptor-mediated apoptosis. J Biol Chem,2004.279(23):p.24578-84.
    50. Povsic, T.J., T.A. Kohout, and R.J. Lefkowitz, Beta-arrestinl mediates insulin-like growth factor1(IGF-1) activation of phosphatidylinositol3-kinase (PI3K) and anti-apoptosis. J Biol Chem,2003.278(51):p.51334-9.
    51. Luan, B., et al., Beta-arrestin2functions as a phosphorylation-regulated suppressor of UV-induced NF-kappaB activation. EMBO J,2005.24(24):p.4237-46.
    52. Wang, P., et al., Beta-arrestin2functions as a G-protein-coupled receptor-activated regulator of oncoprotein Mdm2. J Biol Chem,2003.278(8):p.6363-70.
    53. Wang, Y, et al., Association of beta-arrestin and TRAF6negatively regulates Toll-like receptor-interleukin1receptor signaling. Nat Immunol,2006.7(2):p.139-47.
    54. Roman, G, J. He, and R.L. Davis, kurtz, a novel nonvisual arrestin, is an essential neural gene in Drosophila. Genetics,2000.155(3):p.1281-95.
    55. Ge, H., et al., A Drosophila nonvisual arrestin is required for the maintenance of olfactory sensitivity. Chem Senses,2006.31(1):p.49-62.
    56. Gurevich, V. V. and E. V. Gurevich, The molecular acrobatics of arrestin activation. Trends Pharmacol Sci,2004.25(2):p.105-11.
    57. Palczewski, K., et al., Phosphorylated rhodopsin and heparin induce similar conformational changes in arrestin. J Biol Chem,1991.266(28):p.18649-54.
    58. Reiter, E. and R.J. Lefkowitz, GRKs and beta-arrestins:roles in receptor silencing, trafficking and signaling. Trends Endocrinol Metab,2006.17(4):p.159-65.
    59. Huangfu, D. and K.V. Anderson, Signaling from Smo to Ci/GH:conservation and divergence of Hedgehog pathways from Drosophila to vertebrates. Development,2006.133(1):p.3-14.
    60. Shenoy, S.K. and R.J. Lefkowitz, beta-Arrestin-mediated receptor trafficking and signal transduction. Trends Pharmacol Sci,2011.32(9):p.521-33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700