申克孢子丝菌酵母相和菌丝相cDNA消减文库的构建及差异表达基因的生物信息学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
申克孢子丝菌(Sporothrix Schenckii, SSchenckii)是孢子丝菌病(Sporotrichosis)的病原菌,该菌遍布世界各地,人类可因皮肤轻微外伤后接触被该菌污染的物质而感染。由申克孢子丝菌引起的孢子丝菌病是最常见的深部真菌感染之一,在全世界均有发生。临床表现为皮肤、皮下组织及其附近淋巴系统的慢性感染,皮损多局限于暴露部位,形成沿淋巴走行分布的特征性结节,可引起皮肤化脓、溃烂及渗出,少数病人可发生多系统播散。
     申克孢子丝菌为一种双相型真菌,在室温25℃表现为菌丝相,体内37℃为酵母相,这种酵母相与菌丝相之间的转换称为菌相转换。申克孢子丝菌酵母相可在感染者体内组织增殖,形成小的芽生孢子而致病。
     申克孢子丝菌的双相性表明该菌不同菌相存在差异表达基因,在不同的环境条件下,通过菌体内信号转导的调控,表现为酵母相或菌丝相。目前申克孢子丝菌双相转换的相关研究仅涉及少数几个基因,双相转换的分子机制尚未明了,研究申克孢子丝菌双相转换机制对揭示其发病机理有重要意义。
     本研究应用抑制性消减杂交( Suppression Subtractive Hybridization,SSH)技术,构建高特异性的申克孢子丝菌菌丝相(Mycelium,M)和酵母相(Yeast,Y)的正反cDNA消减文库,并对其差异表达的基因进行生物信息学分析,以探讨差异表达基因与酵母相与菌丝相双相转换的相关性。
     本研究选择申克孢子丝菌标准株CMCC(F)D1a作为研究对象,以体外诱导形成的纯的菌丝相(M)与酵母相(Y)细胞作为实验材料,分别提取M与Y细胞的总RNA,逆转录并扩增M与Y细胞的cDNA,纯化扩增的cDNA,经RsaI酶切处理,将酶切后的M与Y细胞的cDNA分别作为测试子(Tester)和驱动子(driver),将M与Y细胞的cDNA分别分为两份,每份连接不同的接头,即:接头1(adaptor1)和接头2(adaptor2)。之后进行两轮消减杂交及两轮PCR扩增,纯化第二轮PCR产物,以紫外分光光度计检测cDNA纯度与浓度。连接载体pGEM-T并转化感受态细胞TOPO10,蓝白斑筛选阳性克隆,采用T7引物,PCR扩增插入片段,挑取插入片断大于250bp、带型单一的克隆进行大规模测序。判别测序的有效性,去除非单一克隆的数据,并对所有数据进行去载、拼接、聚类和Blastn分析及整理。
     结果:M+Y文库(即在M相高表达,Y相低表达或不表达)获得751条表达序列标签(Expressed Sequence Tags,ESTs),平均长度为690.98bp,ESTs经拼接后获得101条unigenes;Y+M文库(即在Y相高表达,M相低表达或不表达)获得875条ESTs,平均长度为575.9bp,拼接获得249条unigenes。Blastn分析发现两个消减文库中都出现多个重复的基因序列,去除重复序列后,M+Y文库共获得45条unigenes,Y+M文库获得91条unigenes。申克孢子丝菌酵母相菌丝相的转换伴随着不同菌相细胞差异基因的高表达,这些高表达的差异基因可分为四类:(1)结构基因类,如18S、25sRNA基因,AJ496242.1,FJ882050.1,AF343676.1等,某些结构基因在申克孢子丝菌酵母相菌丝相状态下的独特表达,可能是菌相转换的结果;(2)代谢酶类,如gb|CP001656.1|,ref|NM_001006571.1|,DQ298384.1等,参与碳水化合物、氨基酸、脂质和辅酶运输和代谢;(3)细胞表面分子类,如gi|30721613|,gi|45383668,gb|GQ379464.1|等,这些分子参与细胞内的信号转导,推测其在菌相转换中起介导细胞基因表达的调控或细胞行为的改变;(4)功能不明的细胞分子,如gb|DQ510714.1|,gb|EU923089.1|,gb|DQ298391.1|等。它们在申克孢子丝菌双相转换机制中的作用也有待进一步验证。
     申克孢子丝菌菌丝相和酵母相cDNA消减文库的构建及生物信息学分析为进一步筛选鉴定菌相转换相关差异基因奠定了基础,有助于阐明申克孢子丝菌双相转换的分子机制。
Sporothrix schenckii is the etiological agent of sporotrichosis, a subcutaneous mycosis, with an increasing worldwide incidence. It enters through small cuts and abrasions in the skin to cause the infection. Symptoms of sporotrichosis include localized nodular leisions, bumps and chronic ulcers at the point of entry and also along lymph nodes and vessels. However, it can disseminate in immunocompromised patients .
     S.schenckii is a pathogenic fungus that undergoes a dimorphic transition from yeast to mycelium in response to environment conditions such as temperature. It appears as mycelium form at 25°C and yeast form at 37°C. Sporotrichosis is caused by the multiplication of yeast form colonies.
     By some approaches, several genes have been identified that are expressed differently in transition from yeast to mycelium. Signal transduction modulated by some elements such as mitogen-activated protein kinases, cAMP and pH-responsive modules, appear to regulate this transition. However, the mechanism of dimorphic transition is still unclear. Therefore, study on the mechanism of dimorphic transition is important to reveal the pathogenesis of S.schenckii.
     To screen the other differentially expressed genes about dimorphic transition of S.Schenckii, cDNA subtractive library between yeast and mycelium phase was constructed by suppression subtractive hybridization(SSH)and bioinformatics analysis was performed to profile the relationship between those differently expressed genes and dimorphic transition.
     In this study, CMCC(F)D1a, a S. schenckii standard strain, was induced to form mycelium(M)and yeas(Y)cells. Total RNA isolated from M and Y cells was reverse transciptased and amplified respectively, the average length of cDNA after purification and RsaI enzyme digestion is 500bp. cDNA of M and Y cells after RsaI enzyme restriction was regarded as tester and driver respectively, and then were divided into two fragments to ligate adaptor1 and adaptor2. The PCR products were ligated with pGEM-T plasmid vectors, transformed into E.coli TOP10. The positive recombinant clones were picked up through the blue-white screening system, and confirmed by PCR method with P7 primer. Finally, the differentially expressed cDNA fragments were sequenced and compared with EST database in Genbank.
     Results: 751 expressed sequence tags(ESTs)were obtained in M+Y library(that means ESTs were over expressed in M-phase, low expressed or no expressed in Y-phase), the average length is 690.98bp. Meanwhile, 875 ESTs were obtained in Y+M library, the average length is575.9bp. After splicing of ESTs, 101 unigenes were obtained in M+Y library and 249 unigenes in Y+M library. However, several repeated sequences were found by Blastn analysis in both two subtractive libraries. Finally, 45 unigenes in M+Y library and 91 unigenes in Y+M library were obtained after the removal of repetitive sequences.
     During the construction of cDNA subtractive libraries, the ?distribution of differently expressed genes varied with dimorphic transition. The over expressed genes with diversity and complexity were divided into four types.(1)Structural genes, such as 18S, 25sRNA gene_AJ496242.1,_FJ882050.1,_AF343676.1, some expressed only in yeast or mycelium phase, were the consequence of phase transition of Sporothrix schenckii.(2)Metabolic enzymes,such as gb|CP001656.1, _ref|NM_001006571.1, _DQ298384.1, which participated in carbohydrate, amino acid, lipid and coenzyme transport and metabolism(.3)Molecule on cell surface, such as gi|30721613|,_gi|45383668,_gb|GQ379464.1|, which participated in signaling transduction of cell, could modulate the expression of genes or morphogenesis of cells(.4)Molecule with indistinct function, such as gb|DQ510714.1| _gb|EU923089.1| _gb|DQ298391.1|.
     Construction of cDNA subtractive libraries between yeast and mycelium phase of S.schenckii and bioinformatics analysis could play a role in the understanding of the phase transition mechanisms.
引文
[1]赵辩.临床皮肤病学[M].第3版.江苏:江苏科学技术出版社, 2001, 433-434.
    [2] Peter G. Pappas, Ildefonso Tellez, Alexandria E. Deep, Delia Nolasco, Walter Holgado, Beatriz Bustamante. Sporotrichosis in Peru: Description of an Area of Hyperendemicity[J]. Clinical Infectious Diseases, 2000(30): 65-70.
    [3]杨国亮,王侠生.现代皮肤病学[M].上海:上海医科大学出版社, 1995.201.
    [4]王劲风,朱明姬,姜兰香.吉林省通榆县孢子丝菌病流行病学调查[J].中国公共卫生学报, 1998, 17(5): 317-318.
    [5]冉玉平,刘德操,李志玉. 1981年至1997年10982例皮肤真菌病分析[J].中华皮肤科杂志, 1999, 32(5): 336.
    [6]李福秋,杨鑫,包宝龙.申克孢子丝菌及其研究现状与展望[J].吉林医学,2007, 28(5): 581-583.
    [7] Aquino-Pinero EE, Rodriguez del Valle N. Different protein kinase C iso-forms are prent in the yeast and mycelium forms of Sporothrix schenckii[J]. Med Vet Mycol, 1997, 138(3):109-115
    [8] de Jesús-Berríos M, Rodríguez-del Valle N. Expression of a Pho85 cyclin -dependent kinase is repressed during the dimorphic transition in Sporothrix schenckii[J]. Fungal Genet Biol. 2002 , 37(1): 39-48.
    [9] Liz Valle-Aviles, Shirley Valentin-Berrios, Ricardo R Gonzalez-Mendez, et al. Functional, genetic and bioinformatic characterization of a calcium/calmodulin kinase gene in Sporothrix schenckii[J]. BMC Microbiol. 2007(7): 107-117.
    [10] Shirley Valentín-Berríos, Waleska González-Velázquez, Lizaida Pérez-Sánchez, et al. Cytosolic phospholipase A2: a member of the signalling pathway of a new G proteinαsubunit in Sporothrix schenckii[J]. BMC Microbiol. 2009( 9): 100-124.
    [11] Han-Yaku H, Nake W, Taijina, S et al. Differential expression of the 45 kDa protein(actin) during the diamorphic tranction of Sporothrix schenckii[J]. Med Vet Mycol, 1996, 34(3):175-180.
    [12]杨倩,成军,刘妍等.抑制性消减杂交技术原理及应用.世界华人消化杂志[J],2003, 11(4 ):456-458.
    [13]朱明姬,王连友,王劲风等.申克氏孢子丝菌的生态学研究.白求恩医科大学学报[J],1998, 24(2):176.
    [14]卢圣栋.现代分子生物学实验技术[M].第2版.北京:中国协和医科大学出版社, 1999, 120~29; 524~525.
    [15] Tseng JJ,Chou MM. Differential expression of growth,angiogenesis-and invasion-related factors in the development placenta accreta[J].Taiwan J Obstet Gynecol,2006,45(2): 100-106.
    [16] Stein WD,Litman T,FOjo T,et al. Differential expression of cell adhesion implications for drug resistance[J].Int J Cancer, 2005,113(6):861-865.
    [17] Elalouf JM,Aude JC,Billon E,et al. Renal transcriptomes:segmental analysis of differential expression[J].Exp Nephrol,2002,10(2):75-81.
    [18] McEnery MW,Vance CL,Begg CM,et al. Differential expression and association of calcium channel subunit in development and disease[J]. J Bioenerg Biomembr,1998,30(4):409-418.
    [19] Diatchenko L, Lau YF, Campbell AP, et al. Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries[J].Proc Natl Acad Sci U S A.1996 Jun 11;93(12):6025-30.
    [20] Dios S, Poisa-Beiro L, Figueras A, et al. Suppression subtraction hybridization (SSH)and macroarray techniques reveal differential gene expression profiles in brain of sea bream infected with nodavirus[J]. Mol Immunol.2007 Mar; 44(9): 2195-204.
    [21] Pan YS, Lee YS, Lee YL, et al. Differentially profiling the low-expression transcriptomes of human hepatoma using a novel SSH/microarray approach[J]. BMC Genomics.2006 May 31; 7:131.
    [22] Bui LC, Léandri RD, Renard JP, et al.SSH adequacy to preimplantation mammalian development: scarce specific transcripts cloning despite irregularnormalization[J].BMC Genomics.2005 Nov 8;6:155.
    [23]郭淑贞,童坦君,张宗玉.抑制性消减杂交筛选细胞衰老相关基因[J].中华老年医学杂志[J], 2004, 23(3):179-183.
    [24]熊志红,庄玉辉,李国利.利用抑制消减杂交技术研究结核分支杆菌强毒株H37Rv和弱毒株H37Ra的基因差异[J].遗传学报, 2005, 32(9): 979-985.
    [25]季明春,陈红菊,严华.淋病奈瑟菌耐药性的分子基础初探[J].中国麻风皮肤病杂志, 2003, 19(5): 444-446.
    [26] R te Biesebeke, A Levin C Sagt, J Bartels, et al. Identification of growth phenotype -related genes in As pergillus oryzae by heterologous macroarray and suppression subtractive hybridization[J]. Mol Gen Genomics, 2005, 273: 33-42.
    [27] Marques E R, Ferreira M E S, Drummond R D. Identification of genes referentially expressed in the pathogenic yeast phase of Paracoccidioides brasiliensis, using suppression subtraction hybridization and differential macroarray analysis [J]. Mol Gen Genomics, 2004, 271: 667-677.
    [28] Delgado N, Hung C Y, Tarcha E, et al. Profiling gene expression in Coccidioides posadasii[J]. Med Mycol, 2004, 42 (1): 59-71.
    [29]刘红芳,席丽艳,李彦清等.马尔尼菲青霉酵母相消减cDNA文库的构建及初步筛选[J].中国人兽共患病学报,2007,23(3):218-226.
    [30] Alba R, Fei Z, Payton P, Liu Y, et al. ESTs, cDNA microarrays, and gene expression profiling: tools for dissecting plant physiology and development[J]. Plant J. 2004 Sep; 39(5):697-714.
    [31]Mesa-Arango AC, Del Rocío Reyes-Montes M, Pérez-Mejía A, et al. Phenotyping and genotyping of Sporothrix schenckii isolates according to geographic origin and clinical form of Sporotrichosis[J]. J Clin Microbiol. 2002 Aug; 40(8): 3004-11.
    [32] Teufel A, Krupp M, Weinmann A, et al. Current bioinformatics tools in genomic biomedical research (Review)[J]. Int J Mol Med. 2006 Jun; 17(6):967-73.
    [33] Romaschin AD, Youssef Y, Chow TF, ET AL. Exploring the pathogenesis of renal cell carcinoma: pathway and bioinformatics analysis of dysregulated genes and proteins[J]. Biol Chem. 2009 Feb; 390(2):125-35.
    [34] Osunkoya AO, Yin-Goen Q, Phan JH, et al. Diagnostic biomarkers for renal cell carcinoma: selection using novel bioinformatics systems for microarray data analysis[J]. Hum Pathol. 2009 Dec;40(12):1671-8.
    [35] Zhang Z, Shen B, Wang Y, et al. Molecular cloning of proliferating cell nuclear antigen and its differential expression analysis in the developing ovary and testis of penaeid shrimp Marsupenaeus japonicus[J]. DNA Cell Biol. 2010 Apr; 29(4):163-70.
    [36] Mitsuhashi T, Warita K, Tabuchi Y, et al. Global gene profiling and comprehensive bioinformatics analysis of a 46, XY female with pericentric inversion of the Y chromosome[J].Congenit Anom (Kyoto), 2010 Mar; 50(1):40-51.
    [37] Ranganathan S, Menon R, Gasser RB. Advanced in silico analysis of expressed sequence tag (EST) data for parasitic nematodes of major socio-economic importance--fundamental insights toward biotechnological outcomes[J]. Biotechnol Adv. 2009; 27(4): 439-48.
    [38]张春霆.生物信息学的现状与展望.世界科技研究与发展[J],2000,22(6):17-20.
    [39] Gusev Y. Computational methods for analysis of cellular functions and pathways collectively targeted by differentially expressed microRNA. Methods[J],2008 Jan; 44(1): 61-72.
    [40] Chad J. Creighton, Ankur K. Nagaraja, Samir M. et al. A bioinformatics tool or linking gene expression profiling results with public databases of microRNA target predictions[J]. RNA, 2008; 14(11): 2290–2296.
    [41] Gao M, Dagger WR, Rhoads RE, et al. Cloning and characteri-zation of human eIF4E gene. J Biol Chem[J], 1998, 273(8): 4622–4628.
    [42] Altschul SF, Gish W, Miller W, et al. Basic local alignment search tool[J]. J Mol Biol, 1990 Oct 5; 215(3):403-10.
    [43] Parkinson J, Blaxter M. Expressed sequence tags, an overview[J]. Methods Mol Biol, 2009; 533:1-12.
    [44] Harris MA, Clark J, Ireland A, et al. The Gene Ontology (GO) database and informatics resource[J]. Nucleic Acids Res. 2004 Jan 1; 32(Database issue): D258-61.
    [45] Roubelakis MG, Zotos P, Papachristoudis G, et al. Human microRNA target analysis and gene ontology clustering by GOmir, a novel stand-alone application[J]. BMC Bioinformatics. 2009 Jun 16; 10 Suppl 6:S20.
    [46] de Meyer EM, de Beer ZW, Summerbell RC, Taxonomy and phylogeny of new wood- and soil-inhabiting Sporothrix species in the Ophiostoma stenoceras– Sporothrix schenckii complex[J]. Mycologia. 2008 Jul-Aug; 100(4): 647-61.
    [47] Li J, Jensen SE. Nonribosomal biosynthesis of fusaricidins by Paenibacillus polymyxa PKB1 involves direct activation of a D-amino acid[J]. Chem Biol. 2008 Feb;15(2):118-27.
    [48] Li J, Beatty PK, Shah S, Jensen SE. Use of PCR-targeted mutagenesis to disrupt production of fusaricidin-type antifungal antibiotics in Paenibacillus polymyxa[J]. Appl Environ Microbiol. 2007 Jun;73(11):3480-9. Epub 2007 Mar 30.
    [49] Alberti-Segui C, Morales A J, Xing H, et al.Identification of potential cell-surfaceproteins in Candida albicans and investigation of the role of a putative cell-surface glycosidase in adhesion and virulence[J].Yeast ,2004,1:285-302.
    [50] Chen Y, Poon RY. The multiple checkpoint functions of CHK1 and CHK2 in maintenance of genome stability[J]. Front Biosci. 2008 May 1; 13:5016-29.
    [51] Reinhardt HC, Yaffe MB. Kinases that control the cell cycle in response to DNA damage: Chk1, Chk2, and MK2[J]. Curr Opin Cell Biol. 2009 Apr; 21(2):245-55. Epub 2009 Feb 21.
    [52] Moscato S, Pratesi F, Sabbatini A, et al. Surface expression of a glycolytic enzyme, alpha-enolase, recognized by autoantibodies in connective tissue disorders[J]. Eur J Immunol. 2000 Dec; 30(12):3575-84.
    [53]. Patury S, Miyata Y, Gestwicki JE. Pharmacological targeting of the Hsp70 chaperone[J]. Curr Top Med Chem. 2009;9(15):1337-51.
    [54] Gergics P, Toke J, Szilágyi A, et al. Methods for the analysis of large gene deletions and their application in some hereditary diseases[J]. Orv Hetil. 2009 Dec 13;150(50):2258-64.
    [55] Bacher U, Haferlach C, Kr?ger N, et al. Diagnostic tools in the indications for allogeneic stem cell transplantation in myelodysplastic syndromes[J]. Biol Blood Marrow Transplant. 2010 Jan;16(1):1-11.
    [56] Kurien BT, Scofield RH. A brief review of other notable protein detection methods on blots[J]. Methods Mol Biol. 2009; 536:557-71.
    [57] Schaefer BC. Revolutions in rapid amplification of cDNA ends: new strategies for polymerase chain reaction cloning of full-length cDNA ends[J]. Anal Biochem. 1995 May 20; 227(2):255-73.
    [58] Jimeno A, Tan AC, Coffa J, et al. Coordinated epidermal growth factor receptor pathway gene overexpression predicts epidermal growth factor receptor inhibitor sensitivity in pancreatic cancer[J]. Cancer Res. 2008 Apr 15; 68(8):2841-9.
    [59] Ortiz-Quintero B. RNA interference: from origins to a novel tool for gene silencing[J]. Rev Invest Clin. 2009 Sep-Oct; 61(5):412-27.
    [60] Jube S, Borthakur D. Development of an Agrobacterium-mediated transformation protocol for the tree-legume Leucaena leucocephala using immature zygotic embryos[J]. Plant Cell Tissue Organ Cult. 2009; 96(3):325-333.
    [1] Valentin-Berrios S, Gonzalez-Mendez RR, et al. Functional, genetic and bioinformatic characterization of a calcium/calmodulin kinase gene in Sporothrix schenckii[J]. BMC Microbiol. 2007 Nov 29;7:107.
    [2] Aquino-Pi?ero EE, Rodríguez del Valle N. Different protein kinase C isoforms are present in the yeast and mycelium forms of Sporothrix schenckii[J]. Mycopathologia. 1997; 138(3):109-15.
    [3] Nakao S, Inoue D. Involvement of protein kinase C in IL-1beta-induced expression of cyclooxygenase-2 in human gingival fibroblasts[J]. J Oral Sci. 2009 Sep;51(3): 417-23.
    [4] Aquino-Pi?ero E, Rodríguez-del Valle N. Characterization of a protein kinase C gene in Sporothrix schenckii and its expression during the yeast-to-mycelium transition[J]. Med Mycol. 2002 Apr;40(2):185-99.
    [5] de Jesús-Berríos M, Rodríguez-del Valle N. Expression of a Pho85 cyclin– dependent kinase is repressed during the dimorphic transition in Sporothrix schenckii[J]. Fungal Genet Biol. 2002 Oct; 37(1):39-48.
    [6] Huang D, Friesen H, Andrews B. Pho85, a multifunctional cyclin-dependent protein kinase in budding yeast[J]. Mol Microbiol. 2007 Oct;66(2):303-14.
    [7] Nishizawa M, Suzuki K, Fujino M, et al. The Pho85 kinase, a member of the yeast cyclin-dependent kinase (Cdk) family, has a regulation mechanism different from Cdks functioning throughout the cell cycle[J]. Genes Cells. 1999 Nov; 4(11): 627-42.
    [8] Bootman MD, Collins TJ, Peppiatt CM, et al. Calcium signalling--an overview[J]. Semin Cell Dev Biol. 2001;12:3–10. doi: 10.1006/scdb.2000. 2011.
    [9] Bootman MD, Lipp P, Berridge MJ. The organisation and functions of local Ca(2+) signals[J]. J Cell Sci. 2001;114:2213–2222.
    [10] Berridge MJ, Bootman MD, Roderick HL. Calcium signalling: dynamics, homeostasis and remodelling[J]. Nat Rev Mol Cell Biol. 2003;4:517–529.
    [11] Berridge MJ. Calcium signal transduction and cellular control mechanisms[J]. Biochim Biophys Acta. 2004;1742:3–7.
    [12] Berridge MJ. The versatility and complexity of calcium signalling[J]. Novartis Found Symp. 2001;239:52–64; discussion 64-7, 150-9.
    [13] Chin D, Means AR. Calmodulin: a prototypical calcium sensor[J]. Trends Cell Biol. 2000;10:322–328.
    [14]. Hook SS, Means AR. Ca(2+)/CaM-dependent kinases: from activation to function. Annu Rev Pharmacol Toxicol[J]. 2001;41:471–505.
    [15]. Nairn AC, Picciotto MR. Calcium/calmodulin-dependent protein kinases[J]. Semin Cancer Biol. 1994;5:295–303.
    [16]Hudmon A, Schulman H. Structure-function of the multifunctional Ca2+ / calmodulin-dependent protein kinase II[J]. Biochem J. 2002;364:593–611.
    [17] Means AR. Regulatory cascades involving calmodulin-dependent protein kinases[J]. Mol Endocrinol. 2000;14:4–13. doi: 10.1210/me.14.1.4.
    [18] Means AR, Dedman JR. Calmodulin--an intracellular calcium receptor[J]. Nature. 1980;285:73–77. doi: 10.1038/285073a0.
    [19] Tombes RM, Faison MO, Turbeville JM. Organization and evolution of multifunctional Ca(2+)/CaM-dependent protein kinase genes[J]. Gene. 2003 Dec 11;322:17-31.
    [20] Liz Valle-Aviles, Shirley Valentin-Berrios, Ricardo R Gonzalez-Mendez, et al. Functional, genetic and bioinformatic characterization of a calcium/calmodulin kinase gene in Sporothrix schenckii[J]. BMC Microbiol. 2007(7): 107-117.
    [21]. Lengeler KB, Davidson RC, D'Souza C, et al. Signal transduction cascades regulating fungal development and virulence[J]. Microbiol Mol Biol Rev. 2000;64(4):746–785.
    [22] Cabrera-Vera TM, Vanhauwe J, Thomas TO, Medkova M, Preininger A, Mazzoni MR, Hamm HE. Insights into G protein structure, function, and regulation[J]. Endocr Rev. 2003;24(6):765–781.
    [23] Oldham WM, Hamm HE. Structural basis of function in heterotrimeric G proteins[J]. Q Rev Biophys. 2006;39(2):117–166.
    [24] McCudden CR, Hains MD, Kimple RJ, Siderovski DP, Willard FS. G-protein signaling: back to the future[J]. Cell Mol Life Sci. 2005;62(5):551–577.
    [25] Dupre DJ, Robitaille M, Rebois RV, Hebert TE. The role of Gbetagamma subunits in the organization, assembly, and function of GPCR signaling complexes[J]. Annu Rev Pharmacol Toxicol. 2009; 49:31–56.
    [26] Dascal N. Ion-channel regulation by G proteins[J]. Trends Endocrinol Metab. 2001; 12(9): 391– 398.
    [27] Liu B, Wu D. Analysis of G protein-mediated activation of phospholipase C in cultured cells[J]. Methods Mol Biol. 2004;237:99–102.
    [28] Kurrasch-Orbaugh DM, Parrish JC, Watts VJ, Nichols DE. A complex signaling cascade links the serotonin2A receptor to phospholipase A2 activation: the involvement of MAP kinases[J]. J Neurochem. 2003;86(4):980–991.
    [29] Zhao J, Wang X. Arabidopsis phospholipase Dalpha1 interacts with the heterotrimeric G-protein alpha-subunit through a motif analogous to the DRY motif in G-protein-coupled receptors[J]. J Biol Chem. 2004;279(3):1794–1800.
    [30] Fang EG, Dean RA. Site-directed mutagenesis of the magB gene affects growth and development in Magnaporthe grisea[J]. Mol Plant Microbe Interact. 2000;13(11):1214–1227.
    [31] Han-Yaku H, Nake W, Taijina, S et al. Differential expression of the 45 kDa protein(actin) during the diamorphic tranction of Sporothrix schenckii[J]. Med Vet Mycol, 1996,34(3):175-180.
    [32]. Amold WN, Nguyen TB, Mann LC. Purification and characterization of dextraname from Sporothrix schenckii[J]. Arch Microbiol, 1998, 170(2):91-98.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700