姜黄素及其类似物L3的抗氧化活性和对小鼠糖尿病模型及血管并发症影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分
     目的
     研究姜黄素及其类似物L3对体外培养的人脐静脉内皮细胞氧化损伤的作用,并探讨其可能的调节作用机制。
     方法
     以过氧化氢(H2O2)诱导HUVEC损伤,体外模拟自由基损伤模型。采用MTT法以细胞存活率为指标评价姜黄素及其类似物L3对氧化损伤的HUVEC的保护作用。测定H2O2损伤HUVEC后细胞超氧化物歧化酶(SOD),谷胱甘肽-S-转移酶(GST)、谷胱甘肽过氧化物酶(GSH-PX)和过氧化氢酶(CAT)活性和还原型谷胱甘肽(GSH)及丙二醛(MDA)含量的变化。DCF-DA荧光试剂法检测胞内活性氧(ROS)的含量。DAF-FM DA荧光试剂法检测胞内一氧化氮(NO)的含量,硝酸还原酶法检测胞外NO的含量。Western blotting检测内皮细胞一氧化氮合酶eNOS的表达。分光光度法检测Caspase 3和Caspase 9的活性,Western blotting检测其蛋白表达。罗丹明123荧光试剂法检测线粒体膜电位。Western blotting检测ERK1/2磷酸化、NF-кB核转位及p53蛋白表达。
     结果
     200μM H2O2作用36 h,细胞存活率显著降低。H2O2诱导产生显著的细胞凋亡特征,包括线粒体去极化及Caspase 3和Caspase 9的活性和蛋白表达显著增加。另外,H2O2还诱导丙二醛(MDA)含量增加、谷胱甘肽-S-转移酶(GST)活性和胞内活性氧(ROS)产生增强,诱导还原型谷胱甘肽(GSH)和胞内/胞外一氧化氮(NO)含量降低,细胞超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH-PX)和过氧化氢酶(CAT)活性降低及内皮细胞一氧化氮合酶eNOS表达减少。12.5-50μM L3与H2O2损伤的HUVEC共孵育,细胞存活率显著增加,具有浓度依赖性;而12.5-25μM姜黄素对H2O2损伤的HUVEC无保护作用。L3可以抑制H2O2诱导的细胞凋亡,减轻H2O2诱导的其它损伤,且具有浓度依赖性。L3还可以抑制H2O2诱导的p53和NF-кB活化,促进ERK1/2磷酸化。
     结论
     姜黄素类似物L3可以浓度依赖性地减轻H2O2诱导的HUVEC损伤,保护血管内皮细胞。其保护作用机制可能与减少ROS生成,增强抗氧化酶活性,改善细胞氧化/抗氧化状态,提高内皮细胞eNOS的表达,激活内皮细胞NO的合成,维持线粒体膜电位,抑制细胞凋亡有关。
     第二部分
     目的
     研究姜黄素及其类似物L3对链脲菌素(STZ)+高脂饲料诱导的高脂血症糖尿病小鼠的作用,并探讨其对糖尿病小鼠相关器官损伤的保护作用。
     方法
     雄性ICR小鼠以隔天一次腹腔注射50 mg/kg体重STZ溶液共五次诱导糖尿病模型,随后饲以高脂饲料,并分别给予不同剂量的姜黄素或L3进行干预。各组小鼠分别在给药4周后和给药16周后处死,测定小鼠血糖、糖耐量、糖化血红蛋白、胰岛素、血脂、肝脂、肝脏GSH和MDA含量,SOD、GST、GSH-PX和CAT活性。DCF-DA荧光试剂法检测胰腺ROS的含量。DAF-FM DA荧光试剂法检测主动脉弓NO的含量,硝酸还原酶法检测血浆NO的含量。免疫组化检测主动脉弓LOX-1的表达。肝脏和主动脉弓组织切片行病理检查。
     结果
     腹腔注射STZ溶液五次后成功诱导小鼠糖尿病模型。饲以高脂饲料4周后和16周后,小鼠血脂、肝脂显著升高。各种氧化应激参数和抗氧化酶活性发生明显变化。胰腺ROS生成显著增加。血浆和主动脉弓NO含量显著降低。主动脉弓LOX-1表达显著升高。肝脏和主动脉弓发生明显的脂肪变性和动脉粥样硬化变性。姜黄素高剂量组和L3中、高剂量组小鼠糖、脂代谢明显改善,氧化应激参数和抗氧化酶活性也明显改善。胰腺ROS生成显著减弱。血浆和主动脉弓NO含量显著增加。主动脉弓LOX-1表达显著降低。肝脏和主动脉弓的脂肪变性和动脉粥样硬化变性明显改善。
     结论
     姜黄素及其类似物L3对链脲菌素(STZ)+高脂饲料诱导的高脂血症糖尿病小鼠及相关器官损伤具有保护作用。
PartⅠ
     Objective: To explore the effects of curcumin and its analogue L3 on human umbilical vein endothelial cell injury induced by oxidative stress in vitro and to investigate their possible regulatory mechanisms.
     Methods: Peroxide hydrogen (H2O2) was used to induce human umbilical vein endothelial cells (HUVECs) injury. The cell survival rate was evaluated with MTT assay to explore the protective effect of curcumin and its analogue L3 on vascular endothelial cells injury. The activities of cytosolic superoxide dismutase (SOD),glutathione S transferase (GST), glutathione peroxidase (GSH-PX) and catalase (CAT) and the levels of cytosolic glutathione (GSH) and malondialdehyde (MDA) were determined in H2O2-treated HUVECs. The fluorescence agent DCF-DA was used to detect intracellular generation of reactive oxygen species (ROS), and DAF-FM DA to detect intracellular generation of nitric oxide (NO). Level of extracellular nitric oxide (NO) was measured by nitrate reductase method. Protein expression of endothelial nitric oxide synthase (eNOS) in H2O2-treated HUVECs was detected by Western blotting analysis. Activities and expressions of caspase 3 and caspase 9 were determined by spectrophotometric and Western blotting assay. The fluorescence agent rhodamine 123 (RH 123) was used to detect mitochondrial membrane potential (MMP). Phosphorylation of ERK1/2, translocation of nuclear factor-kappa B (NF-кB) and protein expression of p53 were investigated by Western blotting analysis.
     Results: Thirty six-hour treatment with 200μM H2O2 significantly decreased the viability of HUVEC cells, which was accompanied with apparent apoptotic features including the mitochondrial depolarization and increased activities and expressions of caspase 3 and caspase 9. In addition, it is observed that H2O2 increased the amount of malondialdenhyde (MDA),the activity of glutathione S transferase (GST) and the generation of reactive oxygen species (ROS), and decreased the levels of glutathione (GSH) and intra/extracellular nitric oxide (NO), the activities of superoxide dismutase (SOD),glutathione peroxidase (GSH-PX) and catalase (CAT) and the expression of endothelial nitric oxide synthase (eNOS) in HUVEC cells. Co-incubation with 12.5-50μM L3 resulted in a significant increase of cell viability in a concentration-dependent manner, while 12.5-25μM curcumin didn't exhibit any protective effect. Also, L3 resulted in a significant recovery from H2O2-induced cell apoptosis and decreased other H2O2-induced damage in a concentration-dependent manner, which might be achieved via decreasing of p53 expression and NF-кB translocation and increasing of ERK1/2 phosphorylation.
     Conclusion: L3 could attenuate H2O2-induced injury in HUVECs in a concentration-dependent manner and showed protective effect on vascular endothelial cells. The probable mechanisms closely associated with its protective effect might include repressing ROS generation, increasing the activities of antioxidant enzymes, improving redox status, upregulating eNOS expression, promoting NO synthesis, maintaining mitochondrial membrane potential and inhibiting cell apoptosis in H2O2-exposed HUVECs.
     PartⅡ
     Objective: To evaluate the effects of curcumin and its analogue L3 on streptozotocin and high cholesterol diet-induced diabetes and hyperlipidemia in mice and their possible protection of multiple organ involvement under diabetic condition.
     Methods: Male ICR mice were injected intraperitoneally streptozotocin solution (50mg/kg body weight)once every other day for a total of five times to induce diabetes and then were fed either only high cholesterol diet or additional intragastrically administrated curcumin or L3 of different doses. Each half of the mice were sacrificed at the end of four and sixteen weeks, the levels of plasma glucose, glucose tolerance, glycated hemoglobin, insulin,plasma and liver lipids (TG, TC, HDL-C and LDL-C), glutathione (GSH) and malondialdehyde (MDA) and the activities of superoxide dismutase (SOD) , glutathione S transferase (GST), glutathione peroxidase (GSH-PX) and catalase (CAT) were detected. The fluorescence agent DCF-DA was used to detect reactive oxygen species (ROS) generation in pancreas, and DAF-FM DA to detect nitric oxide (NO) generation in aortic arch. Level of plasma nitric oxide (NO) was measured by nitrate reductase method. Protein expression of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) in aortic arch was detected by immunohistochemistry analysis. Histopathological sections of the liver and aortic arch were examined.
     Results: After a total of five STZ injections diabetic status was induced successfully in mice. Plasma and liver lipids increased significantly four or sixteen weeks after the mice were fed high cholesterol diet. Oxidative stress parameters and activities of antioxidant enzymes altered significantly. The generation of ROS was elevated in pancreas. The level of NO was depressed significantly both in aortic arch and in plasma. Expression of LOX-1 increased significantly in aortic arch. Apparent steatosis and artherosclerosis were observed in liver and aortic arch histopathological sections. The glucose and fatty metabolisms were improved after treatment with high-dose curcumin and medium/high-dose L3. Oxidative stress parameters and activities of antioxidant enzymes were also improved. The generation of ROS was attenuated significantly in pancreas. The level of NO increased significantly both in aortic arch and in plasma. Expression of LOX-1 was downregulated significantly in aortic arch. Steatosis and artherosclerosis were attenuated in liver and aortic arch histopathological sections.
     Conclusion: Curcumin and its analogue L3 appear to be beneficial in improving diabetic status and in protecting multiple organ involvement in STZ and HCD-induced diabete and hyperlipidemia in mice.
引文
[1]Grundy SM, Howard B, Smith Jr S, et al. Prevention Conference VI: diabetes and cardiovascular disease: executive summary: conference proceeding for healthcare professionals from a special writing group of the American Heart Association. Circulation 2002,105(18): 2231-2239.
    [2]Howard BV, Rodriguez BL, Bennett PH, et al. Prevention conference VI: diabetes and cardiovascular disease: Writing Group I: epidemiology. Circulation 2002, 105: e132-7.
    [3]Wendt T, Bucciarelli L, Qu W, et al. Receptor for advanced glycation endproducts (RAGE) and vascular inflammation: insights into the pathogenesis of macrovascular complications in diabetes. Curr Atheroscler Rep 2002, 4(3): 228-37.
    [4]WHO专家咨询报告.关于糖尿病的新诊断标准与分型[J].中国糖尿病杂志, 2000, 8: 5-6.
    [5]金文胜,潘长玉,陆菊明,等.葡萄糖耐量减低与动脉粥样硬化[J].中华内分泌代谢杂志, 2004, 20: 136-139.
    [6]卢雪玲,谢自敬,王宁,等. 2型糖尿病患者动脉粥样硬化若干危险因素分析[J].中国动脉硬化杂志, 2006, 14(5): 426-429.
    [7]The Diabetes Control and Complications Trial Research Group: The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulindependent diabetes mellitus. N Engl J Med 1993, 329(14): 977-986.
    [8]Turko IV, Marcondes S, Murad F. Diabetes-associated nitration of tyrosine and inactivation of succinyl-CoA:3-oxoacid CoAtransferase. Am J Physiol Heart Circ Physiol, 2001, 281(6): H2289-2294.
    [9]Guzik TJ, West NE, Black E, et al. Vascular superoxide production by NAD(P)H oxidase: association with endothelial dysfunction and clinical risk factors. Circ Res 2000, 86(9): E85-90.
    [10]Guzik TJ, Mussa S, Gastaldi D, et al. Mechanisms of increased vascularsuperoxide production in human diabetes mellitus: role of NAD(P)H oxidase and endothelial nitric oxide synthase. Circulation, 2002, 105(14): 1656-1662.
    [11]Aliciguzel Y, Ozen I, Aslan M, et al. Activities of xanthine oxidoreductase and antioxidant enzymes in different tissues of diabetic rats. J Lab Clin Med, 2003, 142(3): 172-177.
    [12]Desmond Jay, Hirofumi Hitomi, Kathy K. Griendling. Oxidative stress and diabetic cardiovascular complications. Free Radical Biology Medicine, 2006, 40(2): 183-192.
    [13]Foreman KE,Tang J. Molecular mechanisms of replicative senescence in endothelial cells. Exp Gerontol, 2003, 38(11-12): 1251-1257.
    [14]Fisher AB,Al-Mehdi AB,Wei ZH,et al. Lung ischemia: endothelial cell signaling by reactive oxygen species. A progress report. Adv Exp Med Biol, 2003, 510: 343-347.
    [15]MICHIELS C. Endothelial cell functions[J]. J Cell Physiol, 2003, 196: 430-443.
    [16]Jarvisalo M. J., Raitakari M., Toikka J. O., et al. Endothelial dysfunction and increased arterial intima-media thickness in children with type 1 diabetes. Circulation, 2004, 109: 1750-1755.
    [17]Koitka A., Abraham P., Bouhanick B., et al. Impaired pressure-induced vasodilation at the foot in young adults with type 1 diabetes. Diabetes, 2004, 53: 721-725.
    [18]Papaioannou G. I., Seip R. L., Grey N. J., et al. Brachial artery reactivity in asymptomatic patients with type 2 diabetes mellitus and microalbuminuria (from the Detection of Ischemia in Asymptomatic Diabetics-Brachial Artery Reactivity Study). Am. J. Cardiol., 2004, 94: 294-299.
    [19]Rizzoni D., Porteri E., Guelfi D., et al. Endothelial dysfunction in small resistance arteries of patients with non-insulin-dependentdiabetes mellitus. J. Hypertens., 2001, 19: 913-919.
    [20]Skyrme-Jones R. A., O’Brien R. C., Berry K. L., et al. Vitamin E supplementation improves endothelial function in type I diabetes mellitus: a randomized, placebo-controlled study. J. Am. Coll. Cardiol., 2000, 36: 94-102.
    [21]Pieper G. M., Siebeneich W.. Oral administration of the antioxidant, N-acetylcysteine, abrogates diabetes-induced endothelial dysfunction. J. Cardiovasc. Pharmacol., 1998, 32: 101-105.
    [22]Vasques E, Almeida AL, Noya V, et al. Impairment of endothelium-dependent aorta relaxation by phospholipid components of oxidized low-density lipoprotein[J]. Endothelium, 2006, 13: 1-8.
    [23]Chow SE, Hshu YC, Wang JS, et al. Resveratrol attenuates oxLDL-stimulated NADPH oxidase activity and protects endothelial cells from oxidative functional damages[J]. J Appl Physiol, 2007,102: 1520-1527.
    [24]Yang PY, Rui YC, Yang PY, et al. Proteomic analysis of foam cells[J]. Methods Mol Biol, 2007, 357: 297-305.
    [25]Ferreira V, van Dijk KW, Groen AK, et al. Macrophage-specific inhibition of NF-kappaB activation reduces foam-cell formation[J]. Atherosclerosis, 2007, 192: 283-290.
    [26]Ma JL, Yang PY, Rui YC, et al. Hemin modulates cytokine expressions in macrophage-derived foam cells via heme oxygenase-1 induction[J]. J Pharmacol Sci, 2007, 103: 261-266.
    [27]Jiang G, Li T, Qiu Y, et al. RNA interference for HIF-1alpha inhibits foam cells formation in vitro[J]. Eur J Pharmacol, 2007, 562: 183-190.
    [28]Ji SR, Wu Y, Potempa LA, et al. Interactions of C-reactive protein with low-density lipoproteins: implications for an active role of modified C-reactive protein in atherosclerosis[J]. Int J Biochem Cell Biol, 2006, 38: 648-661.
    [29]Zhao GF, Seng JJ, Zhang H, et al. Effects of oxidized low density lipoprotein on the growth of human artery smooth muscle cells[J]. Chin Med J (Engl), 2005, 118: 1973-1978.
    [30]Vindis C, Escargueil-Blanc I, Uchida K, et al. Lipid oxidation products and oxidized low-density lipoproteins impair platelet-derived growth factor receptor activity in smooth muscle cells: implication in atherosclerosis[J]. Redox Rep, 2007, 12: 96-100.
    [31]Deng DX, Spin JM, Tsalenko A, et al. Molecular signatures determining coronary artery and saphenous vein smooth muscle cell phenotypes: distinct responses to stimuli[J]. Arterioscler Thromb Vasc Biol, 2006, 26: 1058-1065.
    [32]Vindis C, Escargueil-Blanc I, Elbaz M, et al. Desensitization of platelet-derived growth factor receptor-beta by oxidized lipids in vascular cells and atherosclerotic lesions: prevention by aldehyde scavengers[J]. Circ Res, 2006, 98: 785-792.
    [33]Yamashita S, Hirano K, Kuwasako T, et al. Physiological and pathological roles of a multi-ligand receptor CD36 in atherogenesis, insights from CD36-deficient patients[J]. Mol Cell Biochem, 2007, 299: 19-22.
    [34]Akishima Y, Akasaka Y, Ishikawa Y, et al. Role of macrophage and smooth muscle cell apoptosis in association with oxidized low-density lipoprotein in the atherosclerotic development[J]. Mod Pathol, 2005, 18: 365-373.
    [35]Liguori A., Abete P., Hayden J. M., et al. Effect of glycaemic control and age on low-density lipoprotein susceptibility to oxidation in diabetes mellitus type 1. Eur. Heart J., 2001, 22: 2075-2084.
    [36]MacDonald-Wicks L., Gibson L. Z., Godfrey D. M., et al. Oxidised LDL in newly diagnosed type 2 diabetes mellitus and impaired glucose tolerance. Asia Pac. J. Clin. Nutr., 2004, 13(Suppl.): S65.
    [37]Kornerup K., Nordestgaard B. G., Feldt-Rasmussen B., et al. Increased transvascular low density lipoprotein transport in insulin dependent diabetes: a mechanistic model for development of atherosclerosis. Atherosclerosis, 2003, 170: 163-168.
    [38]Li L., Sawamura T., Renier G.. Glucose enhances endothelial LOX- 1 expression: role for LOX-1 in glucose-induced human monocyte adhesion to endothelium. Diabetes, 2003, 52: 1843-1850.
    [39]Sreejayan N, Rao MNA. Curcuminoids as potent inhibitors of lipid peroxidation. J Pharm Pharmacol., 1994, 46: 1013-1016.
    [40]Priyadarsini KI. Free radical reactions of curcumin in membrane models. Free Radic Biol Med., 1997, 23: 838-843.
    [41]Reddy AC, Lokesh BR. Studies on the inhibitory effects of curcumin and eugenol on the formation of reactive oxygen species and the oxidation of ferrous iron. Mol Cell Biochem., 1994, 137: 1-8.
    [42]Sreejayan N, Rao MNA. Free radical scavenging activity of curcuminoids. Arzneimittelforschung., 1996, 46: 169-171.
    [43]Rao CV, Rivenson A, Simi B, et al. Chemoprevention of colon carcinogenesis by dietary curcumin, a naturally occurring plant phenolic compound. Cancer Res., 1995, 55: 259-266.
    [44]Unnikrishnan MK, Rao MNA. Curcumin inhibits nitrogen dioxide induced oxidation of hemoglobin. Mol Cell Biochem., 1995, 146: 35-37.
    [45]Sreejayan N, Rao MNA. Nitric oxide scavenging by curcuminoids. J Pharm Pharmacol., 1997, 49: 105-107.
    [46]Ruby AJ, Kuttan G, Babu KD, et al. Anti-tumor and antioxidant activity of natural curcuminoids. Cancer Lett., 1995, 94: 79-83.
    [47]Gil-Saeng Jeong, Gi-Su Oh, Hyun-Ock Pae, et al. Comparative effects of curcuminoids on endothelial heme oxygenase-1 expression: ortho-methoxy groups are essential to enhance heme oxygenase activity and protection. EXPERIMENTAL and MOLECULAR MEDICINE, 2006, 38(4): 393-400.
    [48]Bengmark S. Curcumin, an atoxic antioxidant and natural NFkappaB, cyclooxygenase-2, lipooxygenase, and inducible nitric oxide synthase inhibitor: a shield against acute and chronic diseases. JPEN J Parenter Enteral Nutr, 2006, 30(1): 45-51.
    [49]Brouet I, Ohshima H. Curcumin, an anti-tumour promoter and anti-inflammatoryagent, inhibits induction of nitricoxide synthase inactivated macrophages. Biochem Biophys ResCommun, 1995, 206(2): 533-40.
    [50]Farhangkhoee H, Khan ZA, Chen S, et al. Differential effects of curcuminon vasoactive factors in the diabetic rat heart. Nutr Metab(Lond), 2006, 3: 27.
    [51]Piper JT, Singhal SS, Salameh MS, et al. Mechanism of anti-carcinogenic properties of curcumin: the effect of curcumin on glutathione linked detoxification enzyme in rat liver. Int J Biochem Cell Biol, 1998, 30: 445-56.
    [52]Watanabe S, Fukui T.. Suppressive effect of curcumin on trichloroethane-induced oxidative stress. J Nutr Sci Vitaminol(Tokyo), 2000, 46: 230-4.
    [53]R. OLSZANECKI, J. JAWIE?, M. GAJDA, et al. EFFECT OF CURCUMIN ON ATHEROSCLEROSIS IN apoE/LDLR - DOUBLE KNOCKOUT MICE. JOURNAL OF PHYSIOLOGY AND PHARMACOLOGY, 2005, 56(4): 627-635.
    [54]Quiles JL, Mesa MD, Ramirez-Tortosa CL, et al. Curcuma longa extract supplementation reduces oxidative stress and attenuates aortic fatty streak development in rabbits. Arterioscler Thromb Vasc Biol, 2002, 22: 1225-1231.
    [55]Soni KB, Kuttan R. Effect of oral curcumin administration on serum peroxides and cholesterol levels in human volunteers. Indian J Physiol Pharmacol, 1992, 36: 273-5.
    [56]Ramirez Bosca A, Soler A, Carrion-Gutierrez MA, et al. Anhydroalcoholic extract of Curcuma longa lowers the abnormally high values of human-plasma fibrinogen. Mech Ageing Dev, 2000, 114: 207-10.
    [57]Ramirez-Tortosa MC, Mesa MD, Aguilera MC, et al. Oral administration of a turmeric extract inhibits LDL oxidation and has hypocholes-terolemic effects in rabbits with experimental atherosclerosis. Atherosclerosis, 1999, 147(2): 371-8.
    [58]Naidu KA, Thippeswamy NB. Inhibition of human low density lipoprotein oxidation by active principles from spices. Mol Cell Biochem, 2002, 229(1/2): 19-23.
    [59]Patro BS, Rele S, Chintalwar GJ, et al. Protective activities of some phenolic 1,3-diketones against lipid peroxidation: possible involvement of the 1,3-diketone moiety. Chembiochem, 2002, 3(4): 364-70.
    [60]Chen HW, Huang HC. Effect of curcumin on cell cycle progression and apoptosis in vascular smooth muscle cells. Br J Pharmacol., 1998, 124: 1029-1040.
    [61]Srivastava KC, Bordia A, Verma SK. Curcumin, a mayor component of food spice turmeric (Curcuma longa), inhibits aggregation and alters eicosanoid metabolism in human blood platelets. Prostaglandins Leukot Essent Fatty Acids., 1995, 52: 223-227.
    [62]Shankar T. N., Shantha N. V., Ramesh H. P., et al. Toxicity studies on turmeric (Curcuma longa): acute toxicity studies in rats, guineapigs & monkeys. Indian J. Exp. Biol., 1980, 18(1): 73-5.
    [63]Qureshi S, Shah A. H., Ageel A. M. Toxicity studies on Alpinia galanga and Curcuma longa. Planta Med., 1992, 58(2): 124-7.
    [64]Lao C. D., Demierre M. F., Sondak V. K.. Targeting events in melanoma carcinogenesis for the prevention of melanoma. Expert ReV. Anticancer Ther., 2006, 6(11): 1559-68.
    [65]Lao C. D., Ruffin M. T., Normolle D., et al. Dose escalation of a curcuminoid formulation. BMC Complement Altern. Med., 2006, 6: 10.
    [66]Cheng A. L., Hsu C. H., Lin J. K., et al. Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res., 2001, 21(4B): 2895-900.
    [67]Shoba G, Joy D, Joseph T, et al. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med, 1998, 64(4): 353-6.
    [68]Preetha Anand, Ajaikumar B. Kunnumakkara, Robert A. Newman, et al. Bioavailability of Curcumin: Problems and Promises. MOLECULAR PHARMACEUTICSVOL, 2007, 4(6): 807-818.
    [69]Mosley C. A., Liotta D. C., Snyder J. P.. Highly active anticancer curcumin analogues. AdV. Exp. Med. Biol., 2007, 595: 77-103.
    [70]Kuzyya M, Kuzuya F. Probucol as an antioxidant and antiatherogenic drug[J]. Free Radic Biol Med, 1993, 14(1): 67-77.
    [71]Hong SC, Zhao SP, Wu ZH. Probucol up-regulates paraoxonase 1 expression in hepatocytes of hypercholesterolemic rabbits[J]. J Cardiovasc Pharmacol, 2006, 47(1): 77-81.
    [72]Niemann-Jonsson A, Dimayuga P, Jovinge S. Accumulation of LDL in rat arteries is associated with activation of tumor necrosis factor-αexpression [J]. Arterioscler Thromb Vasc Biol, 2000, 20(10): 2205-2211.
    [73]Choy K, Beck K, Png FY, et al.Processes involved in the site-specific effect of probucol on atherosclerosis in aplipoprotein E gene knockout mice[J]. Arterioscler Thromb Vasc Biol, 2005, 25(8): 1684-1690.
    [74]Zapolska-Downar D, Zapolski-Downar A, Markiewski M, et al.Selective inhibition by probucol of vascular cell adhesion molecule-1(VCAM-1) expression in human vascular endothelial cells [J]. Atherosclerosis, 2001, 155(1): 123-130.
    [75]E1-Demerdash E, Awad AS, Taha RM, et al. Probucol attenuates oxidative stress and energy decline in isoproterenol-induced heart failure in rat[J]. Pharmacol Res, 2005, 51(4): 311-318.
    [76]Lou H, Danelisen I, Singal PK. Involvement of mitogen-activated protein kinases in adriamycin-induced cardiomyopathy[J]. Am J Physiol Heart Circ Physiol, 2005, 288(4): 1925-1930.
    [77]P. VENKATESAN, M. N. A. RAO.. Structure–Activity Relationships for the Inhibition of Lipid Peroxidation and the Scavenging of Free Radicals by Synthetic Symmetrical Curcumin Analogues. J. Pharm. Pharmacol., 2000, 52: 1123-1128.
    [78]Majeed, et al. U.S. Patent, US 7,521,580 B1.
    [79]Aoki M, Nata T, Morishita R, et al. Endothelial apoptosis induced by oxidative stress through activation of NF-кB: antiapoptotic effect of antioxidant agents on endothelial cells. Hypertension, 2001, 38: 48-55.
    [80]Lopez Farre A, Casado S. Heart failure, redox alterations, and endothelial dysfunction. Hypertension, 2001, 38: 1400-5.
    [81]Rossig L, Hoffmann J, Hugel B, et al. C inhibits endothelial cell apoptosis in congestive heart failure. Circulation, 2001, 104: 2182-7.
    [82]Quinones MJ, Nicholas SB, Lyon CJ. Insulin resistance and the endothelium. Curr Diab Rep, 2005, 5(4): 246-253.
    [83]Ross R. Cell biology of atherosclerosis. Annu Rev Physiol, 1995, 57: 791-804.
    [84]Dimmeler S, Zeiher AM. Endothelial cell apoptosis in angiogenesis and vessel regression. Circ Res, 2000, 87: 434-9.
    [85]Karsan A, Harlan JM. Modulation of endothelial cell apoptosis: mechanisms and pathophysiological roles. J Atheroscler Thromb, 1996, 3: 75-80.
    [86]Aoki M, Nata T, Morishita R, et al. Endothelial apoptosis induced by oxidative stress through activation of NF-кB: antiapoptotic effect of antioxidant agents on endothelial cells. Hypertension, 2001, 38: 48-55.
    [87]Kawauchi J, Zhang C, Nobori K, et al. Transcriptional repressor activating transcription factor 3 protects human umbilical veinendothelial cells from tumor necrosis factor--induced apoptosis through down-regulation of p53 transcription. J Biol Chem, 2002, 277: 39025-39034.
    [88]Scarabelli TM, Stephanou A, Pasini E, et al. Different signaling pathways induce apoptosis in endothelial cells and cardiac myocytes during ischemia/reperfusion injury. Circ Res, 2002, 90: 745-748.
    [89]Lopez-Farre A and Casado S. Heart failure, redox alterations, and endothelial dysfunction. Hypertension, 2001, 38: 1400-1405.
    [90]Rossig L, Hoffmann J, Hugel B, et al. Vitamin C inhibits endothelial cell apoptosis in congestive heart failure. Circulation, 2001, 104: 2182-2187.
    [91]Kureishi Y, Luo Z, Shiojima I, et al. The HMG-CoA reductase inhibitor simvastatin activates the protein kinase Akt and promotes angiogenesis in normocholesterolemic animals. Nat Med, 2000, 9: 1000-10.
    [92]Janero D.R., Hreniuk D., Sharif H.M.. Hydrogen peroxide induced oxidative stress to the mammalian heart-muscle cell (cardiomyocyte): lethal peroxidative membrane injury. J. Cell Physiol., 1991, 149: 347-364.
    [93]Lesnefsky E.J., Allen K.G.D., Carrea F.P., et al. Iron-catalyzed reactions cause lipid peroxidation in the intact heart. J. Mol. Cell Cardiol., 1992, 24: 103l-1038l.
    [94]Nakamura H., Nakamura K., Yodoi J.. Redox regulation of cellular activation. Annu. Rev. Immunol., 1997, 15: 351-369.
    [95]Li P.D., Nijihawan D., Budihardijo I., et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell, 2000, 91: 479-489.
    [96]Liu C.L., Xie L.X., Li M.,et al. Salvianolic acid B inhibits hydrogen peroxide-induced endothelial cell apoptosis through regulating PI3K/Akt signaling. PLoS ONE, 2007, 2: e1321.
    [97]Fang Bian, Ming-Chang Zhang, Yun Zhu. Inhibitory Effect of Curcumin on Corneal Neovascularization in vitro and in vivo. Ophthalmologica, 2008, 222: 178-186.
    [98]Arbiser JL, Klauber N, Rohan R, et al. Curcumin is an in vivo inhibitor of angiogenesis. Mol Med, 1998, 4: 376-383.
    [99]Singh AK, Sidhu GS, Deepa T, et al. Curcumin inhibits the proliferation and cell cycle progression of human umbilical vein endothelial cell. Cancer Lett, 1996, 107: 109-115.
    [100]Thaloor D, Singh AK, Sidhu GS, et al. Inhibition of angiogenic differentiation of human umbilical vein endothelial cells by curcumin. Cell Growth Differ, 1998, 9: 305-312.
    [101]Mohan R, Sivak J, Ashton P, et al. Curcuminoids inhibit the angiogenic response stimulated by fibroblast growth factor-2, including expression of matrix metalloproteinase gelatinase B. J Biol Chem, 2000, 275: 10405-10412.
    [102]Dorai T, Cao YC, Dorai B, et al. Therapeutic potential of curcumin in human prostate cancer. III Curcumin inhibits proliferation, induces apoptosis, and inhibits angiogenesis of LNCaP prostate cancer cells in vivo. Prostate, 2001, 47: 293-303.
    [103]MYUNG-JIN PARK, EUN-HEE KIM, IN-CHUL PARK, et al. Curcumin inhibits cell cycle progression of immortalized human umbilical vein endothelial (ECV 304) cells by up-regulating cyclin-dependent kinase inhibitor, p21WAF1/CIP1, p27KIP1 and p53. International Journal of Oncology, 2002, 21: 379-383.
    [104]肖健,李校,郭建红等.姜黄素对过氧化氢诱导的血管内皮细胞损伤的双重作用[J].中国临床药理学与治疗学, 2005, 10(12): 1376-1380.
    [105]Dimmeler S, Rippmann V, Weiland U,et al. Angiotension II induces apoptosis of human endothelial cells: protective effect of nitric oxide. Circ Res, 1997, 81: 970-6.
    [106]Dimmeler S, Haendeler J, Nehls M, et al. Suppression of apoptosis by nitric oxide via inhibition of ICE-like and CPP32-like protease. J Exp Med, 1997, 185: 601-8.
    [107]Haendeler J, Zeiher AM, Dimmeler S. Nitric oxide and apoptosis. Vitam Horm, 1999, 57: 59-79.
    [108]Dimmeler S, Zeiher AM. Nitric oxide: an endothelial celll survival factor. Cell Death Differ, 1999, 6: 964-8.
    [109]Salvesen GS, Dixit VM. Proc Natl Acad Sci USA, 1999, 96: 10964-7.
    [110]Gryglewski RJ, Palmer RMJ, Moncada S. Superoxide anion is involved in the breakdown of endothelium-derived relaxing factor. Nature, 1986, 320: 454-6.
    [111]Rubanyi GM, Vanhoutte PM. Superoxide anions and hyperoxia inactivate endothelium-derived relaxing factor. Am J Physiol, 1986, 250: 815-27.
    [112]Mian KB, Martip W. Differential sensitivity of basal and acetylcholine-stimulated activity of nitric oxide to destruction by superoxide anion in rat aorta. Pharmacol, 1995, 115: 993-1000.
    [113]Umans JG, Levi R. Nitric oxide in regulation of blood flow and arterial pressure. Annu Rev Physiol, 1995, 57: 771-90.
    [114]Stroes ESG, Kastelein J, Cosentino F, et al. Tetrahydrobiopterin restores endothelial function in hypercholesterolemia. J Chin Invest, 1997, 99: 41-6.
    [115]Meininger CJ, Marinos RS, Hatakeyama k, et al. Impaired nitric oxide production in coronary endothelial 22 cells of the spontaneously diabetic BB rat is due to tetrahydrobiopterin deficiency. Biochem J, 1997, 349: 353-6.
    [116]Heizter T, Brockhoff C, Mayer B, et al. Tetrahydrobiopterin improves endothelium-dependent vasodilation in chronic smokers: evidence for a dysfunctional nitric oxide synthase. Circ Res, 2000, 86: 36-41.
    [117]Boger RH, Bode-B-ger SM, Thiele W, et al. Biochemical evidence forimpaired nitric oxide synthesis in patients with 18 peripheral arterial occlusive disease. Circulation, 1997, 95: 2068-74.
    [118]Tesfamariam B, Cohen RA. Role of superoxide anion and endothelium in vasoconstrictor action of prostaglandin endo-peroxide. Am J Physiol, 1992, 262: 1915-9.
    [119]Gottlieb RA, Burleson KO, Kloner RA, et al. Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J Clin Invest, 1994, 94: 1621-8.
    [120]Reddy P.H.. Amyloid precursor protein-mediated free radicals and oxidative damage: implications for the development and progression of Alzheimer's disease. J. Neurochem., 2006, 96: 1-13.
    [121]Dimmeler S., Zeiher A.M.. Reactive oxygen species and vascular cell apoptosis in response to angiotensin II and pro-atherosclerotic factors. Regul. Pept., 2000, 90:19-25.
    [122]Gorlach A., Brandes R.P., Bassus S., et al. Oxidative stress and expression of p22phox are involved in the upregulation of tissue factor in vascular smooth muscle cells in response to activated platelets. FASEB J., 2000, 14: 1518-1528.
    [123]Herkert O., Diebold I., Brandes R.P., et al. NADPH oxidase mediates tissue factor-dependent surface procoagulant activity by thrombin in human vascular smooth muscle cells. Circulation, 2002, 105: 2030-2036.
    [124]Curtin J.F., Donovan M., Cotter T.G.. Regulation and measurement of oxidative stress in apoptosis. J. Immunol. Methods, 2002, 265: 49-72.
    [125]Chandra J., Samali A., Orrenius S.. Triggering and modulation of apoptosis by oxidative stress. Free Radic. Biol. Med., 2000, 29: 323-333.
    [126]Chan P.H.. Reactive oxygen radicals in signaling and damage in the ischemic brain. J. Cereb. Blood Flow Metab., 2001, 21: 2-14.
    [127]Herrera B., Fernández M., Alvarez A.M., et al. Activation of caspases occurs downstream from radical oxygen species production, Bcl-xLdown-regulation, and early cytochrome c release in apoptosis induced by transforming growth factor beta in rat fetal hepatocytes. Hepatology, 2001, 34: 548-556.
    [128]Lievre V., Becuwe P., Bianchi A., et al. Free radical production and changes in superoxide dismutases associated with hypoxia/ reoxygenation- induced apoptosis of embryonic rat forebrain neurons in culture. Free Radic. Biol. Med., 2000, 29: 1291-1301.
    [129]Sugawara T., Chan P.H.. Reactive oxygen radicals and pathogenesis of neuronal death after cerebral ischemia. Antioxid. Redox Signal., 2003, 5: 597-607.
    [130]Geleijnse JM, Launer LJ, Van der Kuip DA, et al. Inverse association of tea and flavonoid intakes with incident myocardial infarction: the Rotterdam study. Am J Clin Nutr, 2002, 75: 880-6.
    [131]Arai Y, Watanabe S, Kimira M, et al. Dietary intakes of flavonols, flavones and isoflavones by Japanese women and the inverse correlation between quercetin intake and plasma LDL cholesterol concentration. J Nutr, 2000, 130: 2243-50.
    [132]Borek C. Antioxidant health effects of aged garlic extract. J Nutr, 2001, 131: 1010-5.
    [133]Kris-Etherton PM, Keen CL. Evidence that the antioxidant flavonoids in tea and cocoa are beneficial for cardiovascular health. Curr Opin Lipidol, 2002, 13: 41-9.
    [134]Wyllie AH, Kerr JF, Currie AR. Cell death: the significance of apoptosis. Int Rev Cytol, 1980, 68: 251-306.
    [135]Danial NN, Korsmeyer SJ. Cell death: critical control points. Cell, 2004, 116: 205-219.
    [136]Peter ME, Krammer PH. The CD95(APO-1/Fas) DISC and beyond. Cell Death Differ, 2003, 10: 26-35.
    [137]Micheau O, Tschopp J. Induction of TNF receptor I-mediated apoptosisvia two sequential signaling complexes. Cell, 2003, 114: 181-190.
    [138]Hengartner MO. The biochemistry of apoptosis. Nature, 2000, 407: 770-776.
    [139]Leist M, Jaattela M. Four deaths and a funeral: from caspases to alternative mechanisms. Nat Rev Mol Cell Biol, 2001, 2: 589-598.
    [140]Jaattela M, Tschopp J. Caspase-independent cell death in T lymphocytes. Nat Immunol, 2003, 4: 416-23.
    [141]Cicconi S, Ventura N, Pastore D, et al. Characterization of apoptosis signal transduction pathways in HL-5 cardiomyocytes exposed to ischemia/reperfusion oxidative stress model. J Cell Physiol, 195: 27-37, 2003.
    [142]Feuerstein GZ and Young PR. Apoptosis in cardiac diseases: stress- and mitogen-activated signaling pathways. Cardiovasc Res, 45: 560-569, 2000.
    [143]Forman HJ and Torres M. Reactive oxygen species and cell signaling: respiratory burst in macrophage signaling. Am J Respir Crit Care Med, 166: S4-S8, 2002.
    [144]Ghafourifar P, Klein SD, Schucht O, et al. Ceramide induces cytochrome C release from isolated mitochondria. Importance of mitochondrial redox state. J Biol Chem, 274: 6080-6084, 1999.
    [145]Martindale JL and Holbrook NJ. Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol, 192: 1-15, 2002.
    [146]Kuruganti PA, Wurster RD, and Lucchesi PA. Mitogen activated protein kinase activation and oxidant signaling in astrocytoma cells. J Neurooncol, 56: 109-117, 2002.
    [147]Napoli C, de Nigris F, and Palinski W. Multiple role of reactive oxygen species in the arterial wall. J Cell Biochem, 82: 674-82, 2001.
    [148]Wang JY, Shum AY, Ho YJ, et al. Oxidative neurotoxicity in rat cerebral cortex neurons: Synergistic effects of H2O2 and NO on apoptosisinvolving activation of p38 mitogen-activated protein kinase and caspase-3. J Neurosci Res, 72: 508-519, 2003.
    [149]Zafarullah M, Li WQ, Sylvester J, et al. Molecular mechanisms of N-acetylcysteine actions. Cell Mol Life Sci, 60: 6-20, 2003.
    [150]Zhang X, Shan P, Sasidhar M, et al. Reactive oxygen species and extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase mediate hyperoxia-induced cell death in lung epithelium. Am J Respir Cell Mol Biol, 28: 305-315, 2003.
    [151]Baldwin AS. Series introduction: the transcription factor NF-kappa B and human disease. J Clin Invest, 2001, 107(l): 3-6.
    [152]Wilson SH, Best PJ, Edwards WD, et al. Nuclear factor-kappa B immunoreactivity is present in human coronary plaque and enhanced in patients with unstable angina pectoris. Atherosclerosis, 2002, 160(1): 147-153.
    [153]Steenbergen C, Afshari CA, Petranka JG , et al. Alterations in apoptotic signaling in human idiopathic cardiomyopathic hearts in failure. Am J Physiol, 2003, 284(1): H268-276.
    [154]Ahmad M, Theofanidis P, Medford RM. Role of activating protein-1 in the regulation of the vascular cell adhesion molecule-1 gene expression by tumor necrosis factor-alpha. J Biol Chem, 1998, 273: 4616-21.
    [155]Brand K, Page S, Walli AK, et al. Role of nuclear factor-kappaB in atherogenesis. Exp Physiol, 1997, 82: 297-304.
    [156]Bourcier T, Sukhova G, Libby P. The nuclear factor kappa-B signaling pathway participates in dysregulation of vascular smooth muscle cells in vitro and in human atherosclerosis. J Biol Chem, 1997, 272: 15817-24.
    [157]Dutta J, Fan Y, Gupta N, et al. Current insights into the regulation of programmed cell death by NF-kappaB. Oncogene, 2006, 25: 6800-6816.
    [158]Datta K, Babbar P, Srivastava T, et al. p53 dependent apoptosis in glioma cell lines in response to hydrogen peroxide induced oxidativestress. Int J Biochem Cell Biol,2002,34: 148-1457.
    [159]Lee YW, Hennig B, Yao J, et al. Methamphetamine induces AP-1 and NF-кB binding and transactivation in human brain endothelial cells. J Neurosci Res, 2001, 66: 583-591.
    [160]Kirsch JD, Yi AK, Spitz DR, et al. Accumulation of glutathione disulfide mediates NF-кB activation during immune stimulation with CpG DNA. Antisense Nucleic Acid Drug Dev, 2002, 12: 327-340.
    [161]Haddad JJ. Redox regulation of pro-inflammatory cytokines and I B -/ NF-кB nuclear translocation and activation. Biochem Biophys Res Commun, 2002, 296: 847-856.
    [162]Kim SS, Chae HS, Bach JH, et al. p53 mediates ceramide-induced apoptosis in SKN-SH cells[J]. Oncogene, 20O2,21(13): 2020-2028.
    [163]张建初,熊先智,辛建保,等. p53蛋白调节血管紧张素II诱导的内皮细胞凋亡[J].华中科技大学学报, 2002,(3): 280-283.
    [164]Kim HJ, Mun JY, Chun YJ, et al. Bax-dependent apoptosis induced by ceramide in HL-60 cells[J]. FEBS Lett, 2001,505(2): 264-8.
    [165]Kim HJ, Ghil KC, Kim MS, et al. Potentiation of ceramide-induced apoptosis by P27kip1 overexpression[J]. Arch Pharm Res, 2005,28(1): 87-92.
    [166]Yang H, Sadda MR, Li M, et al. S-adenosylmethionine and its metabolite induce apoptosis in HepG2 cells: Role of protein phosphatase 1 and Bcl-x(S)[J]. Hepatology, 2004,40(1): 221-31.
    [167]Horiuchi M, Hayashida W, Kamber T, et al. Angiotensin type 2 receptor dephosphorylates Bcl-2 by activating mitogen-activated protein kinase phosphatase-1 and induces apoptosis[J]. J Biol Chem, 1997,272(30): 19022-6.
    [168]Kim WH, Ghil KC, Lee JH, et al. Involvement of P27(kip1) in ceramide-mediated apoptosis in HL-6O cell[J]. Cancer Lett, 2000,151(1): 39-48.
    [169]Li PF, Dietz R, and von Harsdorf R. p53 regulates mitochondrial membrane potential through reactive oxygen species and induces cytochrome c-independent apoptosis blocked by Bcl-2. EMBO J,1999, 18: 6027-6036.
    [170]Datta K, Babbar P, Srivastava T, et al. p53 dependent apoptosis in glioma cell lines in response to hydrogen peroxide induced oxidative stress. Int J Biochem Cell Biol,2002,34: 148-1457.
    [171]Uberti D, Yavin E, Gil S, et al. Hydrogen peroxide induces nuclear translocation of p53 and apoptosis in cells of oligodendroglia origin. Mol Brain Res, 1999, 65: 167-175.
    [172]Harfouche R, Hassessian HM, Guo Y, et al. Mechanisms which mediate the antiapoptotic effects of angiopoietin-1 on endothelial cells. Microvasc Res, 64: 135-147, 2002.
    [173]Pastorino JG, Tafani M, Rothman RJ, et al. Functional consequences of the sustained or transient activation by Bax of the mitochondrial permeability transition pore. J Biol Chem, 274: 31734-31739, 1999.
    [174]Chen Q., Vazquez E.J., Moghaddas S., et al. Production of reactive oxygen species by mitochondria: central role of complex III. The Journal of biological chemistry, 2003, 278: 36027-36031.
    [175]Turrens J.F.. Mitochondrial formation of reactive oxygen species. Journal of Phycology, 2003, 552: 335-344.
    [176]Ceriello A.. New insights on oxidative stress and diabetic complications may lead to a“causal”antioxidant therapy. Diabetes Care, 2003, 26: 1589-1596.
    [177]FAZIO S, LINTON M F. Mouse models of hyperlipidemia and atherosclerosis[J]. Front Biosci, 2001, 6: D515-D525.
    [178]Kenneth K. Wu, Youming Huanb. Diabetic atherosclerosis mouse models. Atherosclerosis, 2007, 191: 241-249.
    [179]PARK L, RAMAN K G, LEE K J, et al. Suppression of accelerated diabetic atherosclerosis by the soluble receptor for advanced glycationendproducts[J]. Nat Med, 1998, 4: 1025-1031.
    [180]MASUCCI-MAGOULAS L, GOLDBERG I J, BISGAIER C L, et al. A mouse model with features of familial combined hyperlipidemia[J]. Sci, 1997, 275: 391-394.
    [181]Calamita G, Portincasa P. Present and future therapeutic strategies in non-alcoholic fatty liver disease. Expert Opin Ther Targets, 2007, 11(9): 1231-1249.
    [182]Abdelmalek MF, Diehl AM. Nonalcoholic fatty liver disease as a complication of insulin resistance. Med Clin North Am, 2007, 91(6): 1125-1149.
    [183]Adams LA, Angulo P. Treatment of non-alcoholic fatty liver disease. Postgrad Med J, 2006, 82(967): 315-322.
    [184]Nugent C, Younossi ZM. Evaluation and management of obesity-related nonalcoholic fatty liver disease. Nat Clin Pract Gastroenterol Hepatol, 2007, 4(8): 432-441.
    [185]Duvnjak M, Lerotic I, Barsic N, et al. Pathogenesis and management issues for non-alcoholic fatty liver disease. World J Gastroenterol, 13(34): 4539-4550.
    [186]Leclercq IA, FarrellGC, Field J, et al. CYP2E1 and CYP4A as microsomal catalysts of lipid peroxides in murine nonalcoholic steatohepatitis. J Clin Invest, 2000, 105: 1067-1075.
    [187]Perez-CarrerasM, DelHoyo P, MartinMA, et al. Defective hepatic mitochondrial respiratory chain in patients with nonalcoholic steatohepatitis. Hepatology, 2003, 38: 999-1007.
    [188]Baynes JW. Role of oxidative stress in development of complications in diabetes. Diabetes, 1991, 40: 405-12.
    [189]Halliwell B. Free radicals, antioxidants, and human disease: curiosity, cause, or consequence? Lancet, 1994, 344: 721-24.
    [190]Oberley LW. Free radicals and diabetes. Free Radic Biol Med, 1988,5: 113–24.
    [191]Suryanarayana P, Saraswat M, Mrudula T, et al. Curcumin and turmeric delay streptozotocin-induced diabetic cataract in rats. Invest Ophthalmol Vis Sci, 2005, 46: 2092-99.
    [192]Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature, 2001, 414: 813-20.
    [193]Kumar PA, Haseeb A, Suryanarayana P, et al. Elevated expression of alphaA-and alphaB-crystallins in streptozotocin-induced diabetic rat. Arch Biochem Biophys, 2005, 444: 77-83.
    [194]Okutan H, Ozcelik N, Yilmaz HR, et al. Effects of caffeic acid phenethyl ester on lipid peroxidation and antioxidant enzymes in diabetic rat heart. Clin Biochem, 2005, 38: 191-96.
    [195]Ozkaya YG, Agar A, Yargicoglu P, et al: The effect of exercise on brain antioxidant status of diabetic rats. Diabetes Metab, 2002, 28: 377-84.
    [196]Davi G, Falco A, Patrono C. Lipid peroxidation in diabetes mellitus. Antioxid Redox Signal, 2005, 7: 256-68.
    [197]Lyons TJ. Oxidized low-density lipoproteins, a role in the pathogenesis of atherosclerosis in diabetes. Diabet Med, 1991, 8: 411-19. 45. Sugiura M, Ohshima M, Ogawa K, et al. Chronic administration of Satsuma mandarin fruit (Citrus unshiu Marc.) improves oxidative stress in streptozotocin-induced diabetic rat liver. Biol Pharm Bull, 2006, 29: 588-91.
    [198]Yilmaz HR, Uz E, Yucel N, et al. Protective effect of caffeic acid phenethyl ester (CAPE) on lipid peroxidation and antioxidant enzymes in diabetic rat liver. J Biochem Mol Toxicol, 2004, 18: 234-38.
    [199]Kuroda M, Mimaki Y, Nishiyama T, et al: Hypoglycemic effects of turmeric (Curcuma longa L. rhizomes) on genetically diabetic KK-Ay mice. Biol Pharm Bull, 2005, 28: 937-39.
    [196]Davi G, Falco A, Patrono C. Lipid peroxidation in diabetes mellitus. Antioxid Redox Signal, 2005, 7: 256-68.
    [197]Lyons TJ. Oxidized low-density lipoproteins, a role in the pathogenesis of atherosclerosis in diabetes. Diabet Med, 1991, 8: 411-19.
    [198]Sugiura M, Ohshima M, Ogawa K, et al. Chronic administration of Satsuma mandarin fruit (Citrus unshiu Marc.) improves oxidative stress in streptozotocin-induced diabetic rat liver. Biol Pharm Bull, 2006, 29: 588-91.
    [199]Yilmaz HR, Uz E, Yucel N, et al. Protective effect of caffeic acid phenethyl ester (CAPE) on lipid peroxidation and antioxidant enzymes in diabetic rat liver. J Biochem Mol Toxicol, 2004, 18: 234-38.
    [200]Kakkar R, Mantha SV, Radhi J, et al. Antioxidant defense system in diabetic kidney: a time course study. Life Sci, 1997, 60: 667-679.
    [201]Kakkar R, Mantha SV, Radhi J, et al. Increased oxidative stress in rat liver and pancreas during progression of streptozotocin-induced diabetes. Clin Sci, 1998, 94: 623-632.
    [202]Matkovics B, Sasva′ri M, Kotorma′n M, et al. Further prove on oxidative stress in alloxan diabetic rat tissues. Acta Physiol Hung, 1998, 85: 183-192.
    [203]Gumieniczek A. Effect of the new thiazolidinedione-pioglitazone on the development of oxidative stress in liver and kidney of diabetic rabbits. Life Sci, 2003, 74: 553-562.
    [204]Inukai T, Takanashi K, Tayama K, et al. High glucose concentrations abolish the superoxide dismutase response of leukocytes to ascorbic acid or troglitazone in type 2 diabetes mellitus. Life Sci, 2002, 70: 2391-2401.
    [205]Kuroda M, Mimaki Y, Nishiyama T, et al: Hypoglycemic effects of turmeric (Curcuma longa L. rhizomes) on genetically diabetic KK-Ay mice. Biol Pharm Bull, 2005, 28: 937-39.
    [206]Arun, N, Nalini, N. Effi cacy of turmeric on blood sugar and polyol pathway in diabetic albino rats. Plant Foods Hum Nutr, 2002, 57: 41-52.
    [207]Nishizono S, Hayami T, Ikeda I, Imaizumi K. Protection against the diabetogenic effect of feeding tert-butylhydroquinone to rats prior to the administration of streptozotocin. Biosci Biotechnol Biochem, 2000, 64: 1153-58.
    [208]Reddy AC, Lokesh BR. Effect of curcumin and eugenol on iron-induced hepatictoxicity in rats. Toxicol, 1996, 107: 39-45.
    [209]Singaraja R R, Fievet C, Castrog, et al. Increased ABCA1 activity protects against atherosclerosis[J]. J Clin Invest, 2002, 140(1): 35-42.
    [210]Chai weidong, Chen jiawei, Wanghua, et al.The effects of glucose, insulin and oxidized 1ow-density 1ipoprotein on apoptosis in vascular endothelial cells[J]. Chinese Medical Journal, 2000, 113(10): 903-906.
    [1]Kiuchi F, Goto Y, Sugimoto N, et al. Nematocidal activity of turmeric: synergistic action of curcuminoids. Chem Pharm Bull (Tokyo), 1993, 41(9): 1640-3.
    [2]Goel A, Kunnumakkara AB, Aggarwal BB. Curcumin as“Curecumin”: from kitchen to clinic. Biochem Pharmacol, 2008, 75(4): 787-809.
    [3]Aggarwal BB, Kumar A, Bharti AC. Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res, 2003, 23(1A): 363-98.
    [4]Deodhar SD, Sethi R, Srimal RC. Preliminary study on antirheumatic activity of curcumin (diferuloyl methane). Indian J Med Res, 1980, 71:632–4.
    [5]Satoskar RR, Shah SJ, Shenoy SG. Evaluation of anti-inflammatory property of curcumin (diferuloyl methane) in patients with postoperative inflammation. Int J Clin Pharmacol Ther Toxicol, 1986, 24(12): 651-4.
    [6]Holt PR, Katz S, Kirshoff R. Curcumin therapy in inflammatory bowel disease: a pilot study. Dig Dis Sci, 2005, 50(11): 2191-3.
    [7]Shoskes D, Lapierre C, Cruz-Correa M, et al. Beneficial effects of the bioflavonoids curcumin and quercetin on early function in cadaveric renal transplantation: a randomized placebo controlled trial. Transplantation, 2005, 80(11): 1556-9.
    [8]Durgaprasad S, Pai CG, Vasanthkumar, et al. A pilot study of the antioxidant effect of curcumin in tropical pancreatitis. Indian J Med Res, 2005, 122(4): 315-8.
    [9]Ng TP, Chiam PC, Lee T, et al. Curry consumption and cognitive function in the elderly. Am J Epidemiol, 2006, 164(9): 898-906.
    [10]Doroshow JH. Doxorubicin-induced cardiac toxicity. N Engl J Med, 1991, 324(12): 843-5.
    [11]Keizer HG, Pinedo HM, Schuurhuis GJ, et al. Doxorubicin (adriamycin): a critical review of free radical-dependent mechanisms of cytotoxicity.Pharmacol Ther, 1990, 47(2): 219-31.
    [12]Nowak D, Pierscinski G, Drzewoski J. Ambroxol inhibits doxorubicininduced lipid peroxidation in heart of mice. Free Radic Biol Med, 1995, 19(5): 659-63.
    [13]Venkatesan N. Curcumin attenuation of acute adriamycin myocardial toxicity in rats. Br J Pharmacol, 1998, 124(3): 425-7.
    [14]Daosukho C, Chen Y, Noel T, et al. Phenylbutyrate, a histone deacetylase inhibitor, protects against adriamycin-induced cardiac injury. Free Radic Biol Med, 2007, 42(12): 1818-25.
    [15]Marcu MG, Jung YJ, Lee S, et al. Curcumin is an inhibitor of p300 histone acetylatransferase. Med Chem, 2006, 2(2): 169-74.
    [16]Khopde SM, Priyadarsini KI, Guha SN, et al. Inhibition of radiation-induced lipid peroxidation by tetrahydrocurcumin: possible mechanisms by pulse radiolysis. Biosci Biotechnol Biochem, 2000, 64: 503-9.
    [17]Farhangkhoee H, Khan ZA, Kaur H, et al. Vascular endothelial dysfunction in diabetic cardiomyopathy: pathogenesis and potential treatment targets. Pharmacol Ther, 2006, 111(2): 384-99.
    [18]Stadler K, Jenei V, von Bolcshazy G, et al. Increased nitric oxide levels as an early sign of premature aging in diabetes. Free Radic Biol Med, 2003, 35(10): 1240-51.
    [19]Hattori R, Sase K, Eizawa H, et al. Structure and function of nitric oxide synthases. Int J Cardiol, 1994, 47(1 Suppl): S71-75.
    [20]Farhangkhoee H, Khan ZA, Mukherjee S, et al. Heme oxygenase in diabetes-induced oxidative stress in the heart. J Mol Cell Cardiol, 2003, 35(12): 1439-48.
    [21]Bengmark S. Curcumin, an atoxic antioxidant and natural NFkappaB, cyclooxygenase-2, lipooxygenase, and inducible nitric oxide synthase inhibitor: a shield against acute and chronic diseases. JPEN J ParenterEnteral Nutr, 2006, 30(1): 45-51.
    [22]Brouet I, Ohshima H. Curcumin, an anti-tumour promoter and antiinflammatory agent, inhibits induction of nitric oxide synthase in activated macrophages. Biochem Biophys Res Commun, 1995, 206(2): 533-40.
    [23]Farhangkhoee H, Khan ZA, Chen S, et al. Differential effects of curcumin on vasoactive factors in the diabetic rat heart. Nutr Metab (Lond), 2006, 3: 27.
    [24]Sumanont Y, Murakami Y, Tohda M, et al. Evaluation of the nitric oxide radical scavenging activity of manganese complexes of curcumin and its derivative. Biol Pharm Bull, 2004, 27: 170-3.
    [25]Sumanont Y, Murakami Y, Tohda M, et al. Prevention of kainic acidinduced changes in nitric oxide level and neuronal cell damage in the rat hippocampus by manganese complexes of curcumin and diacetylcurcumin. Life Sci, 2006, 78: 1884-91.
    [26]Sumanont Y, Murakami Y, Tohda M, et al. Effects of manganese complexes of curcumin and diacetylcurcumin on kainic acid-induced neurotoxic responses in the rat hippocampus. Biol Pharm Bull, 2007, 30: 1732-9.
    [27]Vajragupta O, Boonchoong P, Berliner LJ. Manganese complexes of curcumin analogues: evaluation of hydroxyl radical scavenging ability, superoxide dismutase activity and stability towards hydrolysis. Free Radic Res, 2004, 38: 303-14.
    [28]Majithiya JB, Balaraman R, Giridhar R, et al. Effect of bis[curcumino]oxovanadium complex on non-diabetic and streptozotocin-induced diabetic rats. J Trace Elem Med Biol, 2005, 18: 211-7.
    [29]Naito M, Wu X, Nomura H, et al. The protective effects of tetrahydrocurcumin on oxidative stress in cholesterol-fed rabbits. J Atheroscler Thromb, 2002, 9: 243-50.
    [30]Sugiyama Y, Kawakishi S, Osawa T. Involvement of the beta-diketonemoiety in the antioxidative mechanism of tetrahydrocurcumin. Biochem Pharmacol, 1996, 52: 519-25.
    [31]Pari L, Murugan P. Antihyperlipidemic effect of curcumin and tetrahydrocurcumin in experimental type 2 diabetic rats. Ren Fail, 2007, 29: 881-9.
    [32]Murugan P, Pari L. Effect of tetrahydrocurcumin on plasma antioxidants in streptozotocin-nicotinamide experimental diabetes. J Basic Clin Physiol Pharmacol, 2006, 17: 231-44.
    [33]Murugan P, Pari L. Influence of tetrahydrocurcumin on hepatic and renal functional markers and protein levels in experimental type 2 diabetic rats. Basic Clin Pharmacol Toxicol, 2007, 101: 241-5.
    [34]Pari L, Murugan P. Influence of tetrahydrocurcumin on tail tendon collagen contents and its properties in rats with streptozotocin-nicotinamide-induced type 2 diabetes. Fundam Clin Pharmacol, 2007, 21: 665-71.
    [35]Decker RS, Poole AR, Griffin EE, et al. Altered distribution of lysosomal cathepsin D in ischemic myocardium. J Clin Invest, 1977, 59(5): 911-21.
    [36]Mathew S, Menon PV, Kurup PA. Changes in glycoproteins in isoproterenol-induced myocardial infarction in rats. Indian J Biochem Biophys, 1982, 19(1): 41-3.
    [37]Takahashi S, Barry AC, Factor SM. Collagen degradation in ischaemic rat hearts. Biochem J, 1990, 265(1): 233-41.
    [38]Ravichandran LV, Puvanakrishnan R, Joseph KT. Influence of isoproterenol-induced myocardial infarction on certain glycohydrolases and cathepsins in rats. Biochem Med Metab Biol, 1991, 45(1): 6-15.
    [39]Srivastava R, Srimal RC. Modification of certain inflammation induced biochemical changes by curcumin. Indian J Med Res, 1985, 81: 215-23.
    [40]Nirmala C, Puvanakrishnan R. Protective role of curcumin againstisoproterenol induced myocardial infarction in rats. Mol Cell Biochem, 1996, 159(2): 85-93.
    [41]Nirmala C, Puvanakrishnan R. Effect of curcumin on certain lysosomal hydrolases in isoproterenol-induced myocardial infarction in rats. Biochem Pharmacol, 1996, 51(1): 47-51.
    [42]Winter CA. Nonsteroid anti-inflammatory agents. Annu Rev Pharmacol, 1966, 6: 157-74.
    [43]Frey N, Olson EN. Cardiac hypertrophy: the good, the bad, and the ugly. Annu Rev Physiol, 2003, 65: 45-79.
    [44]Heineke J, Molkentin JD. Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol, 2006, 7(8): 589-600.
    [45]Sadoshima J, Izumo S. The cellular and molecular response of cardiac myocytes to mechanical stress. Annu Rev Physiol, 1997, 59: 551-71.
    [46]Kolodziejczyk SM, Wang L, Balazsi K, et al. MEF2 is upregulated during cardiac hypertrophy and is required for normal post-natal growth of the myocardium. Curr Biol, 1999, 9(20): 1203-6.
    [47]Paradis P, MacLellan WR, Belaguli NS, et al. Serum response factor mediates AP-1-dependent induction of the skeletal alpha-actin promoter in ventricular myocytes. J Biol Chem, 1996, 271(18): 10827-33.
    [48]Herzig TC, Jobe SM, Aoki H, et al. Angiotensin II type1a receptor gene expression in the heart: AP-1 and GATA-4 participate in the response to pressure overload. Proc Natl Acad Sci U S A, 1997, 94(14): 7543-8.
    [49]Hasegawa K, Lee SJ, Jobe SM, et al. cis-Acting sequences that mediate induction of beta-myosin heavy chain gene expression during left ventricular hypertrophy due to aortic constriction. Circulation, 1997, 96(11): 3943-53.
    [50]Backs J, Olson EN. Control of cardiac growth by histone acetylation/deacetylation. Circ Res, 2006, 98(1): 15-24.
    [51]ClaytonAL, HazzalinCA, Mahadevan LC. Enhanced histone acetylation and transcription: a dynamic perspective. Mol Cell, 2006, 23(3): 289-96.
    [52]Chan HM, La Thangue NB. p300/CBP proteins: HATs for transcriptional bridges and scaffolds. J Cell Sci, 2001, 114(Pt 13): 2363-73.
    [53]Lill NL, Grossman SR, Ginsberg D, et al. Binding and modulation of p53 by p300/CBP coactivators. Nature, 1997, 387(6635): 823-7.
    [54]Miyamoto S, Kawamura T, Morimoto T, et al. Histone acetyltransferase activity of p300 is required for the promotion of left ventricular remodeling after myocardial infarction in adult mice in vivo. Circulation, 2006, 113(5): 679-90.
    [55]Yao TP, Oh SP, Fuchs M, et al. Gene dosage-dependent embryonic development and proliferation defects in mice lacking the transcriptional integrator p300. Cell, 1998, 93(3): 361-72.
    [56]Gusterson RJ, Jazrawi E, Adcock IM, et al. The transcriptional co-activators CREB-binding protein (CBP) and p300 play a critical role in cardiac hypertrophy that is dependent on their histone acetyltransferase activity. J Biol Chem, 2003, 278(9): 6838-47.
    [57]Yanazume T, Hasegawa K, Morimoto T, et al. Cardiac p300 is involved in myocyte growth with decompensated heart failure. Mol Cell Biol, 2003, 23(10): 3593-606.
    [58]Li HL, Liu C, de Couto G, et al. Curcumin prevents and reverses murine cardiac hypertrophy. J Clin Invest, 2008, 118(3): 879-93.
    [59]Morimoto T, Sunagawa Y, Kawamura T, et al. The dietary compound curcumin inhibits p300 histone acetyltransferase activity and prevents heart failure in rats. J Clin Invest, 2008, 118(3): 868-78.
    [60]Costi R, Di Santo R, Artico M, et al. Cinnamoyl compounds as simple molecules that inhibit p300 histone acetyltransferase. J Med Chem, 2007, 50: 1973-7.
    [61]Yeh CH, Chen TP, Wu YC, et al. Inhibition of NFkappaB activation withcurcumin attenuates plasma inflammatory cytokines surge and cardiomyocytic apoptosis following cardiac ischemia/reperfusion. J Surg Res, 2005, 125(1): 109-16.
    [62]Shishodia S, Singh T, Chaturvedi MM. Modulation of transcription factors by curcumin. Adv Exp Med Biol, 2007, 595: 127-48.
    [63]Virani SS, Polsani VR, Nambi V. Novel markers of inflammation in atherosclerosis. Curr Atheroscler Rep, 2008, 10(2): 164-70.
    [64]Schoonderwoerd BA, Smit MD, Pen L, et al. New risk factors for atrial fibrillation: causes of‘not-so-lone atrial fibrillation’. Europace, 2008,10(6): 668-73.
    [65]Mishra S, Karmodiya K, Surolia N, et al. Synthesis and exploration of novel curcumin analogues as anti-malarial agents. Bioorg Med Chem, 2008, 16: 2894-902.
    [66]Selvam C, Jachak SM, Thilagavathi R, et al. Design, synthesis, biological evaluation and molecular docking of curcumin analogues as antioxidant, cyclooxygenase inhibitory and anti-inflammatory agents. Bioorg Med Chem Lett, 2005, 15: 1793-7.
    [67]Weber WM, Hunsaker LA, Abcouwer SF, et al. Anti-oxidant activities of curcumin and related enones. Bioorg Med Chem, 2005, 13: 3811-20.
    [68]Weber WM, Hunsaker LA, Gonzales AM, et al. TPA-induced up-regulation of activator protein-1 can be inhibited or enhanced by analogs of the natural product curcumin. Biochem Pharmacol, 2006, 72: 928-40.
    [69]Weber WM, Hunsaker LA, Roybal CN, et al. Activation of NFkappaB is inhibited by curcumin and related enones. Bioorg Med Chem, 2006, 14: 2450-61.
    [70]Adams BK, Cai J, Armstrong J, et al. EF24, a novel synthetic curcumin analog, induces apoptosis in cancer cells via a redox-dependent mechanism. Anticancer Drugs, 2005, 16: 263-75.
    [71]Al-Omar MA, Youssef KM, El-Sherbeny MA, et al. Synthesis and in vitroantioxidant activity of some new fused pyridine analogs. Arch Pharm (Weinheim), 2005, 338: 175-80.
    [72]Zambre AP, Kulkarni VM, Padhye S, et al. Novel curcumin analogs targeting TNF-induced NFkappaB activation and proliferation in human leukemic KBM-5 cells. Bioorg Med Chem, 2006, 14: 7196-204.
    [73]Durante W. Heme oxygenase-1 in growth control and its clinical application to vascular disease. J Cell Physiol, 2003, 195(3): 373-82.
    [74]Hancock WW, Buelow R, Sayegh MH, et al. Antibody-induced transplant arteriosclerosis is prevented by graft expression of antioxidant and anti-apoptotic genes. Nat Med, 1998, 4(12): 1392-6.
    [75]Ishikawa K, Sugawara D, Wang X, et al. Heme oxygenase-1 inhibits atherosclerotic lesion formation in ldl-receptor knockout mice. Circ Res, 2001, 88(5): 506-12.
    [76]Motterlini R, Foresti R, Bassi R, et al. Curcumin, an antioxidant and anti-inflammatory agent, induces heme oxygenase-1 and protects endothelial cells against oxidative stress. Free Radic Biol Med, 2000, 28(8): 1303-12.
    [77]Pae HO, Jeong GS, Jeong SO, et al. Roles of heme oxygenase-1 in curcumin-induced growth inhibition in rat smooth muscle cells. Exp Mol Med, 2007, 39(3): 267-77.
    [78]Dutta S, Padhye S, Priyadarsini KI,et al. Antioxidant and antiproliferative activity of curcumin semicarbazone. Bioorg Med Chem Lett, 2005, 15: 2738-44.
    [79]Pucci D, Bloise R, Bellusci A, et al. Curcumin and cyclopalladated complexes: a recipe for bifunctional biomaterials. J Inorg Biochem, 2007, 101: 1013-22.
    [80]Devasena T, Rajasekaran KN, Gunasekaran G, et al. Anticarcinogenic effect of bis-1,7-(2-hydroxyphenyl)-hepta-1,6-diene-3,5-dione a curcumin analog on DMH-induced colon cancer model. Pharmacol Res, 2003,47: 133-40.
    [81]Verjovski-Almeida S, Kurzmack M, Inesi G. Partial reactions in the catalytic and transport cycle of sarcoplasmic reticulum ATPase. Biochemistry, 1978, 17(23): 5006-13.
    [82]Logan-Smith MJ, Lockyer PJ, East JM, et al. Curcumin, a molecule that inhibits theCa2+-ATPase of sarcoplasmic reticulumbut increases the rate of accumulation of Ca2+. J Biol Chem, 2001,276(50): 46905-11.
    [83]Sumbilla C, Lewis D, Hammerschmidt T, et al. The slippage of the Ca2+ pump and its control by anions and curcumin in skeletal and cardiac sarcoplasmic reticulum. J Biol Chem, 2002, 277(16): 13900-6.
    [84]Duvoix A, Blasius R, Delhalle S, et al. Chemopreventive and therapeutic effects of curcumin. Cancer Lett, 2005, 223(2): 181-90.
    [85]Ramirez Bosca A, Soler A, Carrion-Gutierrez MA, et al. An hydroalcoholic extract of Curcuma longa lowers the abnormally high values of human-plasma fibrinogen. Mech Ageing Dev, 2000, 114(3): 207-10.
    [86]Soni KB, Kuttan R. Effect of oral curcumin administration on serum peroxides and cholesterol levels in human volunteers. Indian J Physiol Pharmacol, 1992, 36(4): 273-5.
    [87]Huang HC, Jan TR, Yeh SF. Inhibitory effect of curcumin, an antiinflammatory agent, on vascular smooth muscle cell proliferation. Eur J Pharmacol, 1992, 221(2–3): 381-4.
    [88]Cheng AL, Hsu CH, Lin JK, et al. Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res, 2001, 21(4B): 2895-900.
    [89]Srivastava R, Dikshit M, Srimal RC, et al. Anti-thrombotic effect of curcumin. Thromb Res, 1985, 40(3): 413-7.
    [90]Phrommintikul A, Chattipakorn N. Roles of cardiac ryanodine receptor in heart failure and sudden cardiac death. Int J Cardiol, 2006, 112(2): 142-52.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700