Dpr1和Dpr2在调节Wnt/TGF-β信号中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Dapper(Dpr)蛋白家族中不同的成员:Dapper1(Dpr1)和Dapper2(Dpr2)蛋白,在先前爪蟾的研究以及我们克隆得到的斑马鱼Dapper2蛋白在斑马鱼中的研究中已经发现,它们能够分别调控Wnt和TGFβ信号通路。为了能够对Dapper这一家族蛋白在哺乳动物中的功能做进一步的研究,我们克隆了斑马鱼Dapper2蛋白在小鼠中的同源蛋白mDpr2并对其在调控TGFβ信号通路中的作用进行了研究。我们的研究发现,和斑马鱼zDpr2的功能相类似,在哺乳动物细胞中过量表达mDpr2蛋白能够诱导TGFβI型受体的降解,从而抑制TGFβ诱导的下游报告基因的表达。特异性抑制内源mDpr2的RNA干扰也能上调TGFβ报告基因的表达。这些研究结果揭示了Dpr2作为进化上保守的TGFβ逆调控因子而存在。
     Wnt信号在胚胎发育和癌症发生中起很重要的作用,爪蟾中的Dpr蛋白作为Dishevelled(Dvl)的结合蛋白被发现,并证实在Wnt信号中起作用。但其哺乳动物(人与小鼠)的同源蛋白Dpr1,是否也起到相类似的作用,是否如Dpr2蛋白一样能够调控TGFβ信号,都不得而知。因此,我们克隆得到了人和小鼠的Dapper1基因并发现,与Dpr2蛋白不同,哺乳动物的Dpr1基因能够明显的抑制经典Wnt信号通路和非经典的Wnt信号通路。通过相互作用区段的分析,我们鉴定了Dpr1蛋白和Dvl2蛋白的相互作用区段主要是通过Dpr1蛋白的C端区域结合Dvl2蛋白的DEP结构区域。利用Wnt信号的报告基因,我们发现,Dpr1对Wnt信号呈现的抑制作用需要该蛋白各个区段一起的参与,单独表达Dpr1的C端225个氨基酸区段对Wnt报告基因表现出来的激活证明了该区段是Dpr1的显形失活区域。深入的研究我们发现,Dpr1蛋白能够通过结合Dvl2蛋白诱导其通过溶酶体降解。特异性抑制内源Dpr1的RNA干扰不仅能够上调Wnt信号,而且能够增加内源Dvl2的蛋白表达。从而,我们的工作也证实了Dpr1是进化上保守的Wnt信号的抑制因子。
     为了深入地研究Dapper家族蛋白的生物学功能,本课题克隆了Dpr1/Dpr2在酵母中表达的诱饵蛋白,利用人胎儿脑文库cDNA完成了酵母双杂交,为以后的研究奠定了一定的基础。
Dapper1 and Dapper2, two divergent members of the Dapper family, have been suggested to modulate Wnt and TGFβ/Nodal signaling in Xenopus and zebrafish. To get a better understanding of Dapper function in mammals, we have cloned the mouse ortholog of zebrafish Dapper2, mDpr2 and investigated its function in regulating TGFβsignaling activity. Here, we showed that, like zebrafish Dapper2, overexpression of mDpr2 inhibited the TGFβ-induced expression of the Smad-responsive reporters and targeted TGFβtype I receptor ALK5 for degradation in mammalian cells, and knocking down of Dpr2 by RNA interference up-regulates TGFβreporter gene activity, which implying that mDpr2 may have an intrinsic in vivo activity similar to fish Dapper2 activity. Our data indicate that the function of Dpr2 as a negative regulator of the TGFβ/Nodal signal pathway is evolutionally conserved, at least in part, in fish and mammals.
     Wnt signaling plays pivotal roles in the regulation of embryogenesis and cancer development. Xenopus Dapper (Dpr) was identified as an interacting protein for Dishevelled (Dvl), a Wnt signaling mediator, and modulates Wnt signaling. However, it is largely unclear whether and how Dpr1 regulates Wnt signaling and whether like Dpr2, it still has inhibitory effect on TGFβsignaling. Here, we firstly cloned the human Dapper1 and mouse Dapper1 gene and present evidence that human Dpr1, the ortholog of Xenopus Dpr, inhibits both canonical and none-canonical Wnt signaling. We have identified the regions responsible for the Dpr-Dvl interaction in both proteins and found that the interaction interface is formed between the DEP (Dishevelled, Egl-10, and pleckstrin) domain of Dvl and the central and the C-terminal regions of Dpr1. The inhibitory function of human Dpr1 requires both its N and C terminus. Overexpression of the C-terminal region corresponding to the last 225 amino acids of Dpr1, in contrast to wild-type Dpr1, enhances Wnt signaling, suggesting a dominant negative function of this region. Furthermore, we have shown that Dpr1 induces Dvl degradation via a lysosome inhibitor-sensitive and proteasome inhibitor-insensitive mechanism. Knockdown of Dpr1 by RNA interference up-regulates endogenous Dvl2 protein. Taken together, our data indicate that the inhibitory activity of Dpr on Wnt signaling is conserved from Xenopus to human and that Dpr1 antagonizes Wnt signaling by inducing Dvl degradation.
     To deeply elucidate the biological function of Dapper protein family. Yeast two hybrid were carried out by using Dpr1/Dpr2 protein as baits and Fetal brain cDNA as libray. These findings provides basis for further study.
引文
[1] Willert K, Brown J D, Danenberg E, et al. Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature, 2003, 423(6938):448-452.
    [2] Hofmann K. A superfamily of membrane-bound O-acyltransferases with implications for wnt signaling. Trends Biochem Sci, 2000, 25(3):111-112.
    [3] Parr B A, McMahon A P. Wnt genes and vertebrate development. Curr Opin Genet Dev, 1994, 4(4):523-528.
    [4] Wodarz A, Nusse R. Mechanisms of Wnt signaling in development. Annu Rev Cell Dev Biol, 1998, 14:59-88.
    [5] Eastman Q, Grosschedl R. Regulation of LEF-1/TCF transcription factors by Wnt and other signals. Curr Opin Cell Biol, 1999, 11(2):233-240.
    [6] Blanpain C, Horsley V, Fuchs E. Epithelial stem cells: turning over new leaves. Cell, 2007, 128(3):445-458.
    [7] Finch P W, He X, Kelley M J, et al. Purification and molecular cloning of a secreted, Frizzled-related antagonist of Wnt action. Proc Natl Acad Sci U S A, 1997, 94(13):6770-6775.
    [8] McMahon A P, Moon R T. Ectopic expression of the proto-oncogene int-1 in Xenopus embryos leads to duplication of the embryonic axis. Cell, 1989, 58(6):1075-1084.
    [9] Sokol S, Christian J L, Moon R T, et al. Injected Wnt RNA induces a complete body axis in Xenopus embryos. Cell, 1991, 67(4):741-752.
    [10] Kuhl M, Sheldahl L C, Park M, et al. The Wnt/Ca2+ pathway: a new vertebrate Wnt signaling pathway takes shape. Trends Genet, 2000, 16(7):279-283.
    [11] McMahon A P, Bradley A. The Wnt-1 (int-1) proto-oncogene is required for development of a large region of the mouse brain. Cell, 1990, 62(6):1073-1085.
    [12] Thomas K R, Capecchi M R. Targeted disruption of the murine int-1 proto-oncogene resulting in severe abnormalities in midbrain and cerebellar development. Nature, 1990, 346(6287):847-850.
    [13] Monkley S J, Delaney S J, Pennisi D J, et al. Targeted disruption of the Wnt2 gene results in placentation defects. Development, 1996, 122(11):3343-3353.
    [14] Liu P, Wakamiya M, Shea M J, et al. Requirement for Wnt3 in vertebrate axis formation. Nature genetics, 1999, 22(4):361-365.
    [15] Takada S, Stark K L, Shea M J, et al. Wnt-3a regulates somite and tailbud formation in the mouse embryo. Genes & development, 1994, 8(2):174-189.
    [16] Yoshikawa Y, Fujimori T, McMahon A P, et al. Evidence that absence of Wnt-3a signaling promotes neuralization instead of paraxial mesoderm development in the mouse. Developmental biology, 1997, 183(2):234-242.
    [17] Lee S M, Tole S, Grove E, et al. A local Wnt-3a signal is required for development of the mammalian hippocampus. Development, 2000, 127(3):457-467.
    [18] Stark K, Vainio S, Vassileva G, et al. Epithelial transformation of metanephric mesenchyme in the developing kidney regulated by Wnt-4. Nature, 1994, 372(6507):679-683.
    [19] Kispert A, Vainio S, McMahon A P. Wnt-4 is a mesenchymal signal for epithelial transformation of metanephric mesenchyme in the developing kidney. Development, 1998, 125(21):4225-4234.
    [20] Yamaguchi T P, Bradley A, McMahon A P, et al. A Wnt5a pathway underlies outgrowth of multiple structures in the vertebrate embryo. Development, 1999, 126(6):1211-1223.
    [21] Li C, Xiao J, Hormi K, et al. Wnt5a participates in distal lung morphogenesis. Developmental biology, 2002, 248(1):68-81.
    [22] Moon R T, Kohn A D, De Ferrari G V, et al. WNT and beta-catenin signalling: diseases and therapies. Nature reviews, 2004, 5(9):691-701.
    [23] Veeman M T, Axelrod J D, Moon R T. A second canon. Functions and mechanisms of beta-catenin-independent Wnt signaling. Dev Cell, 2003, 5(3):367-377.
    [24] Kennell J A, MacDougald O A. Wnt signaling inhibits adipogenesis through beta-catenin-dependent and -independent mechanisms. J Biol Chem, 2005, 280(25):24004-24010.
    [25] Wang Y, Macke J P, Abella B S, et al. A large family of putative transmembrane receptors homologous to the product of the Drosophila tissue polarity gene frizzled. J Biol Chem, 1996, 271(8):4468-4476.
    [26] Wang Y, Huso D, Cahill H, et al. Progressive cerebellar, auditory, and esophageal dysfunction caused by targeted disruption of the frizzled-4 gene. J Neurosci, 2001, 21(13):4761-4771.
    [27] van Gijn M E, Daemen M J, Smits J F, et al. The wnt-frizzled cascade in cardiovascular disease. Cardiovascular research, 2002, 55(1):16-24.
    [28] van Amerongen R, Berns A. Knockout mouse models to study Wnt signal transduction. Trends Genet, 2006, 22(12):678-689.
    [29] Wang Y, Thekdi N, Smallwood P M, et al. Frizzled-3 is required for the development of major fiber tracts in the rostral CNS. J Neurosci, 2002, 22(19):8563-8573.
    [30] Ishikawa T, Tamai Y, Zorn A M, et al. Mouse Wnt receptor gene Fzd5 is essential for yolk sac and placental angiogenesis. Development, 2001, 128(1):25-33.
    [31] Guo N, Hawkins C, Nathans J. Frizzled6 controls hair patterning in mice. Proc Natl Acad Sci U S A, 2004, 101(25):9277-9281.
    [32] Ranheim E A, Kwan H C, Reya T, et al. Frizzled 9 knock-out mice have abnormal B-cell development. Blood, 2005, 105(6):2487-2494.
    [33] Zhao C, Aviles C, Abel R A, et al. Hippocampal and visuospatial learning defects in mice with a deletion of frizzled 9, a gene in the Williams syndrome deletion interval. Development, 2005, 132(12):2917-2927.
    [34] Fahmy O G, Fahmy M J. Complementation among the subgenic mutants in the r-locus of Drosophila melangogaster. Nature, 1959, 184:1927-1929.
    [35] Lijam N, Paylor R, McDonald M P, et al. Social interaction and sensorimotor gating abnormalities in mice lacking Dvl1. Cell, 1997, 90(5):895-905.
    [36] Hamblet N S, Lijam N, Ruiz-Lozano P, et al. Dishevelled 2 is essential for cardiac outflow tract development, somite segmentation and neural tube closure. Development, 2002, 129(24):5827-5838.
    [37] Wallingford J B, Harland R M. Neural tube closure requires Dishevelled-dependent convergent extension of the midline. Development, 2002, 129(24):5815-5825.
    [38] Embi N, Rylatt D B, Cohen P. Glycogen synthase kinase-3 from rabbit skeletal muscle. Separation from cyclic-AMP-dependent protein kinase and phosphorylase kinase. Eur J Biochem, 1980, 107(2):519-527.
    [39] Woodgett J R, Cohen P. Multisite phosphorylation of glycogen synthase. Molecular basis for the substrate specificity of glycogen synthase kinase-3 and casein kinase-II (glycogen synthase kinase-5). Biochim Biophys Acta, 1984, 788(3):339-347.
    [40] Boyle W J, Smeal T, Defize L H, et al. Activation of protein kinase C decreases phosphorylation of c-Jun at sites that negatively regulate its DNA-binding activity. Cell, 1991, 64(3):573-584.
    [41] Leroy K, Brion J P. Developmental expression and localization of glycogen synthase kinase-3beta in rat brain. J Chem Neuroanat, 1999, 16(4):279-293.
    [42] Cohen P, Nimmo H G, Proud C G. How does insulin stimulate glycogen synthesis? Biochem Soc Symp, 1978, (43):69-95.
    [43] Parker P J, Caudwell F B, Cohen P. Glycogen synthase from rabbit skeletal muscle; effect of insulin on the state of phosphorylation of the seven phosphoserine residues in vivo. Eur J Biochem, 1983, 130(1):227-234.
    [44] Welsh G I, Miller C M, Loughlin AJ, et al. Regulation of eukaryotic initiation factor eIF2B: glycogen synthase kinase-3 phosphorylates a conserved serine which undergoes dephosphorylation in response to insulin. FEBS Lett, 1998, 421(2):125-130.
    [45] Plyte S E, Hughes K, Nikolakaki E, et al. Glycogen synthase kinase-3: functions in oncogenesis and development. Biochim Biophys Acta, 1992, 1114(2-3):147-162.
    [46] Cross D A, Alessi D R, Cohen P, et al. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature, 1995, 378(6559):785-789.
    [47] Wang X, Paulin F E, Campbell L E, et al. Eukaryotic initiation factor 2B: identification of multiple phosphorylation sites in the epsilon-subunit and their functions in vivo. Embo J, 2001, 20(16):4349-4359.
    [48] Shaw M, Cohen P. Role of protein kinase B and the MAP kinase cascade in mediating the EGF-dependent inhibition of glycogen synthase kinase 3 in Swiss 3T3 cells. FEBS Lett, 1999, 461(1-2):120-124.
    [49] Kim L, Liu J, Kimmel A R. The novel tyrosine kinase ZAK1 activates GSK3 to direct cell fate specification. Cell, 1999, 99(4):399-408.
    [50] Lesort M, Jope R S, Johnson GV. Insulin transiently increases tau phosphorylation: involvement of glycogen synthase kinase-3beta and Fyn tyrosine kinase. J Neurochem, 1999, 72(2):576-584.
    [51] Hartigan J A, Johnson G V. Transient increases in intracellular calcium result in prolonged site-selective increases in Tau phosphorylation through a glycogen synthase kinase 3beta-dependent pathway. J Biol Chem, 1999, 274(30):21395-21401.
    [52] Hughes K, Pulverer B J, Theocharous P, et al. Baculovirus-mediated expression and characterisation of rat glycogen synthase kinase-3 beta, the mammalian homologue of the Drosophila melanogaster zeste-white 3sgg homeotic gene product. Eur J Biochem, 1992, 203(1-2):305-311.
    [53] Siegfried E, Chou T B, Perrimon N. wingless signaling acts through zeste-white 3, the Drosophila homolog of glycogen synthase kinase-3, to regulate engrailed and establish cell fate. Cell, 1992, 71(7):1167-1179.
    [54] Chao M V, Hempstead B L. p75 and Trk: a two-receptor system. Trends Neurosci, 1995, 18(7):321-326.
    [55] Dominguez I, Itoh K, Sokol S Y. Role of glycogen synthase kinase 3 beta as a negative regulator of dorsoventral axis formation in Xenopus embryos. Proc Natl Acad Sci U S A, 1995, 92(18):8498-8502.
    [56] Stambolic V, Ruel L, Woodgett J R. Lithium inhibits glycogen synthase kinase-3 activity and mimics wingless signalling in intact cells. Curr Biol, 1996, 6(12):1664-1668.
    [57] Aberle H, Bauer A, Stappert J, et al. beta-catenin is a target for the ubiquitin-proteasome pathway. Embo J, 1997, 16(13):3797-3804.
    [58] Harwood A J. Regulation of GSK-3: a cellular multiprocessor. Cell, 2001, 105(7):821-824.
    [59] Ikeda S, Kishida S, Yamamoto H, et al. Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3beta and beta-catenin and promotes GSK-3beta-dependent phosphorylation of beta-catenin. Embo J, 1998, 17(5):1371-1384.
    [60] Itoh K, Krupnik V E, Sokol S Y. Axis determination in Xenopus involves biochemical interactions of axin, glycogen synthase kinase 3 and beta-catenin. Curr Biol, 1998, 8(10):591-594.
    [61] Behrens J, Jerchow B A, Wurtele M, et al. Functional interaction of an axin homolog, conductin, with beta-catenin, APC, and GSK3beta. Science, 1998, 280(5363):596-599.
    [62] Hart M J, de los Santos R, Albert I N, et al. Downregulation of beta-catenin by human Axin and its association with the APC tumor suppressor, beta-catenin and GSK3 beta. Curr Biol, 1998, 8(10):573-581.
    [63] Yamamoto H, Kishida S, Kishida M, et al. Phosphorylation of axin, a Wnt signal negative regulator, by glycogen synthase kinase-3beta regulates its stability. J Biol Chem, 1999, 274(16):10681-10684.
    [64] Rubinfeld B, Albert I, Porfiri E, et al. Binding of GSK3beta to the APC-beta-catenin complex and regulation of complex assembly. Science, 1996, 272(5264):1023-1026.
    [65] Hart M, Concordet J P, Lassot I, et al. The F-box protein beta-TrCP associates with phosphorylated beta-catenin and regulates its activity in the cell. Curr Biol, 1999, 9(4):207-210.
    [66] Nusse R. A versatile transcriptional effector of Wingless signaling. Cell, 1997, 89(3):321-323.
    [67] Nelson W J, Nusse R. Convergence of Wnt, beta-catenin, and cadherin pathways. Science, 2004, 303(5663):1483-1487.
    [68] Hecht A, Kemler R. Curbing the nuclear activities of beta-catenin. Control over Wnt target gene expression. EMBO Rep, 2000, 1(1):24-28.
    [69] Hoeflich K P, Luo J, Rubie E A, et al. Requirement for glycogen synthase kinase-3beta in cell survival and NF-kappaB activation. Nature, 2000, 406(6791):86-90.
    [70] Zhou F, Zhang L, Wang A, et al. The association of GSK3beta with E2F1 facilitates NGF-induced neural cell differentiation. J Biol Chem, 2008.
    [71] Garcia-Alvarez G, Ventura V, Ros O, et al. Glycogen synthase kinase-3beta binds to E2F1 and regulates its transcriptional activity. Biochim Biophys Acta, 2007, 1773(3):375-382.
    [72] Papkoff J, Rubinfeld B, Schryver B, et al. Wnt-1 regulates free pools of catenins and stabilizes APC-catenin complexes. Mol Cell Biol, 1996, 16(5):2128-2134.
    [73] Hayden M A, Akong K, Peifer M. Novel roles for APC family members and Wingless/Wnt signaling during Drosophila brain development. Developmental biology, 2007, 305(1):358-376.
    [74] Nakamura T, Hamada F, Ishidate T, et al. Axin, an inhibitor of the Wnt signalling pathway, interacts with beta-catenin, GSK-3beta and APC and reduces the beta-catenin level. Genes Cells, 1998, 3(6):395-403.
    [75] Cebrat M, Strzadala L. [Role of Wnt signaling and APC protein in the etiology of colorectal cancer]. Postepy higieny i medycyny doswiadczalnej, 2001, 55(4):513-524.
    [76] Huber A H, Weis WI. The structure of the beta-catenin/E-cadherin complex and the molecular basis of diverse ligand recognition by beta-catenin. Cell, 2001, 105(3):391-402.
    [77] Nagafuchi A, Takeichi M, Tsukita S. The 102 kd cadherin-associated protein: similarity to vinculin and posttranscriptional regulation of expression. Cell, 1991, 65(5):849-857.
    [78] Graham T A, Ferkey D M, Mao F, et al. Tcf4 can specifically recognize beta-catenin using alternative conformations. Nature structural biology, 2001, 8(12):1048-1052.
    [79] Omer C A, Miller P J, Diehl R E, et al. Identification of Tcf4 residues involved in high-affinity beta-catenin binding. Biochem Biophys Res Commun, 1999, 256(3):584-590.
    [80] Dale T C. Signal transduction by the Wnt family of ligands. The Biochemical journal, 1998, 329 ( Pt 2):209-223.
    [81] Perl A K, Wilgenbus P, Dahl U, et al. A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature, 1998, 392(6672):190-193.
    [82] Kaidi A, Williams A C, Paraskeva C. Interaction between beta-catenin and HIF-1 promotes cellular adaptation to hypoxia. Nat Cell Biol, 2007, 9(2):210-217.
    [83] Larue L, Delmas V. The WNT/Beta-catenin pathway in melanoma. Front Biosci, 2006, 11:733-742.
    [84] Dissanayake S K, Wade M, Johnson C E, et al. The Wnt5A/protein kinase C pathway mediates motility in melanoma cells via the inhibition of metastasis suppressors and initiation of an epithelial to mesenchymal transition. J Biol Chem, 2007, 282(23):17259-17271.
    [85] Hadjihannas M V, Bruckner M, Jerchow B, et al. Aberrant Wnt/beta-catenin signaling can induce chromosomal instability in colon cancer. Proc Natl Acad Sci U S A, 2006, 103(28):10747-10752.
    [86] Lee D C, Rose T M, Webb N R, et al. Cloning and sequence analysis of a cDNA for rat transforming growth factor-alpha. Nature, 1985, 313(6002):489-491.
    [87] Zhou X, Sasaki H, Lowe L, et al. Nodal is a novel TGF-beta-like gene expressed in the mouse node during gastrulation. Nature, 1993, 361(6412):543-547.
    [88] Tam J P, Marquardt H, Rosberger D F, et al. Synthesis of biologically active rat transforming growth factor I. Nature, 1984, 309(5966):376-378.
    [89] Assoian R K, Grotendorst G R, Miller D M, et al. Cellular transformation by coordinated action of three peptide growth factors from human platelets. Nature, 1984, 309(5971):804-806.
    [90] Lawrence D A, Pircher R, Jullien P. Conversion of a high molecular weight latent beta-TGF from chicken embryo fibroblasts into a low molecular weight active beta-TGF under acidic conditions. Biochem Biophys Res Commun, 1985, 133(3):1026-1034.
    [91] Twardzik D R, Sherwin S A. Transforming growth factor (TGF) activity in human urine: synergism between TGF-beta and urogastrone. Journal of cellular biochemistry, 1985, 28(4):289-297.
    [92] Massague J, Chen Y G. Controlling TGF-beta signaling. Genes & development, 2000, 14(6):627-644.
    [93] Massague J. The TGF-beta family of growth and differentiation factors. Cell, 1987, 49(4):437-438.
    [94] Massague J, Cheifetz S, Boyd F T, et al. TGF-beta receptors and TGF-beta binding proteoglycans: recent progress in identifying their functional properties. Annals of the New York Academy of Sciences, 1990, 593:59-72.
    [95] Massague J, Andres J, Attisano L, et al. TGF-beta receptors. Molecular reproduction and development, 1992, 32(2):99-104.
    [96] Wrana J L, Carcamo J, Attisano L, et al. The type II TGF-beta receptor signals diverse responses in cooperation with the type I receptor. Cold Spring Harbor symposia on quantitative biology, 1992, 57:81-86.
    [97] Attisano L, Wrana J L, Lopez-Casillas F, et al. TGF-beta receptors and actions. Biochim Biophys Acta, 1994, 1222(1):71-80.
    [98] Wrana J L, Attisano L, Wieser R, et al. Mechanism of activation of the TGF-beta receptor. Nature, 1994, 370(6488):341-347.
    [99] Baldwin R L, Friess H, Yokoyama M, et al. Attenuated ALK5 receptor expression in human pancreatic cancer: correlation with resistance to growth inhibition. International journal of cancer, 1996, 67(2):283-288.
    [100] Bloom B B, Humphries D E, Kuang P P, et al. Structure and expression of the promoter for the R4/ALK5 human type I transforming growth factor-beta receptor: regulation by TGF-beta. Biochim Biophys Acta, 1996, 1312(3):243-248.
    [101] Charng M J, Frenkel P A, Lin Q, et al. A constitutive mutation of ALK5 disrupts cardiac looping and morphogenesis in mice. Developmental biology, 1998, 199(1):72-79.
    [102] Mercado-Pimentel M E, Hubbard A D, Runyan R B. Endoglin and Alk5 regulate epithelial-mesenchymal transformation during cardiac valve formation. Developmental biology, 2007, 304(1):420-432.
    [103] Pittaluga S, Wlodarska I, Pulford K, et al. The monoclonal antibody ALK1 identifies a distinct morphological subtype of anaplastic large cell lymphoma associated with 2p23/ALK rearrangements. The American journal of pathology, 1997, 151(2):343-351.
    [104] Pulford K, Lamant L, Morris S W, et al. Detection of anaplastic lymphoma kinase (ALK) and nucleolar protein nucleophosmin (NPM)-ALK proteins in normal and neoplastic cells with the monoclonal antibody ALK1. Blood, 1997, 89(4):1394-1404.
    [105] Chen Y G, Massague J. Smad1 recognition and activation by the ALK1 group of transforming growth factor-beta family receptors. J Biol Chem, 1999, 274(6):3672-3677.
    [106] Trembath R C. Mutations in the TGF-beta type 1 receptor, ALK1, in combined primary pulmonary hypertension and hereditary haemorrhagic telangiectasia, implies pathway specificity. J Heart Lung Transplant, 2001, 20(2):175.
    [107] Wang T, Donahoe P K. The immunophilin FKBP12: a molecular guardian of the TGF-beta family type I receptors. Front Biosci, 2004, 9:619-631.
    [108] Huse M, Chen Y G, Massague J, et al. Crystal structure of the cytoplasmic domain of the type I TGF beta receptor in complex with FKBP12. Cell, 1999, 96(3):425-436.
    [109] Stockwell B R, Schreiber S L. TGF-beta-signaling with small molecule FKBP12 antagonists that bind myristoylated FKBP12-TGF-beta type I receptor fusion proteins. Chemistry & biology, 1998, 5(7):385-395.
    [110] Wang T, Li B Y, Danielson PD, et al. The immunophilin FKBP12 functions as a common inhibitor of the TGF beta family type I receptors. Cell, 1996, 86(3):435-444.
    [111] Persson U, Izumi H, Souchelnytskyi S, et al. The L45 loop in type I receptors for TGF-beta family members is a critical determinant in specifying Smad isoform activation. FEBS Lett, 1998, 434(1-2):83-87.
    [112] Andres J L, Stanley K, Cheifetz S, et al. Membrane-anchored and soluble forms of betaglycan, a polymorphic proteoglycan that binds transforming growth factor-beta. J Cell Biol, 1989, 109(6 Pt 1):3137-3145.
    [113] Andres J L, Ronnstrand L, Cheifetz S, et al. Purification of the transforming growth factor-beta (TGF-beta) binding proteoglycan betaglycan. J Biol Chem, 1991, 266(34):23282-23287.
    [114] Lopez-Casillas F, Cheifetz S, Doody J, et al. Structure and expression of the membrane proteoglycan betaglycan, a component of the TGF-beta receptor system. Cell, 1991, 67(4):785-795.
    [115] Lebrin F, Goumans M J, Jonker L, et al. Endoglin promotes endothelial cell proliferation and TGF-beta/ALK1 signal transduction. Embo J, 2004, 23(20):4018-4028.
    [116] Pece-Barbara N, Vera S, Kathirkamathamby K, et al. Endoglin null endothelial cells proliferate faster and are more responsive to transforming growth factor beta1 with higher affinity receptors and an activated Alk1 pathway. J Biol Chem, 2005, 280(30):27800-27808.
    [117] Schulte C, Geisthoff U, Lux A, et al. High frequency of ENG and ALK1/ACVRL1 mutations in German HHT patients. Human mutation, 2005, 25(6):595.
    [118] Lesca G, Burnichon N, Raux G, et al. Distribution of ENG and ACVRL1 (ALK1) mutations in French HHT patients. Human mutation, 2006, 27(6):598.
    [119] Derynck R. SMAD proteins and mammalian anatomy. Nature, 1998, 393(6687):737-739.
    [120] Heldin CH, Miyazono K, ten Dijke P. TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature, 1997, 390(6659):465-471.
    [121] Lagna G, Hata A, Hemmati-Brivanlou A, et al. Partnership between DPC4 and SMAD proteins in TGF-beta signalling pathways. Nature, 1996, 383(6603):832-836.
    [122] Shi Y, Hata A, Lo RS, et al. A structural basis for mutational inactivation of the tumour suppressor Smad4. Nature, 1997, 388(6637):87-93.
    [123] Guo X, Ramirez A, Waddell DS, et al. Axin and GSK3- control Smad3 protein stability and modulate TGF- signaling. Genes & development, 2008, 22(1):106-120.
    [124] Seo SR, Ferrand N, Faresse N, et al. Nuclear retention of the tumor suppressor cPML by the homeodomain protein TGIF restricts TGF-beta signaling. Mol Cell, 2006, 23(4):547-559.
    [125] Dai C, Liu Y. Hepatocyte growth factor antagonizes the profibrotic action of TGF-beta1 in mesangial cells by stabilizing Smad transcriptional corepressor TGIF. J Am Soc Nephrol, 2004, 15(6):1402-1412.
    [126] Lu Z H, Chen J. [Role of Ski/SnoN protein in the regulation of TGF-beta signal pathway]. Zhongguo yi xue ke xue yuan xue bao, 2003, 25(2):233-236.
    [127] Kim Y K. TGF-beta1 induction of p21WAF1/cip1 requires smad-independent protein kinase C signaling pathway. Archives of pharmacal research, 2007, 30(6):739-742.
    [128] Yang X, Lee P J, Long L, et al. BMP4 induces HO-1 via a Smad-independent, p38MAPK-dependent pathway in pulmonary artery myocytes. American journal of respiratory cell and molecular biology, 2007, 37(5):598-605.
    [129] Cordray P, Satterwhite D J. TGF-beta induces novel Lef-1 splice variants through a Smad-independent signaling pathway. Dev Dyn, 2005, 232(4):969-978.
    [130] Hay E, Lemonnier J, Fromigue O, et al. Bone morphogenetic protein-2 promotes osteoblast apoptosis through a Smad-independent, protein kinase C-dependent signaling pathway. J Biol Chem, 2001, 276(31):29028-29036.
    [131] Imamichi Y, Waidmann O, Hein R, et al. TGF beta-induced focal complex formation in epithelial cells is mediated by activated ERK and JNK MAP kinases and is independent of Smad4. Biological chemistry, 2005, 386(3):225-236.
    [132] Ohkawara B, Shirakabe K, Hyodo-Miura J, et al. Role of the TAK1-NLK-STAT3 pathway in TGF-beta-mediated mesoderm induction. Genes & development, 2004, 18(4):381-386.
    [133] Jadrich J L, O'Connor M B, Coucouvanis E. Expression of TAK1, a mediator of TGF-beta and BMP signaling, during mouse embryonic development. Gene Expr Patterns, 2003, 3(2):131-134.
    [134] Shibuya H. [Functional role for TAB1-TAK1 in TGF-beta signaling]. Seikagaku, 1999, 71(10):1205-1212.
    [135] Shibuya H, Yamaguchi K, Shirakabe K, et al. TAB1: an activator of the TAK1 MAPKKK in TGF-beta signal transduction. Science, 1996, 272(5265):1179-1182.
    [136] Yamaguchi K, Shirakabe K, Shibuya H, et al. Identification of a member of the MAPKKK family as a potential mediator of TGF-beta signal transduction. Science, 1995, 270(5244):2008-2011.
    [137] Craig R, Larkin A, Mingo A M, et al. p38 MAPK and NF-kappa B collaborate to induce interleukin-6 gene expression and release. Evidence for a cytoprotective autocrine signaling pathway in a cardiac myocyte model system. J Biol Chem, 2000, 275(31):23814-23824.
    [138] Irie T, Muta T, Takeshige K. TAK1 mediates an activation signal from toll-like receptor(s) to nuclear factor-kappaB in lipopolysaccharide-stimulated macrophages. FEBS Lett, 2000, 467(2-3):160-164.
    [139] Sakurai H, Shigemori N, Hasegawa K, et al. TGF-beta-activated kinase 1 stimulates NF-kappa B activation by an NF-kappa B-inducing kinase-independent mechanism. Biochem Biophys Res Commun, 1998, 243(2):545-549.
    [140] Giehl K, Graness A, Goppelt-Struebe M. The small GTPase Rac-1 is a regulator of mesangial cell morphology and thrombospondin-1 expression. American journal of physiology, 2008, 294(2):F407-413.
    [141] Noga O, Peiser M, Altenahr M, et al. Differential activation of dendritic cells by nerve growth factor and brain-derived neurotrophic factor. Clin Exp Allergy, 2007, 37(11):1701-1708.
    [142] Han G, Lu S L, Li A G, et al. Distinct mechanisms of TGF-beta1-mediated epithelial-to-mesenchymal transition and metastasis during skin carcinogenesis. The Journal of clinical investigation, 2005, 115(7):1714-1723.
    [143] Harris D, Bonfil D, Chuderland D, et al. Activation of MAPK cascades by GnRH: ERK and Jun N-terminal kinase are involved in basal and GnRH-stimulated activity of the glycoprotein hormone LHbeta-subunit promoter. Endocrinology, 2002, 143(3):1018-1025.
    [144] Naor Z, Benard O, Seger R. Activation of MAPK cascades by G-protein-coupled receptors: the case of gonadotropin-releasing hormone receptor. Trends in endocrinology and metabolism: TEM, 2000, 11(3):91-99.
    [145] Petritsch C, Beug H, Balmain A, et al. TGF-beta inhibits p70 S6 kinase via protein phosphatase 2A to induce G(1) arrest. Genes & development, 2000, 14(24):3093-3101.
    [146] Yoo Y D, Choi J Y, Lee SJ, et al. TGF-beta-induced cell-cycle arrest through the p21(WAF1/CIP1)-G1 cyclin/Cdks-p130 pathway in gastric-carcinoma cells. International journal of cancer, 1999, 83(4):512-517.
    [147] Li C Y, Suardet L, Little J B. Potential role of WAF1/Cip1/p21 as a mediator of TGF-beta cytoinhibitory effect. J Biol Chem, 1995, 270(10):4971-4974.
    [148] Cheyette B N, Waxman J S, Miller J R, et al. Dapper, a Dishevelled-associated antagonist of beta-catenin and JNK signaling, is required for notochord formation. Dev Cell, 2002, 2(4):449-461.
    [149] Gloy J, Hikasa H, Sokol S Y. Frodo interacts with Dishevelled to transduce Wnt signals. Nat Cell Biol, 2002, 4(5):351-357.
    [150] Hikasa H, Sokol S Y. The involvement of Frodo in TCF-dependent signaling and neural tissue development. Development, 2004, 131(19):4725-4734.
    [151] Park J I, Ji H, Jun S, et al. Frodo links Dishevelled to the p120-catenin/Kaiso pathway: distinct catenin subfamilies promote Wnt signals. Dev Cell, 2006, 11(5):683-695.
    [152] Gillhouse M, Wagner Nyholm M, Hikasa H, et al. Two Frodo/Dapper homologs are expressed in the developing brain and mesoderm of zebrafish. Dev Dyn, 2004, 230(3):403-409.
    [153] Zhang L, Zhou H, Su Y, et al. Zebrafish Dpr2 inhibits mesoderm induction by promoting degradation of nodal receptors. Science, 2004, 306(5693):114-117.
    [154] Waxman J S, Hocking A M, Stoick CL, et al. Zebrafish Dapper1 and Dapper2 play distinct roles in Wnt-mediated developmental processes. Development, 2004, 131(23):5909-5921.
    [155] Waxman J S. Regulation of the early expression patterns of the zebrafish Dishevelled-interacting proteins Dapper1 and Dapper2. Dev Dyn, 2005, 233(1):194-200.
    [156] Katoh M. Identification and characterization of rat Dact1 and Dact2 genes in silico. Int J Mol Med, 2005, 15(6):1045-1049.
    [157] Katoh M. Identification and characterization of human DAPPER1 and DAPPER2 genes in silico. Int J Oncol, 2003, 22(4):907-913.
    [158] Yau T O, Chan C Y, Chan K L, et al. HDPR1, a novel inhibitor of the WNT/beta-catenin signaling, is frequently downregulated in hepatocellular carcinoma: involvement of methylation-mediated gene silencing. Oncogene, 2005, 24(9):1607-1614.
    [159] Xu W, Angelis K, Danielpour D, et al. Ski acts as a co-repressor with Smad2 and Smad3 to regulate the response to type beta transforming growth factor. Proc Natl Acad Sci U S A, 2000, 97(11):5924-5929.
    [160] Felici A, Wurthner J U, Parks W T, et al. TLP, a novel modulator of TGF-beta signaling, has opposite effects on Smad2- and Smad3-dependent signaling. Embo J, 2003, 22(17):4465-4477.
    [161] Attisano L, Wrana J L, Montalvo E, et al. Activation of signalling by the activin receptor complex. Mol Cell Biol, 1996, 16(3):1066-1073.
    [162] Charng M J, Zhang D, Kinnunen P, et al. A novel protein distinguishes between quiescent and activated forms of the type I transforming growth factor beta receptor. J Biol Chem, 1998, 273(16):9365-9368.
    [163] Willis S A, Zimmerman C M, Li LI, et al. Formation and activation by phosphorylation of activin receptor complexes. Mol Endocrinol, 1996, 10(4):367-379.
    [164] Massague J. Receptors for the TGF-beta family. Cell, 1992, 69(7):1067-1070.
    [165] Heberlein U, Wolff T, Rubin G M. The TGF beta homolog dpp and the segment polarity gene hedgehog are required for propagation of a morphogenetic wave in the Drosophila retina. Cell, 1993, 75(5):913-926.
    [166] Derynck R, Feng X H. TGF-beta receptor signaling. Biochim Biophys Acta, 1997, 1333(2):F105-150.
    [167] Franzen P, ten Dijke P, Ichijo H, et al. Cloning of a TGF beta type I receptor that forms a heteromeric complex with the TGF beta type II receptor. Cell, 1993, 75(4):681-692.
    [168] Bianco C, Adkins H B, Wechselberger C, et al. Cripto-1 activates nodal- and ALK4-dependent and -independent signaling pathways in mammary epithelial Cells. Mol Cell Biol, 2002, 22(8):2586-2597.
    [169] Gottesman S, Gottesman M, Shaw J E, et al. Protein degradation in E. coli: the Ion mutation and bacteriophage lambda N and cll protein stability. Cell, 1981, 24(1):225-233.
    [170] Ciechanover A, Finley D, Varshavsky A. Ubiquitin dependence of selective protein degradation demonstrated in the mammalian cell cycle mutant ts85. Cell, 1984, 37(1):57-66.
    [171] Bachmair A, Varshavsky A. The degradation signal in a short-lived protein. Cell, 1989, 56(6):1019-1032.
    [172] Hochstrasser M. Protein degradation or regulation: Ub the judge. Cell, 1996, 84(6):813-815.
    [173] Tardieux I, Webster P, Ravesloot J, et al. Lysosome recruitment and fusion are early events required for trypanosome invasion of mammalian cells. Cell, 1992, 71(7):1117-1130.
    [174] Altstiel L, Branton D. Fusion of coated vesicles with lysosomes: measurement with a fluorescence assay. Cell, 1983, 32(3):921-929.
    [175] Rothman J H, Stevens T H. Protein sorting in yeast: mutants defective in vacuole biogenesis mislocalize vacuolar proteins into the late secretory pathway. Cell, 1986, 47(6):1041-1051.
    [176] Grimm L M, Goldberg A L, Poirier G G, et al. Proteasomes play an essential role in thymocyte apoptosis. Embo J, 1996, 15(15):3835-3844.
    [177] Bush K T, Goldberg A L, Nigam S K. Proteasome inhibition leads to a heat-shock response, induction of endoplasmic reticulum chaperones, and thermotolerance. J Biol Chem, 1997, 272(14):9086-9092.
    [178] Liu C W, Corboy M J, DeMartino G N, et al. Endoproteolytic activity of the proteasome. Science, 2003, 299(5605):408-411.
    [179] Fenteany G, Standaert R F, Lane W S, et al. Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin. Science, 1995, 268(5211):726-731.
    [180] Dick L R, Cruikshank A A, Grenier L, et al. Mechanistic studies on the inactivation of the proteasome by lactacystin: a central role for clasto-lactacystin beta-lactone. J Biol Chem, 1996, 271(13):7273-7276.
    [181] Dick L R, Cruikshank A A, Destree AT, et al. Mechanistic studies on the inactivation of the proteasome by lactacystin in cultured cells. J Biol Chem, 1997, 272(1):182-188.
    [182] Yoshimori T, Yamamoto A, Moriyama Y, et al. Bafilomycin A1, a specific inhibitor of vacuolar-type H(+)-ATPase, inhibits acidification and protein degradation in lysosomes of cultured cells. J Biol Chem, 1991, 266(26):17707-17712.
    [183] Umata T, Moriyama Y, Futai M, et al. The cytotoxic action of diphtheria toxin and its degradation in intact Vero cells are inhibited by bafilomycin A1, a specific inhibitor of vacuolar-type H(+)-ATPase. J Biol Chem, 1990, 265(35):21940-21945.
    [184] Su Y, Zhang L, Gao X, et al. The evolutionally conserved activity of Dapper2 in antagonizing TGF-beta signaling. Faseb J, 2007, 21(3):682-690.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700