VANGL基因和DACT1基因与神经管畸形的相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
神经管畸形是由于胚胎发育早期神经管不闭合或闭合不全所造成的一组严重出生缺陷,包括头部未闭合产生的无脑儿、脑膨出、颅脊柱裂和尾部未闭合产生的脊柱裂等。前者因头部神经管不闭合,表现为严重脑发育不全、颅骨损伤,一般在出生前或出生后一小段时间内死亡,而很多脊柱裂患儿可以存活,却造成终身残疾和生活质量低下,给社会、家庭和个人带来沉重的精神压力和经济负担。
     近年来越来越多的神经管畸形小鼠模型研究表明平面细胞极化信号通路中的基因对神经管的闭合起着重要作用,而Vangl2就是该通路中第一个被定位克隆的神经管畸形相关基因。
     本文采用病例-对照的研究方法,结合酵母双杂交和双荧光素酶报告基因系统的功能试验,对VANGL基因(包括VANGL2, VANGL1)和DACT1基因与人类神经管畸形发生的相关性进行研究。
     在对神经管畸形VANGL2基因编码区的突变筛查中,我们在头部相关的神经管畸形患者中发现了三个神经管畸形特有的VANGL2错义突变位点:S84F,R353C,F437S。酵母双杂交实验显示:R353C减弱了VANGL2与Dishevelleds原有的相互作用,而F437S则使VANGL2完全丧失了与Dishevelleds互作的能力。这些实验数据表明VANGL2基因突变与头部神经管畸形的发生存在相关性。
     VANGL2基因启动子区多态性与神经管畸形发生的相关性研究迄今尚无文献报道。本文通过对VANGL2基因启动子区测序,检测到11个变异位点,其中三个位点(SNP7:-992T>G,SNP8: -545T>G, SNP9: 42G>C)低频等位基因频率(MAF)在10%以上。在关联分析中,我们发现SNP9与颅脊柱裂相关(p=0.03),低频等位基因(42C)呈现出保护效应(OR=0.49,95%CI:0.21-0.96),这种相关性在显性模型下更为显著(p=0.019)。用双荧光素酶报告基因系统检测该位点的功能,发现低频等位基因(42C)的转录活性为高频等位基因(42G)的1.4倍,差异显著(p=0.002)。VANGL2启动子区的关联和功能分析也表明VANGL2基因与头部的神经管畸形相关,与我们编码区的研究结果一致。
     采用同一个体不同组织对VANGL2父源和母源等位基因表达差异进行研究发现,VANGL2基因存在等位基因表达不平衡现象。在神经管畸形患者的病理组织中,错义突变的等位基因VANGL2是高表达的,而非病理组织中,优势表达的是野生型的等位基因VANGL2该基因的不平衡表达的现象在健康人群的肝脏组织中被进一步证实。并且,研究发现这种不平衡表达现象与启动子区的甲基化有一定的相关关系,优势表达的等位基因与低的甲基化状态相对应,但是这种对应关系并不显著(p=0.313)。
     VANGL1基因突变与人类脊柱裂等尾部神经管畸形的相关关系已经明确,但是VANGL1基因是否与人类的头部神经管畸形相关并不清楚。我们通过对100余例头部相关神经管畸形患者的测序检测,发现了两个头部神经管畸形相关的VANGL1错义突变(G39S,N313S)。酵母双杂交实验显示,N313S减弱了VANGL1与Dishevelled1和Dishevelled2之间的相互作用。这些结果表明VANGL1基因与人类头部神经管畸形的发生也存在一定的相关性。
     小鼠模型中,Dactl基因纯合突变体中约有20%表现出脊柱裂的神经管畸形,并且Dact1基因纯合突变体能与Vangl2突变杂合子在表型上互相补救,说明两者存在遗传相互作用。本文首次尝试在神经管畸形中检测DACT1的基因突变。在163例神经管畸形患者中,我们一共检测到了5个错义突变位点,这些错义突变位点全部发生在女性中,以杂合子形式存在。其中三个位点(R45W,D142G,N356K)在进化上十分保守,突变后的氨基酸残基改变了原有氨基酸残基的性质,并且三个突变的携带者在临床表型上极为相似,都表现为无脑儿,枕颈脊柱裂。在正常胎儿女性对照组测序中,未发现DACT1的错义突变;而在正常成年女性对照组中检测到的三个错义突变位点进化上并不保守。这些数据表明DACT1与女性神经管畸形相关。
Neural tube defects (NTDs) are caused by a partial or complete failure of the neural tube to close during embryogenesis at any level of the rostrocaudal axis. They include anencephaly, craniorachischisis, encephalocele, iniencephaly and spina bifida that result from the failure of fusion in the cranial and spinal region of the neural tube, respectively. All infants with anencephaly are stillborn or die shortly after birth, whereas many infants with spina bifida now survive but with severe and life-long physical and developmental disabilities and are at risk for psychosocial maladjustment. In addition to the emotional cost of spina bifida, the estimated monetary cost is also staggering.
     Recently, more and more mouse models of neural-tube defects indicated that nearly all of the genes involved in planar cell polarity (PCP) pathway play an important role in neural tube closure. Among them, VANGL2 is the first reported gene associated with craniorachisis, a serve craninal neural-tube defects. However, no research groups nowadays succeeded to find VANGL2 mutations in human neural-tube defects.
     This study aimed to investigate whether mutations and polymorphisms in VANGL2, VANGL1, DACT1 are associated with human neural tube defects. We conducted a case-control study in the subjects containing a large number of cranial neural-tube defects, such as anencephaly, craniorachischisis and encephalocele. This study also evaluated the functions of missense mutations and polymorphisms in the promoter by yeast two hybrdization assay (Y2H) and dual-luciferase assay, respectively.
     Three NTD-specific missense mutations (i. e. S84F, R353C, F437S) in VANGL2 gene were detected in three patients with cranial neural tube defects, respectively. Y2H assays showed that R353C diminished the physical interactions between VANGL2 and Dishevelleds, and F437S abrogated these interactions. These data indicated VANGL2 was associated with human cranial neural tube defects.
     Eleven variants in VANGL2 promoter were detected in this study. Of them, the major allele frequencies (MAFs) of three (i. e. SNP7:-992T>G, SNP8:-545T>G, SNP9:42G>C) are higher than 10%. Case-control association analysis indicated that the minor allele (42C) of SNP9 was significantly associated with decreased risk for craniorachischisis (OR=0.49,95%CI: 0.21-0.96, p=0.03). Dual-luciferase assays indicated that the minor allele (42C) had a higher transcription activity (1.4 fold of the major allele) (p=0.002)
     Using cDNA from different tissues of a same individual, we found that the paternal and maternal VANGL2 expression levels were different at the same tissue. The mutated allele (VANGL2c.1057C) was predominant expressed in the pathogenic tissue and the wild-type allele (VANGL2 c.1057T) was predominant in the normal tissue. These allele imbalance expressions were relation to the promoter methylation status. Higher expression level of VANGL2 was correlated with Lower promoter methylation status, but this relation was nonsignificant (p=0.313).
     Although the associations between VANGL1 mutations and human spinal bifida have already been reported by others, the relationship between VANGL1 mutation and cranial neural-tube defects is still unknown. In this study, two cranial NTD-specific missense mutations (i.e. G39S, N313S) were detected in VANGL1. Y2H assays showed that N313S diminished the interaction between VANGL1 and Dishevelledl and Dishevelled2. These results suggested that VANLG1 was associated with human cranial NTDs.
     In mouse, about 20% of Dactl mutation homozygouses had spina bifida, and heterozygous mutation of Vangl2rescued recessive Dactl phenotypes, whereas loss of Dactl reciprocally rescued semidominant Vangl2 phenotypes, which is interesting. To date, no study reported that DACT1 was associated with human birth defects. In this study, we sequenced 163 NTDs and 480 controls, and detected five NTD-specific missense mutations. Multiple sequence alignment analysis suggested three of them (i. e. R45W, D142G, N356K) were conserved in evolution. And all the conserved mutations extremely changed the property of the wildtype amino acid residue. It was surprised that all the five mutations were uniformly found in female cases and were completely absent in all of female fetus controls. Although three missense mutations were detected in 192 control women, none of them was conserved through the protein blast analysis. These data demonstrated that DACT1 might be associated with female neural-tube defects.
引文
1. Greene, N. D., Stanier, P., and Copp, A. J. (2009). Genetics of human neural tube defects. Hum Mol Genet 18, R113-129.
    2. Mills, J. L, and Signore, C. C. (2004). Folic acid and the prevention of neural-tube defects. N Engl J Med 350,2209-2211; author reply 2209-2211.
    3. Copp, A. J., Greene, N. D., and Murdoch, J. N. (2003). The genetic basis of mammalian neurulation. Nat Rev Genet 4,784-793.
    4. Rossi, A., Biancheri, R., Cama, A., Piatelli, G., Ravegnani, M. and Tortori-Donati, P. (2004). Imaging in spine and spinal cord malformations. Eur J Radiol 50,177-200.
    5. 李云龙,and刘春巧主编(2005).动物发育生物学(修订版).济南:山东科学技术出版社,369-372.
    6. Dias, M.S., and Partington, M. (2004). Embryology of myelomeningocele and anencephaly. Neurosurg Focus 16, El.
    7. Colas, J. F., and Schoenwolf, G. C. (2001). Towards a cellular and molecular understanding of neurulation. Dev Dyn 221,117-145.
    8. Wallingford, J.B. (2005). Neural tube closure and neural tube defects:studies in animal models reveal known knowns and known unknowns. Am J Med Genet C Semin Med Genet 135C,59-68.
    9. De Marco, P., Merello, E., Mascelli, S., and Capra, V. (2006). Current perspectives on the genetic causes of neural tube defects. Neurogenetics 7,201-221.
    10. Bainter, J. J., Boos, A., and Kroll, K. L. (2001). Neural induction takes a transcriptional twist. Dev Dyn 222,315-327.
    11. De Robertis, E. M., and Kuroda, H. (2004). Dorsal-ventral patterning and neural induction in Xenopus embryos. Annu Rev Cell Dev Biol 20, 285-308.
    12. Stern, C.D. (2006). Neural induction:10 years on since the'default model'. Curr Opin Cell Biol 18,692-697.
    13. Keller, R. (2002). Shaping the vertebrate body plan by polarized embryonic cell movements. Science 298,1950-1954.
    14. Wallingford, J. B., Fraser, S. E., and Harland, R.M. (2002). Convergent extension:the molecular control of polarized cell
    movement during embryonic development. Dev Cell 2,695-706.
    15. Wang, Y., and Nathans, J. (2007). Tissue/planar cell polarity in vertebrates:new insights and new questions. Development 134, 647-658.
    16. Kibar, Z., Capra, V., and Gros, P. (2007). Toward understanding the genetic basis of neural tube defects. Clin Genet 71,295-310.
    17. Shum, A. S., and Copp, A. J. (1996). Regional differences in morphogenesis of the neuroepithelium suggest multiple mechanisms of spinal neurulation in the mouse. Anat Embryol (Berl) 194,65-73.
    18. Hui, C. C., and Joyner, A. L. (1993). A mouse model of greig cephalopolysyndactyly syndrome:the extra-toesJ mutation contains an intragenic deletion of the Gli3 gene. Nat Genet 3,241-246.
    19. Goodrich, L. V., Milenkovic, L., Higgins, K. M., and Scott, M. P. (1997). Altered neural cell fates and medulloblastoma in mouse patched mutants. Science 277,1109-1113.
    20. Huang, Y., Roelink, H., and McKnight, G. S. (2002). Protein kinase A deficiency causes axially localized neural tube defects in mice. J Biol Chem 277,19889-19896.
    21. Ybot-Gonzalez, P., Cogram, P., Gerrelli, D., and Copp, A. J. (2002). Sonic hedgehog and the molecular regulation of mouse neural tube closure. Development 129,2507-2517.
    22. Holmberg, J., Clarke, D. L., and Frisen, J. (2000). Regulation of repulsion versus adhesion by different splice forms of an Eph receptor. Nature 408,203-206.
    23. Lee, H. S., Bong, Y. S., Moore, K. B., Soria, K., Moody, S. A., and Daar, I.O. (2006). Dishevelled mediates ephrinBl signalling in the eye field through the planar cell polarity pathway. Nat Cell Biol 8, 55-63.
    24. Detrick, R. J., Dickey, D., and Kintner, C. R. (1990). The effects of N-cadherin misexpression on morphogenesis in Xenopus embryos. Neuron 4,493-506.
    25. Fujimori, T., Miyatani, S., and Takeichi, M. (1990). Ectopic expression of N-cadherin perturbs histogenesis in Xenopus embryos. Development 110,97-104.
    26. Levine, E., Lee, C. H., Kintner, C., and Gumbiner, B. M. (1994). Selective disruption of E-cadherin function in early Xenopus embryos by a dominant negative mutant. Development 120,901-909.
    27. Cremer, H., Lange, R., Christoph, A., Plomann, M., Vopper, G., Roes, J., Brown, R., Baldwin, S., Kraemer, P., Scheff, S., et al. (1994). Inactivation of the N-CAM gene in mice results in size reduction of the olfactory bulb and deficits in spatial learning. Nature 367, 455-459.
    28. Radice, G. L., Rayburn, H., Matsunami, H., Knudsen, K. A., Takeichi, M., and Hynes, R.O. (1997). Developmental defects in mouse embryos lacking N-cadherin. Dev Biol 181,64-78.
    29. Copp, A. J., and Greene, N. D. (2010). Genetics and development of neural tube defects. J Pathol 220,217-230.
    30. Juriloff, D.M., Harris, M. J., Tom, C., and MacDonald, K. B. (1991). Normal mouse strains differ in the site of initiation of closure of the cranial neural tube. Teratology 44,225-233.
    31. Fleming, A., and Copp, A. J. (2000). A genetic risk factor for mouse neural tube defects:defining the embryonic basis. Hum Mol Genet 9,575-581.
    32. Van Allen, M. I., Kalousek, D. K., Chernoff, G. F., Juriloff, D., Harris, M., McGillivray, B.C., Yong, S. L., Langlois, S., MacLeod, P.M., Chitayat, D., et al. (1993). Evidence for multi-site closure of the neural tube in humans. Am J Med Genet 47,723-743.
    33. Nakatsu, T., Uwabe, C., and Shiota, K. (2000). Neural tube closure in humans initiates at multiple sites:evidence from human embryos and implications for the pathogenesis of neural tube defects. Anat Embryol (Berl) 201,455-466.
    34. O'Rahilly, R., and Muller, F. (2002). The two sites of fusion of the neural folds and the two neuropores in the human embryo. Teratology 65,162-170.
    35. Catala, M. (2002). Genetic control of caudal development. Clin Genet 61,89-96.
    36. 黄晶,and陈东方(2007).1996年-2004年山西省神经管缺陷流行病学分析.中国妇幼保健22,2648-2649.
    37. Pang, D. (1993). Sacral agenesis and caudal spinal cord malformations. Neurosurgery 32,755-778; discussion 778-759.
    38. Botto, L. D., Moore, C. A., Khoury, M. J., and Erickson, J. D. (1999). Neural-tube defects. N Engl J Med 341,1509-1519.
    39. Frey, L., and Hauser, W. A. (2003). Epidemiology of neural tube defects. Epilepsia 44 Suppl 3,4-13.
    40. Mitchell, L. E. (2005). Epidemiology of neural tube defects. Am J Med Genet C Semin Med Genet 135C,88-94.
    41. 代礼,朱军,周光萱,王艳萍,吴艳乔,缪蕾,and梁娟(2002).1996-2000年全国神经管缺陷的动态监测.中华预防医学杂志36,402-405.
    42. Robert, E., and Guibaud, P. (1982). Maternal valproic acid and congenital neural tube defects. Lancet 2,937.
    43. Gurvich, N., Berman, M. G., Wittner, B. S., Gentleman, R. C., Klein, P. S., and Green, J. B. (2005). Association of valproate-induced teratogenesis with histone deacetylase inhibition in vivo. Faseb J 19,1166-1168.
    44. 赵海峰,肖荣,杨燕,邱服斌,高竹琦,and李学敏(2002).环磷酰胺致神经管畸形及可能机理研究.中国公共卫生18,1302-1304.
    45. Wennborg, H., Magnusson, L. L., Bonde, J. P., and Olsen, J. (2005). Congenital malformations related to maternal exposure to specific agents in biomedical research laboratories. J Occup Environ Med 47, 11-19.
    46. Logman, J. F., de Vries, L. E., Hemels, M. E., Khattak, S., and Einarson, T. R. (2005). Paternal organic solvent exposure and adverse pregnancy outcomes:a meta-analysis. Am J Ind Med 47,37-44.
    47. 于丽,管英俊,and李如江(2003).高温致神经管畸形中bcl2和bax变化的动物实验研究.潍坊医学院学报22518-20.
    48. Moretti, M. E., Bar-Oz, B., Fried, S., and Koren, G. (2005). Maternal hyperthermia and the risk for neural tube defects in offspring: systematic review and meta-analysis. Epidemiology 16,216-219.
    49. Larsson, L., and Lindqvist, P. G. (2005). Low-impact exercise during pregnancy--a study of safety. Acta Obstet Gynecol Scand 84,34-38.
    50. Vieira, A. R., and Castillo Taucher, S. (2005). [Maternal age and neural tube defects:evidence for a greater effect in spina bifida than in anencephaly]. Rev Med Chil 133,62-70.
    51. Kazaura, M., Lie, R. T., and Skjaerven, R. (2004). Paternal age and the risk of birth defects in Norway. Ann Epidemiol 14,566-570.
    52. Loeken, M. R. (2005). Current perspectives on the causes of neural tube defects resulting from diabetic pregnancy. Am J Med Genet C Semin Med Genet 135C,77-87.
    53. Ray, J. G., Wyatt, P. R., Vermeulen, M. J., Meier, C., and Cole, D. E. (2005). Greater maternal weight and the ongoing risk of neural tube defects after folic acid flour fortification. Obstet Gynecol 105, 261-265.
    54. Czeizel, A. E., Dobo, M., and Vargha, P. (2004). Hungarian cohort-controlled trial of periconceptional multivitamin supplementation shows a reduction in certain congenital abnormalities. Birth Defects Res A Clin Mol Teratol 70,853-861.
    55. Shaw, G. M., Carmichael, S. L., Yang, W., and Schaffer, D. M. (2005). Periconceptional dietary intake of myo-inositol and neural tube defects in offspring. Birth Defects Res A Clin Mol Teratol 73, 184-187.
    56. Carrillo-Ponce Mde, L., Martinez-Ordaz, V. A., Velasco-Rodriguez, V. M., Hernandez-Garcia, A., Hernandez-Serrano, M. C., and Sanmiguel, F. (2004). Serum lead, cadmium, and zinc levels in newborns with neural tube defects from a polluted zone in Mexico. Reprod Toxicol 19,149-154.
    57. Lynch, S. A. (2005). Non-multifactorial neural tube defects. Am J Med Genet C Semin Med Genet 135C,69-76.
    58. Manning, S. M., Jennings, R., and Madsen, J. R. (2000). Pathophysiology, prevention, and potential treatment of neural tube defects. Ment Retard Dev Disabil Res Rev 6,6-14.
    59. Waes, J. G., and Finnell, R. H. (2001). Importance of model organisms in understanding the biology and genetic basis of human nonsyndromic neural tube defects. Teratology 64,177-180.
    60. Byrne, J., and Carolan, S. (2006). Adverse reproductive outcomes among pregnancies of aunts and (spouses of) uncles in Irish families
    with neural tube defects. Am J Med Genet A 140,52-61.
    61. Windham, G. C., and Sever, L. E. (1982). Neural tube defects among twin births. Am J Hum Genet 34,988-998.
    62. 王德智(2007).预防神经管畸形的新进展.中国实用妇科与产科杂志23,12-14.
    63. Krasnow, R. E., Wong, L. L., and Adler, P. N. (1995). Dishevelled is a component of the frizzled signaling pathway in Drosophila. Development 121,4095-4102.
    64. Strutt, D.I., Weber, U., and Mlodzik, M. (1997). The role of RhoA in tissue polarity and Frizzled signalling. Nature 387,292-295.
    65. McEwen, D. G., and Peifer, M. (2000). Wnt signaling:Moving in a new direction. Curr Biol 10, R562-564.
    66. Strutt, D. (2003). Frizzled signalling and cell polarisation in Drosophila and vertebrates. Development 130,4501-4513.
    67. Jenny, A., and Mlodzik, M. (2006). Planar cell polarity signaling: a common mechanism for cellular polarization. Mt Sinai J Med 73, 738-750.
    68. Wallingford, J. B., Rowning, B.A., Vogeli, K. M., Rothbacher, U. Fraser, S. E., and Harland, R. M. (2000). Dishevelled controls cell polarity during Xenopus gastrulation. Nature 405,81-85.
    69. Park, M., and Moon, R. T. (2002). The planar cell-polarity gene stbm regulates cell behaviour and cell fate in vertebrate embryos. Nat Cell Biol 4,20-25.
    70. Jessen, J. R., Topczewski, J., Bingham, S., Sepich, D. S., Marlow, F., Chandrasekhar, A., and Solnica-Krezel, L. (2002). Zebrafish trilobite identifies new roles for Strabismus in gastrulation and neuronal movements. Nat Cell Biol 4,610-615.
    71. Montcouquiol, M., Rachel, R. A., Lanford, P. J., Copeland, N. G., Jenkins, N. A., and Kelley, M. W. (2003). Identification of Vangl2 and Scrbl as planar polarity genes in mammals. Nature 423,173-177.
    72. Henderson, D. J., Conway, S. J., Greene, N. D., Gerrelli, D., Murdoch, J. N., Anderson, R. H., and Copp, A. J. (2001). Cardiovascular defects associated with abnormalities in midline development in the Loop-tail mouse mutant. Circ Res 89,6-12.
    73. Phillips, H.M., Rhee, H. J., Murdoch, J. N., Hildreth, V., Peat, J. D., Anderson, R. H., Copp, A. J., Chaudhry, B., and Henderson, D. J. (2007). Disruption of planar cell polarity signaling results in congenital heart defects and cardiomyopathy attributable to early cardiomyocyte disorganization. Circ Res 101,137-145.
    74. Vandenberg, A. L., and Sassoon, D. A. (2009). Non-canonical Wnt signaling regulates cell polarity in female reproductive tract development via van gogh-like 2. Development 136,1559-1570.
    75. Kibar, Z., Vogan, K. J., Groulx, N., Justice, M. J., Underhill, D. A. and Gros, P. (2001). Ltap, a mammalian homolog of Drosophila Strabismus/Van Gogh, is altered in the mouse neural tube mutant Loop-tail. Nat Genet 28,251-255.
    76. Murdoch, J. N., Doudney, K., Paternotte, C., Copp, A. J., and Stanier, P. (2001). Severe neural tube defects in the loop-tail mouse result from mutation of Lppl, a novel gene involved in floor plate specification. Hum Mol Genet 10,2593-2601.
    77. Murdoch, J. N., Henderson, D. J., Doudney, K., Gaston-Massuet, C., Phillips, H. M., Paternotte, C., Arkell, R., Stanier, P., and Copp, A. J. (2003). Disruption of scribble (Scrbl) causes severe neural tube defects in the circletail mouse. Hum Mol Genet 12,87-98.
    78. Lu, X., Borchers, A. G., Jolicoeur, C., Rayburn, H., Baker, J. C., and Tessier-Lavigne, M. (2004). PTK7/CCK-4 is a novel regulator of planar cell polarity in vertebrates. Nature 430,93-98.
    79. Narimatsu, M., Bose, R., Pye, M., Zhang, L., Miller, B., Ching, P., Sakuma, R., Luga, V., Roncari, L., Attisano, L., et al. (2009). Regulation of planar cell polarity by Smurf ubiquitin ligases. Cell 137,295-307.
    80. Torban, E., Patenaude, A.M., Leclerc, S., Rakowiecki, S., Gauthier, S., Andelfinger, G., Epstein, D. J., and Gros, P. (2008). Genetic interaction between members of the Vangl family causes neural tube defects in mice. Proc Natl Acad Sci U S A 105,3449-3454.
    81. Etheridge, S. L., Ray, S., Li, S., Hamblet, N. S., Li jam, N., Tsang, M., Greer, J., Kardos, N., Wang, J., Sussman, D. J., et al. (2008). Murine dishevelled 3 functions in redundant pathways with
    dishevelled 1 and 2 in normal cardiac outflow tract, cochlea, and neural tube development. PLoS Genet 4, e1000259.
    82. Murdoch, J. N., Rachel, R. A., Shah, S., Beermann, F., Stanier, P., Mason, C. A., and Copp, A. J. (2001). Circletail, a new mouse mutant with severe neural tube defects:chromosomal localization and interaction with the loop-tail mutation. Genomics 78,55-63.
    83. Nybakken, K., and Perrimon, N. (2002). Hedgehog signal transduction: recent findings. Curr Opin Genet Dev 12,503-511.
    84. Thawani JP, Wang AC, Than KD, Lin CY, La Marca F, and P, P. (2010). Bone morphogenetic proteins and cancer:review of the literature. Neurosurgery 66,233-246.
    85. Klingensmith J, Matsui M, Yang YP, and RM, A. (2010). Roles of bone morphogenetic protein signaling and its antagonism in holoprosencephaly. Am J Med Genet C Semin Med Genet 154c,43-51.
    86. Allman D, Aster JC, and WS, P. (2002). Notch signaling in hematopoiesis and early lymphocyte development. Immunol Rev 187, 75-86.
    87. Yu, G., Nishimura, M., Arawaka, S., Levi tan, D., Zhang, L., Tandon, A., Song, Y.Q., Rogaeva, E., Chen, F., Kawarai, T., et al. (2000). Nicastrin modulates presenilin-mediated notch/glp-1 signal transduction and betaAPP processing. Nature 407,48-54.
    88. Lardelli, M., Williams, R., Mitsiadis, T., and Lendahl, U. (1996). Expression of the Notch 3 intracellular domain in mouse central nervous system progenitor cells is lethal and leads to disturbed neural tube development. Mech Dev 59,177-190.
    89. Niederreither, K., Subbarayan, V., Dolle, P., and Chambon, P. (1999). Embryonic retinoic acid synthesis is essential for early mouse post-implantation development. Nat Genet 21,444-448.
    90. Lohnes, D., Mark, M., Mendelsohn, C., Dolle, P., Dierich, A., Gorry, P., Gansmuller, A., and Chambon, P. (1994). Function of the retinoic acid receptors (RARs) during development (Ⅰ). Craniofacial and skeletal abnormalities in RAR double mutants. Development 120, 2723-2748.
    91. 张艳萍,刘凯,and武玉玲(2007).维甲酸致小鼠胚胎畸形发生过程中 维甲酸受体Q/β及β-catenin和caspase-3基因的表达变化.生物化学与生物物理进展 34 ,1182-1189.
    92. Liu, J., Qi, J., Zhu, J., Zhang, L., Liang, Y., Ning, Q., and Luo, X. (2008). Effects of Retinoic Acid on the Expressions of Vangll and Vangl2 in Mouse Fetuses. J Neurogenet,1-12.
    93. Rampersaud, E., Bassuk, A. G., Enterline, D. S., George, T. M., Siegel, D. G., Melvin, E. C., Aben, J., Allen, J., Aylsworth, A., Brei, T. et al. (2005). Whole genomewide linkage screen for neural tube defects reveals regions of interest on chromosomes 7 and 10. J Med Genet 42,940-946.
    94. Stamm, D. S., Rampersaud, E., Slifer, S. H., Mehltretter, L., Siegel, D. G., Xie, J., Hu-Lince, D., Craig, D. W., Stephan, D. A., George, T. M., et al. (2006). High-density single nucleotide polymorphism screen in a large multiplex neural tube defect family refines linkage to loci at 7p21.1-pter and 2q33. 1-q35. Birth Defects Res A Clin Mol Teratol 76,499-505.
    95. Stamm, D. S., Siegel, D. G., Mehltretter, L., Connelly, J. J., Trott, A., Ellis, N., Zismann, V., Stephan, D. A., George, T. M., Vekemans, M., et al. (2008). Refinement of 2q and 7p loci in a large multiplex NTD family. Birth Defects Res A Clin Mol Teratol 82,441-452.
    96. Harris, M. J., and Juriloff, D. M. (2007). Mouse mutants with neural tube closure defects and their role in understanding human neural tube defects. Birth Defects Res A Clin Mol Teratol 79,187-210.
    97. Dunlevy, L. P., Burren, K. A., Chitty, L. S., Copp, A. J., and Greene, N. D. (2006). Excess methionine suppresses the methylation cycle and inhibits neural tube closure in mouse embryos. FEBS Lett 580, 2803-2807.
    98. Dunlevy, L. P., Burren, K. A., Mills, K., Chitty, L. S., Copp, A. J., and Greene, N. D. (2006). Integrity of the methylation cycle is essential for mammalian neural tube closure. Birth Defects Res A Clin Mol Teratol 76,544-552.
    99. Vanaerts, L. A., Blom, H. J., Deabreu, R. A., Trijbels, F. J., Eskes, T. K., Copius Peereboom-Stegeman, J. H., and Noordhoek, J. (1994). Prevention of neural tube defects by and toxicity of L-homocysteine
    in cultured postimplantation rat embryos. Teratology 50,348-360.
    100. Greene, N. D., Dunlevy, L. E., and Copp, A. J. (2003). Homocysteine is embryotoxic but does not cause neural tube defects in mouse embryos. Anat Embryol (Berl) 206,185-191.
    101. Bennett, G. D., Vanwaes, J., Moser, K., Chaudoin, T., Starr, L., and Rosenquist, T. H. (2006). Failure of homocysteine to induce neural tube defects in a mouse model. Birth Defects Res B Dev Reprod Toxicol 77,89-94.
    102. Molloy, A.M., Brody, L.C., Mills, J. L., Scott, J. M., and Kirke, P. N. (2009). The search for genetic polymorphisms in the homocysteine/folate pathway that contribute to the etiology of human neural tube defects. Birth Defects Res A Clin Mol Teratol 85, 285-294.
    103. Beaudin, A. E., and Stover, P. J. (2009). Insights into metabolic mechanisms underlying folate-responsive neural tube defects:a minireview. Birth Defects Res A Clin Mol Teratol 85,274-284.
    104. Dunlevy, L. P., Chitty, L. S., Burren, K. A., Doudney, K., Stojilkovic-Mikic, T., Stanier, P., Scott, R., Copp, A. J., and Greene, N. D. (2007). Abnormal folate metabolism in foetuses affected by neural tube defects. Brain 130,1043-1049.
    105. Merte, J., Jensen, D., Wright, K., Sarsfield, S., Wang, Y., Schekman, R., and Ginty, D.D. (2010). Sec24b selectively sorts Vangl2 to regulate planar cell polarity during neural tube closure. Nat Cell Biol 12,41-46; sup pp 41-48.
    106. Gray RS, Abitua PB, Wlodarczyk BJ, Szabo-Rogers HL, Blanchard 0, Lee I, Weiss GS, Liu KJ, Marcotte EM, Wallingford JB, et al. (2009). The planar cell polarity effector Fuz is essential for targeted membrane trafficking, ciliogenesis and mouse embryonic development. Nat Cell Biol 11,1225-1232.
    107. Doudney, K., Ybot-Gonzalez, P., Paternotte, C., Stevenson, R. E. Greene, N. D., Moore, G. E., Copp, A. J., and Stanier, P. (2005). Analysis of the planar cell polarity gene Vangl2 and its co-expressed paralogue Vangll in neural tube defect patients. Am J Med Genet A 136,90-92.
    108. Kibar, Z., Torban, E., McDearmid, J. R., Reynolds, A., Berghout, J. Mathieu, M., Kirillova, I., De Marco, P., Merello, E., Hayes, J. M. et al. (2007). Mutations in VANGL1 associated with neural-tube defects. N Engl J Med 356,1432-1437.
    109. Kibar, Z., Bosoi, C.M., Kooistra, M., Salem, S., Finnell, R. H., De Marco, P., Merello, E., Bassuk, A. G., Capra, V., and Gros, P. (2009). Novel mutations in VANGL1 in neural tube defects. Hum Mutat 30, E706-715.
    110. Reynolds, A., McDearmid, J. R., Lachance, S., Marco, P. D., Merello, E., Capra, V., Gros, P., Drapeau, P., and Kibar, Z. (2010). VANGL1 rare variants associated with neural tube defects affect convergent extension in zebrafish. Mech Dev, online.
    111. Greene, N. D., and Copp, A. J. (2009). Development of the vertebrate central nervous system:formation of the neural tube. Prenat Diagn 29,303-311.
    112. Torban, E., Wang, H. J., Groulx, N., and Gros, P. (2004). Independent mutations in mouse Vangl2 that cause neural tube defects in looptail mice impair interaction with members of the Dishevelled family. J Biol Chem 279,52703-52713.
    113. Darken, R. S., Scola, A.M., Rakeman, A. S., Das, G., Mlodzik, M., and Wilson, P. A. (2002). The planar polarity gene strabismus regulates convergent extension movements in Xenopus. Embo J 21,976-985.
    114. Goto, T., and Keller, R. (2002). The planar cell polarity gene strabismus regulates convergence and extension and neural fold closure in Xenopus. Dev Biol 247,165-181.
    115. Knudsen, S. (1999). Promoter2.0:for the recognition of PolII promoter sequences. Bio informatics 15,356-361.
    116. Reese, M. G. (2001). Application of a time-delay neural network to promoter annotation in the Drosophila melanogaster genome. Comput Chem 26,51-56.
    117. Fields, S., and Song,O. (1989). A novel genetic system to detect protein-protein interactions. Nature 340,245-246.
    118. Yu, H., Braun, P., Yildirim, M. A., Lemmens, I., Venkatesan, K., Sahalie, J., Hirozane-Kishikawa, T., Gebreab, F., Li, N., Simonis,
    N., et al. (2008). High-quality binary protein interaction map of the yeast interactome network. Science 322,104-110.
    119. Gould, S. J., and Subramani, S. (1988). Firefly luciferase as a tool in molecular and cell biology. Anal Biochem 175,5-13.
    120. Bruce A. Sherf, Shauna L. Navarro, Rita R. Hannah, and Wood, K. V. (1996). Dual-Luciferase(?) reporter assay:An advanced coreporter technology integrating firefly and Renilla luciferase assays. Promega Notes 57,2-9.
    121. Fugazzola, L., Cerutti, N., Mannavola, D., Vannucchi, G., Fallini, C., Persani, L., and Beck-Peccoz, P. (2003). Monoallelic expression of mutant thyroid peroxidase allele causing total iodide organification defect. J Clin Endocrinol Metab 88,3264-3271.
    122. Valle, L., Serena-Acedo, T., Liyanarachchi, S., Hampel, H., Comeras, I., Li, Z., Zeng, Q., Zhang, H. T., Pennison, M. J., Sadim, M., et al. (2008). Germline allele-specific expression of TGFBR1 confers an increased risk of colorectal cancer. Science 321,1361-1365.
    123. Cheyette, B. N., Waxman, J. S., Miller, J. R., Takemaru, K., Sheldahl, L. C., Khlebtsova, N., Fox, E. P., Earnest, T., and Moon, R. T. (2002). Dapper, a Dishevelled-associated antagonist of beta-catenin and JNK signaling, is required for notochord formation. Dev Cell 2, 449-461.
    124. Zhang, L., Gao, X., Wen, J., Ning, Y., and Chen, Y. G. (2006). Dapper 1 antagonizes Wnt signaling by promoting dishevelled degradation. J Biol Chem 281,8607-8612.
    125. Gao, X., Wen, J., Zhang, L., Li, X., Ning, Y., Meng, A., and Chen, Y. G. (2008). Dapperl is a nucleocytoplasmic shuttling protein that negatively modulates Wnt signaling in the nucleus. J Biol Chem 283, 35679-35688.
    126. Wen, J., Chiang, Y. J., Gao, C., Xue, H., Xu, J., Ning, Y., Hodes, R. J., Gao, X., and Chen, Y. G. (2010). Loss of Dactl disrupts PCP signaling by altering Dishevelled activity and leads to posterior malformation in mice. J Biol Chem, online.
    127. Suriben, R., Kivimae, S., Fisher, D. A., Moon, R. T., and Cheyette, B. N. (2009). Posterior malformations in Dactl mutant mice arise through misregulated Vangl2 at the primitive streak. Nat Genet 41, 977-985.
    128. Fisher, D. A., Kivimae, S., Hoshino, J., Suriben, R., Martin, P.M., Baxter, N., and Cheyette, B. N. (2006). Three Dact gene family members are expressed during embryonic development and in the adult brains of mice. Dev Dyn 235,2620-2630.
    129. 李守柔,李荷莲,王学工,何为公,and郑桂英(1994).神经管缺陷的病因探讨.中国优生与遗传杂志2,71-72.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700