水稻育性恢复基因的分子标记辅助选择
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细胞质雄性不育(CMS)及其育性恢复是三系杂交水稻育种和生产应用的首要基础,而恢复基因是杂种优势利用的基础,在生产上应用的种类繁多的CMS类型中,野败型应用最早并且最广泛。
     本研究应用珍汕97A/明恢63的F2群体,从中筛选结实率低于5%的个体组成极端不育群体作为定位群体,针对水稻第1染色体短臂Rf3所在染色体的可能区间,应用37个SSR标记检测亲本,从16个多态性标记中挑选出9个检测定位群体。结果表明物理位置连续排列的SSR标记RM10353、RM1195和RM3746各有8个单株与Rf3基因发生了单交换,且重组子数表现最少,据此可将Rf3定位于这3个标记的两侧标记内。因此最终将Rf3定位在相距679.9kb的SSR标记RM10338和RM10376之间。
     在育性恢复基因定位研究的基础上,选取与育性恢复基因Rf3连锁的6个分子标记,与Rf1/Rf4连锁的5个分子标记,对103份我国主栽水稻品种及亲本进行多态性检测。结果表明:(1)11个连锁分子标记在103份供试水稻材料中共检测到41个等位基因,每对扩增得到2-7个等位基因,平均每个座位有3.7个等位基因。标记的多态性频率FP值变动范围为0.16-0.68,平均值为0.48;(2)所有粳稻材料在Rf3连锁标记位点表现单态,不育系和恢复系之间没有差异,均与籼型不育系一致,表明粳稻材料中均不含有Rf3;而在Rf1/Rf4连锁标记位点粳稻不育系和恢复系表现多态,分别与相应的籼稻材料带型一致,表明粳稻材料中携带Rf1/Rf4;(3)分别对所有103份供试材料和70份三系杂交稻亲本的聚类分析表明,所选育性恢复基因的连锁标记能有效的区分不育系和恢复系,两种不同类型材料之间相似性系数较小。
     针对前期根据Pi25-Pi26(t)连锁标记筛选的106个重组自交系,进行稻瘟病抗性鉴定和育性恢复基因的分子标记辅助选择。在两个不同环境的稻瘟病重复接种结果中,所有单株均表现高抗,两个标记对稻瘟病抗性基因的选择效率为100%。选择与Rf3连锁的分子标记RM10338、RM10353、RM1344和RM10435,与Rf4连锁的分子标记RM6100和RM1108检测106个单株。根据4个分子标记检测的结果,挑选Rf3和Rf4位点在连锁标记间基因型一致的材料共78个,分别同时与中9A,协青早A配组,获得两套F1,考察F2结实率。结果表明:分子标记检测两个育性恢复基因都存在的情况下,后代结实率最高,大于60%,而当两个基因都不存在时,后代结实率只有20%,基因型与表型相关性较高。用STS标记SA7和SSR标记RM3330对Pi25(t)进行选择,RM10338、RM10353、RM1344和RM10435对Rf3进行选择,RM6100和RM1108对Rf4进行选择结果是可靠的。
Cytoplasmic male sterility (CMS) and its restoration are bases for the breeding and commercial application of three-line hybrid rice. Wild abortive CMS (WA-CMS) was firstly used in the commercial production of hybrid rice and has always been most extensively applied.
     In present study, an F2 population derived from the cross Zhenshan97A/Minghui63 was used. The mapping was performed using the recessive class consisting of 119 extreme sterile individuals. Parental polymorphism survey was conducted using 37 SSRs located in the probable region for Rf3 on the short arm of rice chromosome 1. Of the 16 polymorphic SSRs detected, 9 were selected to test the extreme sterile individuals. RM10353, RM1195 and RM3746 which were located consecutively in the segmental map each showed 8 single crossover with Rf3, and this number was the lowest among the number of recombinant observed between the 9 SSRs and Rf3. This result indicates that Rf3 was located in the genomic region covered by interval RM10353-RM1195-RM3746 and its flanking markers. Thus, the Rf3 locus was mapped between RM10338 and RM10376 that have a physical distance of 679.9kb.
     Based on the mapping of fertility-restoring genes, 11 markers linked to Rf3 or Rf1/Rf4 were selected to test 103 major rice varieties and parents in China. The main results listed as follows: 41 alleles of 11 linkage markers were observed in the 103 varieties and parents; there were 2-7 alleles of each marker the average was 3.7. The FP of the markers ranged from 0.16 to 0.68, and the average is 0.48. All the japonica materials performed the same genotype at the locus of Rf3, and there were no variation between the sterile restorer lines and the CMS lines. However, they performed polymorphism at the locus of Rf1/Rf4. Therefore, Rf3 was contained in the indica materials and Rf4 was contained in the two types. The clustering analysis of the 103 varieties and parents based on the 41 alleles indicated that the primers that linked to Rf genes could distinguish CMS lines from its restorers and the similarity of the two types was low.
     The MAS of the identification to blast resistence gene and Rf genes were based on the 106 RILs selected by the markers linked to Pi25-Pi26 (t). The 106 plants were inoculated with mixed M. griseai in two different environments. The result showed that all the plants were resistance. The efficiency of MAS was 100%. The markers linked to Rf3 or Rf4 were selected to test the 106 plants. According to the result of the test, 78 plants which were chosen as the female parents were crossed to Zhong9A and XieqingzaoA, respectively. Two F1 groups were obtained, and then the SF of F2 was inspected. The result shows: the SF were higher when the two Rf genes existing than the absence of them. Therefore, the MAS is efficient.
引文
1.陈红旗,陈宗祥,倪深,等.利用分子标记技术聚合3个稻瘟病基因改良金23B的稻瘟病抗性.中国水稻科学, 2008, 22(1): 23-27.
    2.陈志伟,官华忠,吴为人,等.稻瘟病抗性基因Pi-1连锁SSR标记的筛选和应用.福建稻麦科技, 2005, 34(1): 74-77.
    3.陈志伟,郑燕,吴为人,等.抗稻瘟病基因Pi-2(t)紧密连锁的SSR标记的筛选与应用.分子植物育种, 2004, 2(3): 321-325.
    4.程式华.杂交水稻育种材料和方法研究的现状及发展趋势.中国水稻科学, 2000, 14(3): 165-169.
    5.段世华,毛加宁,朱英国,等.用微卫星DNA标记对我国杂交水稻主要恢复系遗传差异的检测分析.遗传学报, 2002, 29(3): 250-254.
    6.鄂志国,张丽靖,焦桂爱,等.稻瘟病抗性基因的鉴定及利用进展.中国水稻科学, 2008, 22(5): 533-540.
    7.方宣钧,吴为人,唐纪良.作物DNA标记辅助育种.科学出版社, 2001, 57-79.
    8.何光华,裴炎,杨光伟,等.野败型杂交水稻恢复基因的AFLP标记研究.遗传学报, 2000, 27(4): 304-310.
    9.何光华,王文明,刘国庆,等.利用SSR标记定位明恢63的2对恢复基因.遗传学报, 2002, 29(9): 798-802.
    10.黄青阳,何予卿,景润春,等.利用微卫星定位水稻红莲型细胞质雄性不育恢复基因.科学通报, 1999, 44(14): 1517-1520.
    11.景润春,何予卿,黄青阳,等,水稻野败型细胞质雄性不育恢复基因的ISSR和SSLP标记分析.中国农业科学, 2000, 33(2): 10-15.
    12.李广贤,屠国庆,张克勤,等.应用微卫星标记定位水稻恢复系密阳46的主效和微效恢复基因.中国水稻科学, 2005, 19(6): 506-510.
    13.李广贤.野败型CMS育性恢复基因的微卫星标记定位. [硕士学位论文].北京:中国农业科学院, 2005.
    14.李进波,牟同敏,夏建武,等.利用微卫星标记鉴定两系杂交稻两优培胜的种子纯度.中国农学通报. 2002, 18(6): 10-13.
    15.李晶炤,何平,李仕贵,等.利用微卫星标记鉴定杂交水稻冈优22种子纯度的研究.生物工程学报, 2000, 16(2): 211-214.
    16.李莉,杨剑波,汪秀峰,等.利用RAPD和微卫星标记对协优杂交稻及其亲本进行区别与鉴定.中国水稻科学, 2000, 14 (4): 203-207.
    17.李丽华,魏昕,潘光堂. 20个骨干玉米自交系的SSR指纹图谱构建.西南农业学报, 2007, 20(6): 1172-1175.
    18.李平,周开达,陈英,等.利用分子标记定位水稻野败型质核互作雄性不育恢复基因.遗传学报, 1996, 23(5): 357-362.
    19.李云海,肖晗,张春庆,等.用微卫星DNA标记检测中国主要杂交水稻亲本的遗传差异.植物学报. 1999, 41(10): 1061-1066.
    20.梁国华,严长杰,汤述翥,等. BT型细胞质雄性不育恢复基因的基因定位.中国水稻科学, 2001, 15(2): 89-92.
    21.梁国华,周培南,杨华,等.红莲型细胞质雄性不育恢复品种的筛选与分类.扬州大学学报, 2002, 23(3): 41-45.
    22.梁康迳,王乃元,杨仁崔.杂交籼稻恢复系恢复基因的遗传及等位分析.福建农业学报, 1990, 19(4): 397-402.
    23.刘航,李丹,李绍波,等.水稻红莲型CMS育性恢复QTL分析.武汉植物学研究, 2005, 23(2): 111-115.
    24.刘殊,程慧,王飞,等.我国杂交水稻主要恢复系的DNA多态性研究.中国水稻科学, 2002, 16(1): 1-5.
    25.刘文强.稻瘟病抗性基因Pi25(t)与产量因子相关的遗传分析及标记辅助选择. [硕士学位论文].北京:中国农业科学院, 2008.
    26.卢扬江,郑康乐.提取水稻DNA的一种简易方法.中国水稻科学, 1992, 6(1): 47-48.
    27.陆永法,马荣荣,王晓燕,等.甬优系列杂交水稻SSR标记指纹图谱和籼粳属性.中国水稻科学, 2007, 21(4): 443-446.
    28.马汉云,王青林,吴淑平,等.水稻株型的遗传研究进展.中国种业, 2008, 4: 13-15.
    29.马文宾,庄杰云,彭应财,等.三系杂交稻亲本随机扩增多态性DNA(RAPD)分析.遗传, 1998, 20(2): 1-4.
    30.彭锁堂,庄杰云,颜启传,等.我国主要杂交水稻组合及其亲本SSR标记和纯度鉴定.中国水稻科学, 2003, 17(1): 1-5.
    31.邱福林,庄杰云,华泽田,等.北方杂交粳稻骨干亲本遗传差异的SSR标记检测.中国水稻科学, 2005, 19(2): 101-104.
    32.全志武,汪静,潘磊,等. 10个藕莲品种SSR指纹图谱的构建与品种鉴别.中国蔬菜, 2008, 3: 15-17.
    33.任羽,王效宁.水稻抗稻瘟病育种研究进展.海南农业科技, 2004, 2: 27-29.
    34.舒庆尧,吴殿星,夏英武,等.籼稻和粳稻中蜡质基因座位上微卫星标记的多态性及其与直链淀粉含量的关系.遗传学报, 1999, 26(4): 350-358.
    35.苏顺宗,黄玉碧,杨俊品,等.利用SSR鉴定水稻杂交种子纯度的研究.种子, 2003, 1: 23-25.
    36.汤述翥,张亚东,孙红芹,等.水稻同核异质广亲和不育系细胞质效应的研究.作物学报, 2003, 29(2): 202-207.
    37.王志林,赵树进,吴新荣.分子标记技术及其发展.生命的化学, 2001, 21(4): 39-42.
    38.王忠安.两系杂交水稻亲本间多态性的SSR分析.杂交水稻, 2004, 19(2): 59-61.
    39.王忠华, Redus M,贾育林.水稻抗稻瘟病基因Pi-ta共显性分子标记的建立.中国水稻科学, 2005, 19(6): 483-488.
    40.危文亮,赵应忠.分子标记在作物育种中的应用.生物技术通报, 2000, 2: 12-16.
    41.吴建利,柴荣耀,樊叶杨,等.抗稻瘟病水稻材料谷梅2号中主效抗稻瘟病基因的成簇分布.中国水稻科学, 2004, 18(6): 567-569.
    42.吴金红,蒋江松,陈惠兰,等.水稻稻瘟病抗性基因Pi-2(t)的精细定位.作物学报, 2002, 28(4): 505-509.
    43.吴京华,廖伏明,罗闰良,等.中国水稻杂种优势利用的成就、进展与前景.世界农业, 1999, 8: 20-22.
    44.武文,邓启云,周丽洁,等.利用SSR分子标记构建Y58S及部分重要两系杂交水稻亲本的DNA指纹图谱.杂交水稻, 2008, 23(3): 52-56.
    45.肖小余,王玉平,张建勇,等.四川省主要杂交稻亲本的SSR多态性分析和指纹图谱的构建与应用.中国水稻科学, 2006, 20(1): 1-7.
    46.谢建坤,庄杰云,樊叶杨,等.水稻CMS-WA育性恢复基因定位及其互作分析.遗传学报, 2002, 29(7): 616-621.
    47.辛业芸,张展,熊易平,等.应用SSR分子标记鉴定超级杂交水稻组合及其纯度.中国水稻科学, 2005, 19(2): 95-100.
    48.许鲲,张冬晓,伍晓明,等.国家冬油菜区试新品种SSR指纹图谱构建与遗传关系分析.中国油料作物学报, 2008, 30(1): 29-34.
    49.杨存义,陈乐天,陈芳远,等.水稻细胞质雄性不育恢复系ZSP-1恢复基因的初步定位.华南农业大学学报, 2002, 23(4): 30-33.
    50.杨跃华,裴炎,何光华,等.明恢63对野败型胞质不育性恢复的遗传分析.西南农业大学学报, 1998, 20(2): 111-113.
    51.于永红,李云海,马荣荣,等.用微卫星DNA标记建立宁2A的指纹图谱.中国水稻科学, 2001,
    15(3): 215-217.
    52.曾千春,周开达,朱祯,等.中国水稻杂种优势利用现状.中国水稻科学, 2000, 14(4): 234-
    246.
    53.詹庆才.利用微卫星DNA标记进行杂交水稻种子纯度鉴定的研究.杂交水稻, 2002, 17(5): 46-50.
    54.张建福,王国英,谢华安,等.粳稻云引抗稻瘟病基因的遗传分析及其定位.农业生物技术学报, 2003, 11(3): 241-244.
    55.张群宇,刘耀光,张桂权,等.野败型水稻细胞质雄性不育恢复基因Rf4的分子标记定位.遗传学报, 2002, 29(11): 1001-1004.
    56.张彦,郭士伟,何冰,等.利用SSR标记建立杂交水稻分子指纹图谱数据库.江苏农业学报, 2006, 22(2): 181-183.
    57.赵静,张仁和,张兴华,等.利用SSR技术构建陕西省主要玉米自交系的指纹图谱.玉米科学, 2008, 16(2): 26-29.
    58.赵勇,杨凯, Cheema A A,等.利用水稻功能基因SSR标记鉴定水稻种质资源.中国农业科学, 2002, 35(4): 349-353.
    59.郑康乐,钱惠荣,庄杰云,等.应用DNA标记定位水稻的抗稻瘟病基因.植物病理学报, 1995, 25(4): 307-313.
    60.朱立煌,徐吉臣,陈英,凌忠专,等.用分子标记定位一个未知的抗稻瘟病基因.中国科学(B辑), 1994, 24(10): 1048-1052.
    61.朱作峰,孙传清,付永彩,等.用SSR标记比较亚洲栽培稻与普通野生稻的遗传多样性.中国农业科学, 2002, 35(12): 1437-1441.
    62.朱作峰,孙传清,姜廷波,等.水稻品种SSR与RFLP及其与杂种优势的关系比较分析.遗传学报, 2001, 28(8): 738-745.
    63.庄杰云,樊叶杨,吴建利,等.水稻CMS-WA育性恢复基因的定位.遗传学报, 2001, 28(2): 129-134.
    64. Ahn S N, Kim Y K, Han S S, et al. Molecular mapping of a gene for resistance to a Korean isolate of rice blast. Rice Genet Newsl, 1996, 13: 74-76.
    65. Akagi H, Nakamura A, Yokozeki-Misono Y, Inagaki A, et al. Positional cloning of the rice Rf-1 gene, a restorer of BT-type cytoplasmic male sterility that encodes a mitochondria-targeting PPR protein. Theor Appl Genet, 2004, 108(8): 1449-1457.
    66. Akagi H, Yokozeki Y, Inagaki A, et al. Highly polymorphic microsatellites of rice consist of AT repeats and a classification of closely related cultivars with these microsatellite loci. Theor Appl Genet, 1997, 94(1): 61-67.
    67. Berruyer R, Adreit H, Milazzo J, et al. Identification and fine mapping of Pi33, the rice resistance gene corresponding to the Magnaporthe grisea avirulence gene ACE1. Theor Appl Genet, 2003, 107(6): 1139-1147.
    68. Bharaj T S, Bains S S, Gagneja M R. Genetics of fertility restoring of wild abortive cytoplasmic male sterility in rice (Oryza sativa L.). Euphytica, 1991, 56(3): 199-203.
    69. Botstein D, White R L, Skolnick M, et al. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet, 1980, 32: 314-331.
    70. Causse M A, Fulton T M, Cho Y G, et al. Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics, 1994, 138(4): 1251-1274.
    71. Chambers G K, MacAvoy E S. Microsatellites: consensus and controversy. Comp Biochem Physiol (Part B), 2000, 126(4): 455-476.
    72. Chao S M, Zhang W J, Akhunov E , et al. Analysis of gene-derived SNP marker polymorphism in US wheat (Triticum aestivum L.) cultivars. Mol Breeding, 2009, 23(1): 23-33.
    73. Chauhan R S, Farman M L, Zhang H B, et al. Genetic and physical mapping of a rice blast resistance locus, Pi-CO39(t) that corresponds to the avirulence gene AVR1-CO39 of Magnaporthe grisea. Mol Genet Genomics, 2002, 267(5): 603-612.
    74. Chen D H, Vina M D, Inukai T, et al. Molecular mapping of the blast resistance gene, Pi44(t) in a line derived from a durably resistant rice cultivar. Theor Appl Genet, 1999, 98(6-7): 1046-1053.
    75. Chen X W, Li S G, Xu J C, et al. Identification of two blast resistance genes in a rice variety, Digu. J Phytopathology, 2004, 152(2): 77-85.
    76. Chen X W, Shang J J, Chen D X, et al. A B-lectin receptor kinase gene conferring rice blast resistance. Plant J, 2006, 46(5): 794-804.
    77. Chen X, Temnykh S, Xu Y, et al. Development of a microsatellite framework map providinggenome-wide coverage in rice (Oryza sativa L.). Theor Appl Genet, 1997, 95(4): 553-567.
    78. Chu Z H, Fu B Y, Yuan H, et al. Targeting xa13, a recessive gene for bacterial blight resistance in rice. Theor Appl Genet, 2006, 112(3): 455-461.
    79. Conaway-Bormans C A, Marchetti M A, Johnson C W, et al. Molecular markers linked to the blast resistance gene Pi-z in rice for use in marker-assisted selection. Theor Appl Genet, 2003, 107(6): 1014-1020.
    80. Deng Y W, Zhu X D, Shen Y, et al. Genetic characterization and fine mapping of the blast resistance locus Pigm(t) tightly linked to Pi2 and Pi9 in a broad-spectrum resistant Chinese variety. Theor Appl Genet, 2006, 113(4): 705-713.
    81. Fjellstrom R, Conaway-Bormans C A, McClung A M, et al. Development of DNA markers suitable for marker assisted selection of three Pi genes conferring resistance to multiple Pyricularia grisea pathotypes. Crop Sci, 2004, 44(5): 1790-1798.
    82. Fujii K, Hayano S Y, Saito K, et al. Identification of a RFLP marker tightly linked to the panicle blast resistance gene, Pb1, in rice. Breeding Sci, 2000, 50(3): 183-188.
    83. Fukuoka S, Okuno K. QTL analysis and mapping of pi21, a recessive gene for field resistance to rice blast in Japanese upland rice. Theor Appl Genet, 2001, 103(2-3): 185-190.
    84. Gowda M, Roy-Barman S, Chattoo B B. Molecular mapping of a novel blast resistance gene Pi38 in rice using SSLP and AFLP markers. Plant Breeding, 2006, 125(6): 596-599.
    85. Gupta P K, Varshney R K, Sharma P C, et al. Molecular marker and their applications in wheat breeding. Plant Breeding, 1999, 118(5): 369-399.
    86. Hayashi K, Hashimoto N, Daigen M, et al. Development of PCR-based SNP markers for rice blast resistance genes at the Piz locus. Theor Appl Genet, 2004, 108(2): 1212-1220.
    87. Hayashi N, Ando I, Imbe T. Identification of a new resistance gene to a Chinese blast fungus isolate in the Japanese rice cultivar Aichi Asahi. Phytopathology, 1998, 88(8): 822-827.
    88. Hittalmani S, Parco A, Mew T V, et al. Fine mapping and DNA marker-assisted pyramiding of the three major genes for blast resistance in rice. Theor Appl Genet, 2000, 100(7): 1121-1128.
    89. Ichikawa N, Kishimoto N, Inagaki A, et al. A rapid PCR-aided selection of a rice line containing the Rf-1 gene which is involved in restoration of the cytoplasmic male sterility. Mol Breeding, 1997, 3(3): 195-202.
    90. Imbe T, Matsumoto S. Inheritance of resistance of rice varieties to the blast fungus strains virulent of the variety“Reiho”. Japan J Breed, 1985, 35(3): 332-339.
    91. Imbe T, Oba S, Yanoria M J T, et al. A new gene for blast resistance in rice cultivar, IR24. Rice Genet Newsl, 1997, 14: 60-62.
    92. Inukai T, Zeigler R S, Sarkarung S, et al. Development of pre-isogenic lines for rice blast-resistance by marker-aided selection from a recombinant inbred population. Theor Appl Genet, 1996, 93(4): 560-567.
    93. Jeon J S, Chen D, Yi G H, et al. Genetic and physical mapping of Pi5(t), a locus associated with
    94. Jeung J U, Kim B R, Cho Y C, et al. A novel gene, Pi40(t), linked to the DNA markers derived from NBS-LRR motifs confers broad spectrum of blast resistance in rice. Theor Appl Genet, 2007, 115(8): 1163-1177.
    95. Kiyosawa S. Genetics of blast resistance. Rice Breeding, 1972, 203-225.
    96. Lande R, Thompson R. Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics, 1990, 124(3), 743-756.
    97. Li S Q, Tan Y P, Wang K, et al. Gametophytically alloplasmic CMS line of rice (Oryza sativa L.) with variant orfH79 haplotype corresponds to specific fertility restorer. Theor Appl Genet, 2008, 117(8): 1389-1397.
    98. Li W, Lei C L, Cheng Z J, et al. Identification of SSR markers for a broad-spectrum blast resistance gene Pi20(t) for marker-assisted breeding. Mol Breeding, 2008, 22(1): 141-149.
    99. Lin F, Liu Y, Wang L, et al. A high-resolution map of the rice blast resistance gene Pi15 constructed by sequence-ready markers. Plant Breeding, 2007, 126(3): 287-290.
    100. Liu B, Zhang S H, Zhu X Y, et al. Candidate defense genes as predictors of quantitative blast resistance in rice. Mol Plant-Microbe Interac, 2004, 17(10): 1146-1152.
    101. Liu G, Lu G, Zeng G L, et al. Two broad-spectrum blast resistance genes, Pi9(t) and Pi2(t), are physically linked on rice chromosome 6. Mol Genet Genomics, 2002, 267(4): 472-480.
    102. Liu X Q, Lin F, Wang L, et al. The in Silico Map-based cloning of Pi36, a rice coiled-coil–nucleotide-binding site–leucine-rich repeat gene that confers race-specific resistance to the blast fungus. Genetics, 2007, 176(4): 2541-2549.
    103. Liu X Q, Yang Q Z, Lin F, et al. Identification and fine mapping of Pi39(t), a major gene conferring the broad-spectrum resistance to Magnaporthe oryzae. Mol Genet Genomics, 2007, 278(4): 403-410.
    104. McCouch S R, Kochert G, Yu Z H, et al. Molecular mapping of rice chromosomes. Theor Appl Genet, 1988, 76(6): 815-829.
    105. McCouch S R, Teytelman L, Xu Y B, et al. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res, 2002, 9(6): 257-279.
    106. Melchinger A E. Use of molecular markers in breeding for oligogenic disease resistance. Plant Breeding, 1990, 104(1): 1-19.
    107. Mohan M, Nair S, Bhagwat A, et al. Genome mapping, molecular markers and marker-assisted selection in crop plants. Mol Breeding, 1997, 3(2): 87-103.
    108. Naqvi N I, Chattoo B B. Development of a sequence characterized amplified region (SCAR) based indirect selection method for a dominant blast-resistance gene in rice. Genome, 1996, 39(1): 26-30.
    109. Narayanan N N, Baisakh N, Vera Cruz C M, et al. Molecular breeding for the development of blast and bacterial blight resistance in rice cv.IR50. Crop Sci, 2002, 42(6): 2072-2079.
    110. Narayanan N N, Baisakn N, Oliva N P, et al. Marker-assisted selection combined with biolistic transformation for blast and bacterial blight resistance in indica rice (cv.CO39). Mol Breeding, 2004, 14(1): 61-71.
    111. Nguyen T T T, Koizumi S, La T N, et al. Pi35 (t), a new gene conferring partial resistance to leaf blast in the rice cultivar Hokkai 188. Theor Appl Genet, 2006, 113(4): 697-704.
    112. Ni J, Colowit P M, Oster J J, et al. Molecular markers linked to stem rot resistance in rice. Theor Appl Genet, 2001, 102(4): 511-516.
    113. NTSYSpc Version 2.11Q. Copyright (C) 2000-2003 Applied Biostatistics Inc. New York.
    114. Pan Q H, Tanisaka T, Ikehashi H. Registration of new gene symbol Pi17(t) in DJ123. Rice Genet Newsl, 1996, 13-18.
    115. Pan Q H, Wang L, Ikehashi H, et al. Identification of a new blast resistance gene in the indica rice cultivar Kasalash using Japanese differertial cultivars and isozyme markers. Phytopathology, 1996, 86(10): 1071-1075.
    116. Pan Q H, Wang L, Ikehashi H, et al. Identification of two new genes conferring resistance to rice blast in the Chinesenative cultivar“Maowangu”. Plant Breeding, 1998, 117(1): 27-31.
    117. Pan Q H, Wang L, Tanisaka T. A new blast resistance gene identified in the Indian native rice cultivar Aus373 through allelism and linkage tests. Plant Pathol, 1999, 48(2): 288-293.
    118. Qiu D W, Mao J J, Yang X F, et al. Expression of an elicitor-encoding gene from Magnaporthe grisea enhances resistance against blast disease in transgenic rice. Plant Cell Rep, 2009, 28(6): 925-933.
    119. Sandhu A P S, Abdelnoor R V, Mackenzie S A. Transgenic induction of mitochondrial rearrangements for cytoplasmic male sterility in crop plants. PNAS, 2007, 104(6): 1766-1770.
    120. Sattari M, Kathiresan A, Gregorio G B, et al. Comparative genetic analysis and molecular mapping of fertility restoration genes for WA, Dissi, and Gambiaca cytoplasmic male sterility systems in rice. Euphytica, 2008, 160(3): 305-315.
    121. Sattari M, Kathiresan A, Gregorio G B, et al. Development and use of a two-gene marker-aided selection system for fertility restorer genes in rice. Euphytica, 2007, 153(1-2): 35-42.
    122. Shinjyo C. Genetics studies of cytoplasmic male sterility and fertility restoration in rice. Sci Bull Agri Univ Rukyus, 1975, 22: 1-57.
    123. Sundaram B R M, Naveenkumar S K, Biradar S M, et al. Identification of informative SSR markers capable of distinguishing hybrid rice parental lines and their utilization in seed purity assessment. Euphytica, 2008, 163(2): 215-224.
    124. Tabien R E, Li Z, Paterson A H, et al. Mapping of four major rice blast resistance genes from“Lemont”and“Teqing”and evaluation of their combinatorial effect for field resistance. Theor Appl Genet, 2000, 101(8): 1215-1225.
    125. Tan X L, Amornsilpa S, Trangoonrung S, et al. Genetic analysis of rice CMS-WA fertility restoration based on QTL mapping. Theor Appl Genet, 1998, 97(5-6): 994-999.
    126. Tan X L, Vanavichit A, Amornsilpa S, et al. Mapping of rice Rf gene by bulked line analysis. DNA Res, 1998, 5(1): 15-18.
    127. Tan Y P, Li S Q, Wang L, et al. Genetic analysis of fertility-restorer genes in rice. Biol Plant, 2008, 52(3): 469-474.
    128. Toriyama K. Breeding for resistance of major rice disease in Japan. Rice Breeding, 1972, 253-281.
    129. Tsunematsu H, Yanoria M J T, Ebron L A, et al . Development of monogenic lines of rice for blast resistance. Breeding Sci, 2000, 50(3): 229-234.
    130. Wang G L, Mackill D J, Bonman J M, et al. RFLP mapping of genes conferring complete and partial resistance to blast in a durably resistant rice cultivar. Genetics, 1994, 136(4): 1421-1434.
    131. Wang Z H, Zou Y J, Li X Y, et al. Cytoplasmic male sterility of rice with Boro II cytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silencing. Plant Cell, 2006, 18(3): 676-687.
    132. Wang Z X, Yano M, Yamanouchi U, et al. The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. Plant J, 1999, 19(1): 55-64.
    133. Wise R P, Pring D R. Nuclear-mediated mitochondrial gene regulation and male fertility in higher plants: Light at the end of the tunnel?. PNAS, 2002, 99(16): 10240-10242.
    134. Wu K S, Martinez C, Lentini Z, et al. Cloning a blast resistance gene by chromosome walking. Rice Genet, 1996: 669-674.
    135. Xin Xu H, Chen T, Fujimura S, et al. Fine mapping of a strong QTL of field resistance against rice blast, Pikahei-1(t), from upland rice Kahei, utilizing a novel resistance evaluation system in the greenhouse. Theor Appl Genet, 2008, 117(6): 997-1008.
    136. Xu X, Hayashi N, Wang C T, et al. Efficient authentic fine mapping of the rice blast resistance gene Pik-h in the Pik cluster, using new Pik-h-differentiating isolates. Mol Breeding. 2008, 22(2): 289-299.
    137. Yang Q Z, Lin F, Wang L, et al. Identification and mapping of Pi41, a major gene conferring resistance to rice blast in the Oryza sativa subsp. indica reference cultivar, 93-11. Theor Appl Genet, 2009, 118(6): 1027-1034.
    138. Yao F Y, Xu C G, Yu S B, et al. Mapping and genetic analysis of two fertility restorer loci in the wild-abortive cytoplasmic male sterility system of rice (Oryza sativa L.). Euphytica, 1997, 98(3): 183-187.
    139. Yi N J. A unified markov chain Monte Carlo framework for mapping multiple quantitative trait loci. Genetics, 2004, 167 (2): 967-975.
    140. Zenbayashi K, Ashizawa T, Tani T, et al. Mapping of the QTL (Quantitative trait locus) conferring partial resistance to leaf blast in rice cultivar Chubu 32. Theor Appl Genet, 2002, 104(4): 547-552.
    141. Zeng Y W, Zhang H L, Li Z C, et al. Evaluation of genetic diversity of rice landraces (Oryza sativa L.) in Yunnan, China. Breeding Sci, 2007, 57(2): 91-99.
    142. Zhang G, Bharaj T S, Lu Y, et al. Mapping of the Rf-3 nuclear fertility restoring gene for WA cytoplasmic male steri1ity in rice using RAPD and RFLP markes. Theor Appl Genet, 1997, 94(1): 27-33.
    143. Zhang H L, Li Z C, Liao D Q, et al. Microsatellite analysis of landrace rice core collection in Yunnan, China. J Agric Biotechnol, 2003, 11(2): 131-139.
    144. Zheng K L, Huang N, Bennett J, et al. PCR-based marker assisted selection in rice breeding. IRRI Discussion Paper Series, 2005, 12.
    145. Zhou B, Qu S H, Liu G F, et al. The eight amino-acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea. Mol Plant-Microbe Interat, 2006, 19(11): 1216-1228.
    146. Zhou J H, Wang J L, Xu J C, et al. Identification and mapping of a rice blast resistance gene Pi-g(t) in the cultivar Guangchangzhan. Plant Pathol, 2004, 53(2): 191-196.
    147. Zhu M L, Wang L, Pan Q H. Identification and characterization of a new blast resistance gene located on rice chromosome 1 through linkage and differential analyses. Phytopathology, 2004, 94(5): 515-519.
    148. Zhuang J Y, Ma W B, Wu J L, et al. Mapping of leaf and neck blast resistance genes with resistance gene analog, RAPD and RFLP in rice. Euphytica, 2002, 128(3): 363-370.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700