水稻Tos17突变体库的创建和应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用突变体来克隆基因是功能基因组研究的重要策略,目前很多研究机构都在用各种方法创建突变体库,并且从突变体中分离到了很多重要的基因。本研究利用水稻中的一个反转录转座子Tos17创建水稻突变体库。Tos17是一个“复制-粘贴”型的转座子,在组培的情况下被激活产生新的拷贝插入到基因组中,而分化成植株后Tos17的转座活性消失,新的拷贝能稳定遗传。为了证明利用Tos17创建突变体来分离克隆基因的方法的有效性,本研究对T1代家系进行了正向遗传学的筛选,目的是寻找与Tos17插入位点共分离的家系,为基因分离和克隆奠定基础。此外通过接头PCR的方法分离Tos17侧翼序列,不仅能更加深入的了解Tos17在水稻基因组中的分布,而且根据侧翼序列提供的基因信息,可以广泛的开展反向遗传学的研究。主要研究结果如下:
     1.共计产生独立的Tos17突变体15,543株。通过对Tos17拷贝数的Southern检测,发现中花11中Tos17原始拷贝数为4,经过三个月的组培时间,平均每株含有新Tos17插入拷贝1.4个,整个突变体库中约含有插入位点21760个。
     2.利用接头PCR的方法和TAIL-PCR的方法分离到能精确定位到水稻染色体上的Tos17侧翼序列601条,其中非重复的侧翼序列为524条。
     3.从侧翼序列的分析的结果来看,Tos17偏向于插入较大的染色体,插入数目和染色体的长度存在显著的正相关(r=0.717,P<0.01)。而在基因组区间内,我们发现Tos17显著偏爱于插入基因区(SR=10.85),而显著不偏爱于插入基因间隔区(-8.88)和转座因子相关区(-3.68)。在基因区域内,Tos17偏爱插入基因区(SR=4.55)而不偏向插入ATG上游1kb区(SR=-4.62)和翻译终止密码子下游500bp(SR=-3.25)这两个区。在基因编码区内,Tos17显著偏爱插入基因的外显子区域(SR=2.48)。
     4.2008年夏季对Tos17插入突变体T1代1,881个家系进行了筛选,结果显示整个田间有突变表型的频率为5.69%,主要突变表型有矮化、不育、白化、黄化、晚抽穗等。对10个家系中的12个插入位点进行了PCR验证,发现有10个Tos17插入位点是可以确认是正确的。
Mutant for cloning novel gene is an important strategy for functional gene research. A lot of notable genes had been isolated by mutants created by various methods. In this study, we generated a Tos17 insertional mutant library using Zhonghua 11 (japonica cv.) as a recipint. Tosl 7 is a'copy-paste'mode retrotransposon which is activated by tissue culture, becoming inactive in regenerated plants. T1 Tos17 mutants had been screened by forward genetic strategy to identify the mutant which phenotype co-segregate with Tos17 insertion sites and provide a base for gene isolation and cloning. The flanking sequences of Tos17 were isolated by Adapter-PCR and TAIL-PCR. Through the analysis the flanking sequence of Tos17, we can characterize the Tos17 distribution pattern in rice genome and carry out reverse genetic study of the corresponding genes.
     The main results are described as follows:
     1. A total of 15,543 independent Tos17 mutants had been created in Zhonghua 11. Our Southern blot result showes that there are four native copies in Zhonghua 11. After 3 months cultivation, each To line had 1.4 new copy numbers in the generation plants on average. The total insertion site was evaluated about 21,760 in the whole genome.
     2. Employing Adapter-PCR and TAIL-PCR methods,601 Tos17 flanging sequences had been isolated which can be well mapped onto the rice genome. And 524 Tos17 flanking sequences are unique.
     3. The analysis of 524 independent flanking sequences shows that Tos17 insertions were biased towards large chromosome. The insertion sites are highly correlated with the chromosome size (r=0.717, P<0.01). Within chromosomes, Tos17 strongly favored the genic sequences (SR=10.85) and strongly disfavored the intergenic (SR=-8.88) and TE-related (SR=-3.68) sequences. In rice genes, strong bias towards coding sequences (SR=4.55), but not towards the 5'upstream (SR=-4.62) and 3'downstream regions(SR=-3.25). In the coding region, Tosl7 strongly favored the exon region (SR=2.48).
     4.1,881 T1 Tos17 insertional lines had been screened morphologically under normal growth condition in 2008, the result showed that the mutant frequency was 5.69%. The main mutant phenotypes were:dwarf, sterility, albino leaf, yellow leaf, delayed heading, et al.12 insertion sites from 10 mutant lines had been test by PCR and 10 insertion sites were correct.
引文
1. 林拥军.农杆菌介导的水稻转基因研究.[博士学位论文].武汉:华中农业大学图书馆,2001
    2. 张健.水稻T-DNA插入突变体侧翼序列的分离与分析及控制杂合单株低育性基因Osfbox的功能研究.[博士学位论文].武汉:华中农业大学图书馆,2007
    3. Alonso J M, Stepanova AN, Leisse T J, Kim C J, Chen H, Shinn P, Stevenson D K, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers C C, Parker H, Prednis L, Ansari Y, Choy N, Deen H et al. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science,2003,301:653-657
    4. Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature,2000,408:796-815
    5. Azpiroz-Leehan R, Feldmann K A. T-DNA insertion mutagenesis in Arabidopsis:going back and forth. Trends Genet,1997,13:152-156
    6. Babiychuk E, Fuangthong M, Van Montagu M, Inze D, Kushnir S. Efficient gene tagging in Arabidopsis thaliana using a gene trap approach. Proc Natl Acad Sci USA,1997,94: 12722-12727
    7. Barakat A, Gallois P, Raynal M, Mestre-Ortega D, Sallaud C, Guiderdoni E, Delseny M, Bernardi G. The distribution of T-DNA in the genomes of transgenic Arabidopsis and rice. FEBS Lett,2000,471:161-164
    8. Bouvier F, Linka N, Isner J C, Mutterer J, Weber A P, Camara B. Arabidopsis SAMT1 defines a plastid transporter regulating plastid biogenesis and plant development. Plant Cell,2006, 18:3088-3105
    9. Campisi L, Yang Y, Yi Y, Heilig E, Herman B, Cassista A J, Allen D W, Xiang H, Jack T. Generation of enhancer trap lines in Arabidopsis and characterization of expression patterns in the inflorescence. Plant J,1999,17:699-707
    10. Chang Y, Gong L, Yuan W, Li X, Chen G, Li X, Zhang Q, Wu C. Replication protein A (RPA1α) is required for meiotic and somatic DNA repair but is dispensable for DNA replication and homologous recombination in rice. Plant Physiol,2009,151:2162-2173
    11. Chen M, Presting G, Barbazuk W B, Goicoechea J L, Blackmon B, Fang G, Kim H, Frisch D, Yu Y, Sun S, Higingbottom S, Phimphilai J, Phimphilai D, Thurmond S, Gaudette B, Li P, Liu J, Hatfield J, Main D, Farrar K et al. An integrated physical and genetic map of the rice genome. Plant Cell,2002,14:537-545
    12. Chen S, Jin W, Wang M, Zhang F, Zhou J, Jia Q, Wu Y, Liu F, Wu P. Distribution and characterization of over 1000 T-DNA tags in rice genome. Plant J,2003,36:105-113.
    13. Cheng C, Daigen M, Hirochika H. Epigenetic regulation of the rice retrotransposon Tos17. Mol Genet Genomics,2006,276:378-390
    14. Chin H G, Choe M S, Lee S H, Park S H, Koo J C, Kim N Y, Lee J J, Oh B G, Yi G H, Kim S C, Choi H C, Cho M J, Han C D. Molecular analysis of rice plants harboring an Ac/Ds transposable element-mediated gene trapping system. Plant J,1999,19:615-623
    15. Dai X, You C, Wang L, Chen G, Zhang Q, Wu C. Molecular characterization, expression pattern, and function analysis of the OsBCIL family in rice. Plant Mol Biol,2009,71: 469-481
    16. Dai X, Zhang Q. Genetic diversity of six isozyme loci in cultivated barley of Tibet. Theor Appl Genet,1989,78:281-286
    17. Dean C, Sjodin C, Bancroft I, Lawson E, Lister C, Scofield S, Jones J. Development of an efficient transposon tagging system in Arabidopsis thaliana. Symp Soc Exp Biol,1991,45: 63-75
    18. Dombrecht B, Xue G P, Sprague S J, Kirkegaard J A, Ross J J, Reid J B, Fitt G P, Sewelam N, Schenk P M, Manners J M, Kazan K. MYC2 differentially modulates diverse jasmonate-dependent functions in Arabidopsis. Plant Cell,2007,19:2225-2245
    19. Enoki H, Izawa T, Kawahara M, Komatsu M, Koh S, Kyozuka J, Shimamoto K. Ac as a tool for the functional genomics of rice. Plant J,1999,19:605-613
    20. Errampalli D, Patton D, Castle L, Mickelson L, Hansen K, Schnall J, Feldmann K, Meinke D. Embryonic Lethals and T-DNA Insertional Mutagenesis in Arabidopsis. Plant Cell,1991,3: 149-157
    21. Feng Q, Zhang Y, Hao P, Wang S, Fu G, Huang Y, Li Y, Zhu J, Liu Y, Hu X, Jia P, Zhang Y, Zhao Q, Ying K, Yu S, Tang Y, Weng Q, Zhang L, Lu Y, Mu J et al. Sequence and analysis of rice chromosome 4. Nature,2002,420:316-320
    22. Feng S, Shen Y, Sullivan J A, Rubio V, Xiong Y, Sun T P, Deng X W. Arabidopsis CAND1, an unmodified CUL1-interacting protein, is involved in multiple developmental pathways controlled by ubiquitin/proteasome-mediated protein Degradation. Plant Cell,2004,16: 1870-1882
    23. Francis K E, Spiker S. Identification of Arabidopsis thaliana transformants without selection reveals a high occurrence of silenced T-DNA integrations. Plant J,2005,41:464-477.
    24. Fujii S, Yamada M, Toriyama K. Cytoplasmic male sterility-related protein kinase, OsNek3, is regulated downstream of mitochondrial protein phosphatase 2C, DCW11. Plant Cell Physiol,2009,50:828-837
    25. Goff S A, Ricke D, Lan T H, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange B M, Moughamer T, Xia Y, Budworth P, Zhong J, Miguel T et al. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science,2002,296:92-100
    26. Goh C H, Jang S, Jung S, Kim H S, Kang H G, Park Y I, Bae H J, Lee C H, An G Rice photl a mutation reduces plant growth by affecting photosynthetic responses to light during early seedling growth. Plant Mol Biol,2009,69:605-619
    27. Harris T D, Buzby P R, Babcock H, Beer E, Bowers J, Braslavsky I, Causey M, Colonell J, Dimeo J, Efcavitch J W, Giladi E, Gill J, Healy J, Jarosz M, Lapen D, Moulton K, Quake S R, Steinmann K, Thayer E, Tyurina A et al. Single-molecule DNA sequencing of a viral genome. Science,2008,320:106-109
    28. Hayashi H, Czaja I, Lubenow H, Schell J, Walden R. Activation of a plant gene by T-DNA tagging:auxin-independent growth in vitro. Science,1992,258:1350-1353
    29. Hiei Y, Ohta S, Komari T, Kumashiro T. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J, 1994,6:271-282
    30. Hirochika H, Hirochika R. Tyl-copia group retrotransposons as ubiquitous components of plant genomes. Jpn J Genet,1993,68:35-46
    31. Hirochika H, Sugimoto K, Otsuki Y, Tsugawa H, Kanda M. Retrotransposons of rice involved in mutations induced by tissue culture. Proc Natl Acad Sci USA,1996,93: 7783-7788
    32. Hirsch R E, Lewis B D, Spalding E P, Sussman MR.A role for the AKT1 potassium channel in plant nutrition. Science,1998,280:918-921
    33. Hobbs S L, Kpodar P, DeLong C M. The effect of T-DNA copy number, position and methylation on reporter gene expression in tobacco transformants. Plant Mol Biol,1990,15: 851-864
    34. Huang S, Cerny R E, Bhat D S, Brown S M. Cloning of an Arabidopsis patatin-like gene, STURDY, by activation T-DNA tagging. Plant Physiol,2001,125:573-584
    35. Hsing Y I, Chern C G, Fan M J, Lu P C, Chen K T, Lo S F, Sun P K, Ho S L, Lee K W, Wang Y C, Huang W L, Ko S S, Chen S, Chen J L, Chung C I, Lin Y C, Hour A L, Wang Y W, Chang Y C, Tsai M W et al. A rice gene activation/knockout mutant resource for high throughput functional genomics. Plant Mol Biol,2007,63:351-364
    36. International Rice Genome Sequencing Project. The map-based sequence of the rice genome. Nature,2005,436:793-800
    37. Izawa T, Ohnishi T, Nakano T, Ishida N, Enoki H, Hashimoto H, Itoh K, Terada R, Wu C, Miyazaki C, Endo T, Iida S, Shimamoto K. Transposon tagging in rice. Plant Mol Biol,1997, 35:219-229
    38. Jeon J S, Lee S, Jung K H, Jun S H, Jeong D H, Lee J, Kim C, Jang S, Yang K, Nam J, An K, Han M J, Sung R J, Choi H S, Yu J H, Choi J H, Cho S Y, Cha S S, Kim S I, An G. T-DNA insertional mutagenesis for functional genomics in rice. Plant J,2000,22:561-570
    39. Jeong D H, An S, Kang H G, Moon S, Han J J, Park S, Lee H S, An K, An G. T-DNA insertional mutagenesis for activation tagging in rice. Plant Physiol,2002,130:1636-1644
    40. Jeong D H, An S, Park S, Kang H G, Park G G, Kim S R, Sim J, Kim Y O, Kim M K, Kim S R, Kim J, Shin M, Jung M, An G Generation of a flanking sequence-tag database for activation-tagging lines in japonica rice. Plant J,2006,45:123-132
    41. Kakimoto T. CKI1, a histidine kinase homolog implicated in cytokinin signal transduction. Science,1996,274:982-985
    42. Kaneko M, Inukai Y, Ueguchi-Tanaka M, Itoh H, Izawa T, Kobayashi Y, Hattori T, Miyao A, Hirochika H, Ashikari M, Matsuoka M. Loss-of-function mutations of the rice GAMYB gene impair alpha-amylase expression in aleurone and flower development. Plant Cell,2004,16: 33-44
    43. Kardailsky I, Shukla V K, Ahn J H, Dagenais N, Christensen S K, Nguyen J T, Chory J, Harrison M J, Weigel D. Activation tagging of the floral inducer FT. Science,1999,286: 1962-1965
    44. Kikuchi S, Satoh K, Nagata T, Kawagashira N, Doi K, Kishimoto N, Yazaki J, Ishikawa M, Yamada H, Ooka H, Hotta I, Kojima K, Namiki T, Ohneda E, Yahagi W, Suzuki K, Li C J, Ohtsuki K, Shishiki T, Otomo Y et al. Collection, mapping, and annotation of over 28,000 cDNA clones from japonica rice. Science,2003,301:376-379
    45. Krishnan A, Guiderdoni E, An G, Hsing Y I, Han C D, Lee M C, Yu S M, Upadhyaya N, Ramachandran S, Zhang Q, Sundaresan V, Hirochika H, Leung H, Pereira A. Mutant resources in rice for functional genomics of the grasses. Plant Physiol,2009,149:165-170
    46. Krysan P J, Young J C, Sussman M R. T-DNA as an insertional mutagen in Arabidopsis. Plant Cell,1999,11:2283-2290
    47. Kurusu T, Sakurai Y, Miyao A, Hirochika H, Kuchitsu K. Identification of a putative voltage-gated Ca2+ -permeable channel (OsTPC1) involved in Ca2+ influx and regulation of growth and development in rice. Plant Cell Physiol,2004,45:693-702
    48. Kurusu T, Yagala T, Miyao A, Hirochika H, Kuchitsu K. Identification of a putative voltage-gated Ca2+ channel as a key regulator of elicitor-induced hypersensitive cell death and mitogen-activated protein kinase activation in rice. Plant J,2005,42:798-809
    49. Lagerstrom M, Parik J, Malmgren H, Stewart J, Pettersson U, Landegren U. Capture PCR: efficient amplification of DNA fragments adjacent to a known sequence in human and YAC DNA. PCR Methods Appl,1991,1:111-119
    50. Larmande P, Gay C, Lorieux M, Perin C, Bouniol M, Droc G, Sallaud C, Perez P, Barnola I, Biderre-Petit C, Martin J, Morel J B, Johnson A A, Bourgis F, Ghesquiere A, Ruiz M, Courtois B, Guiderdoni E. Oryza Tag Line, a phenotypic mutant database for the Genoplante rice insertion line library. Nucleic Acids Res,2008,36:1022-1027
    51. Laufs P, Autran D, Traas J. A chromosomal paracentric inversion associated with T-DNA integration in Arabidopsis. Plant J,1999,18:131-139
    52. Li X, Song Y, Century K, Straight S, Ronald P, Dong X, Lassner M, Zhang Y. A fast neutron deletion mutagenesis-based reverse genetics system for plants. Plant J,2008,27:235-242
    53. Li W, Zhang P, Fellers J P, Friebe B, Gill B S. Sequence composition, organization, and evolution of the core Triticeae genome. Plant J,2004,40:500-511
    54. Li X, Lassner M, Zhang Y. Deleteagene:a fast neutron deletion mutagenesis-based gene knockout system for plants. Comp Funct Genomics,2002,3:158-160
    55. Li X, Yang Y, Yao J, Chen G, Li X, Zhang Q, Wu C. FLEXIBLE CULM 1 encoding a cinnamyl-alcohol dehydrogenase controls culm mechanical strength in rice. Plant Mol Biol, 2009,69:685-697
    56. Lim M H, Kim J, Kim Y S, Chung K S, Seo Y H, Lee I, Kim J, Hong C B, Kim H J, Park C M. A new Arabidopsis gene, FLK, encodes an RNA binding protein with K homology motifs and regulates flowering time via FLOWERING LOCUS C. Plant Cell,2004,16:731-740
    57. Liu Y G, Whittier R F. Thermal asymmetric interlaced PCR:automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics,1995,25:674-681
    58. Mardis E R. The impact of next-generation sequencing technology on genetics. Trends Genet, 2008,24:133-141
    59. Margulies M, Egholm M, Altman W E, Attiya S, Bader J S, Bemben L A, Berka J, Braverman M S, Chen Y J, Chen Z, Dewell S B, Du L, Fierro J M, Gomes X V, Godwin B C, He W, Helgesen S, Ho C H, Irzyk G P, Jando S C et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature,2005,437:376-380
    60. Miyao A, Tanaka K, Murata K, Sawaki H, Takeda S, Abe K, Shinozuka Y, Onosato K, Hirochika H. Target site specificity of the Tosl7 retrotransposon shows a preference for insertion within genes and against insertion in retrotransposon-rich regions of the genome. Plant Cell,2003,15:1771-1780
    61. Miyao A, Iwasaki Y, Kitano H, Itoh J, Maekawa M, Murata K, Yatou O, Nagato Y, Hirochika H. A large-scale collection of phenotypic data describing an insertional mutant population to facilitate functional analysis of rice genes. Plant Mol Biol,2007,63:625-635
    62. Moon S, Jung K H, Lee D E, Lee D Y, Lee J, An K, Kang H G, An G. The rice FON1 gene controls vegetative and reproductive development by regulating shoot apical meristem size. Mol Cells,2006,21:147-152
    63. Nacry P, Camilleri C, Courtial B, Caboche M, Bouchez D. Major chromosomal rearrangements induced by T-DNA transformation in Arabidopsis. Genetics,1998,149: 641-650
    64. Nakamura H, Hakata M, Amano K, Miyao A, Toki N, Kajikawa M, Pang J, Higashi N, Ando S, Toki S, Fujita M, Enju A, Seki M, Nakazawa M, Ichikawa T, Shinozaki K, Matsui M, Nagamura Y, Hirochika H, Ichikawa H. A genome-wide gain-of function analysis of rice genes using the FOX-hunting system. Plant Mol Biol,2007,65:357-371
    65. Nonomura K I, Nakano M, Murata K, Miyoshi K, Eiguchi M, Miyao A, Hirochika H, Kurata N. An insertional mutation in the rice PAIR2 gene, the ortholog of Arabidopsis ASY1, results in a defect in homologous chromosome pairing during meiosis. Mol Genet Genomics,2004, 271:121-129
    66. Nthangeni M B, Ramagoma F, Tlou M G, Litthauer D. Development of a versatile cassette for directional genome walking using cassette ligation-mediated PCR and its application in the cloning of complete lipolytic genes from Bacillus species. J Microbiol Methods,2005,61: 225-234
    67. Ochman H, Gerber A S, Hartl D L. Genetic applications of an inverse polymerase chain reaction. Genetics,1988,120:621-623
    68. O'Malley R C, Alonso J M, Kim C J, Leisse T J, Ecker J R. An adapter ligation-mediated PCR method for high-throughput mapping of T-DNA inserts in the Arabidopsis genome. Nat Protoc,2007,2:2910-2917
    69. Ohba T, Yoshioka Y, Machida C, Machida Y. DNA rearrangement associated with the integration of T-DNA in tobacco:an example for multiple duplications of DNA around the integration target. Plant J,1995,7:157-164
    70. Piffanelli P, Droc G, Mieulet D, Lanau N, Bes M, Bourgeois E, Rouviere C, Gavory F, Cruaud C, Ghesquiere A, Guiderdoni E. Large-scale characterization of Tosl 7 insertion sites in a rice T-DNA mutant library. Plant Mol Biol,2007,65:587-601
    71. Rice Chromosome 10 Sequencing Consortium. In-depth view of structure, activity, and evolution of rice chromosome 10. Science,2003,300:1566-1569
    72. Riemann M, Riemann M, Takano M. Rice JASMONATE RESISTANT 1 is involved in phytochrome and jasmonate signalling. Plant Cell Environ,2008,31:783-792
    73. Ronaghi M. Pyrosequencing sheds light on DNA sequencing. Genome Res,2001,11:3-11
    74. Rosenthal A, Jones D S. Genomic walking and sequencing by oligo-cassette mediated polymerase chain reaction. Nucleic Acids Res,1990,18:3095-3096
    75. Roulin A, Piegu B, Fortune P M, Sabot F, D'Hont A, Manicacci D, Panaud O. Whole genome surveys of rice, maize and sorghum reveal multiple horizontal transfers of the LTR-retrotransposon Route66 in Poaceae. BMC Evol Biol,2009,9:58
    76. Sallaud C, Gay C, Larmande P, Bes M, Piffanelli P, Piegu B, Droc G, Regad F, Bourgeois E, Meynard D, Perin C, Sabau X, Ghesquiere A, Glaszmann J C, Delseny M, Guiderdoni E. High throughput T-DNA insertion mutagenesis in rice:a first step towards in silico reverse genetics. Plant J,2004,39:450-464
    77. Sasaki T, Matsumoto T, Yamamoto K, Sakata K, Baba T, Katayose Y, Wu J, Niimura Y, Cheng Z, Nagamura Y, Antonio B A, Kanamori H, Hosokawa S, Masukawa M, Arikawa K, Chiden Y, Hayashi M, Okamoto M, Ando T, Aoki H et al. The genome sequence and structure of rice chromosome 1. Nature,2002,420:312-316
    78. Sorrells M E, La Rota M, Bermudez-Kandianis C E, Greene R A, Kantety R, Munkvold J D, Miftahudin, Mahmoud A, Ma X, Gustafson P J, Qi L L, Echalier B, Gill B S, Matthews D E, Lazo G R, Chao S, Anderson O D, Edwards H, Linkiewicz A M, Dubcovsky J et al. Comparative DNA sequence analysis of wheat and rice genomes. Genome Res,2003,13: 1818-1827
    79. Speulman E, Metz P L, van Arkel G, te Lintel Hekkert B, Stiekema W J, Pereira A. A two-component enhancer-inhibitor transposon mutagenesis system for functional analysis of the Arabidopsis genome. Plant Cell,1999,11:1853-1866
    80. Suzuki Y, Uemura S, Saito Y, Murofushi N, Schmitz G, Theres K, Yamaguchi I. A novel transposon tagging element for obtaining gain-of-function mutants based on a self-stabilizing Ac derivative. Plant Mol Biol,2001,45:123-131
    81. Tacke E, Korfhage C, Michel D, Maddaloni M, Motto M, Lanzini S, Salamini F, Doring H P. Transposon tagging of the maize Glossy2 locus with the transposable element En/Spm. Plant J,1995,8:907-917
    82. Thomas C M, Jones D A, English J J, Carroll B J, Bennetzen J L, Harrison K, Burbidge A, Bishop G J, Jones J D. Analysis of the chromosomal distribution of transposon-carrying T-DNAs in tomato using the inverse polymerase chain reaction. Mol Gen Genet,1994,242: 573-585
    83. Triglia T, Peterson M G, Kemp D J. A procedure for in vitro amplification of DNA segments that lie outside the boundaries of known sequences. Nucleic Acids Res,1988,16:8186
    84. Vander Graaff E, Dulk-Ras A D, Hooykaas P J, Keller B. Activation tagging of the LEAFY PETIOLE gene affects leaf petiole development in Arabidopsis thaliana. Development,2000, 127:4971-4980
    85. Weigel D, Ahn J H, Blazquez M A, Borevitz J O, Christensen S K, Fankhauser C, Ferrandiz C, Kardailsky I, Malancharuvil E J, Neff M M, Nguyen J T, Sato S, Wang Z Y, Xia Y, Dixon R A, Harrison M J, Lamb C J, Yanofsky M F, Chory J. Activation tagging in Arabidopsis. Plant Physiol,2000,122:1003-1013
    86. Wu C, Li X, Yuan W, Chen G, Kilian A, Li J, Xu C, Li X, Zhou D X, Wang S, Zhang Q. Development of enhancer trap lines for functional analysis of the rice genome. Plant J,2003, 35:418-427
    87. Wu C, You C, Li C, Long T, Chen G, Byrne M E, Zhang Q. RID1, encoding a Cys2/His2-type zinc finger transcription factor, acts as a master switch from vegetative to floral development in rice. Proc Natl Acad Sci USA,2008,105:12915-12920
    88. Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T. Hdl, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell,2000,12:2473-2484
    89. Yoshii M, Shimizu T, Yamazaki M, Higashi T, Miyao A, Hirochika H, Omura T. Disruption of a novel gene for a NAC-domain protein in rice confers resistance to Rice dwarf virus. Plant J,2009,57:615-625
    90. Yoshimura S, Yamanouchi U, Katayose Y, Toki S, Wang Z X, Kono I, Kurata N, Yano M, Iwata N, Sasaki T. Expression of Xal, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation. Proc Natl Acad Sci USA,1998,95:1663-1668
    91. Yuan W, Li X, Chang Y, Wen R, Chen G, Zhang Q, Wu C. Mutation of the rice gene PAIR3 results in lack of bivalent formation in meiosis. Plant J,2009,59:303-315
    92. Zhang J, Guo D, Chang Y, You C, Li X, Dai X, Weng Q, Zhang J, Chen G, Li X, Liu H, Han B, Zhang Q, Wu C. Non-random distribution of T-DNA insertions at various levels of the genome hierarchy as revealed by analyzing 13804 T-DNA flanking sequences from an enhancer-trap mutant library. Plant J,2007,49:947-959
    93. Zhang Q, Li J, Xue Y, Han B, Deng XW. Rice 2020:a call for an international coordinated effort in rice functional genomics. Molecular plant,2008,1:715-719
    94. Zhao Y, Christensen S K, Fankhauser C, Cashman J R, Cohen J D, Weigel D, Chory J. A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science,2001,291:306-309.
    95. Zubko E, Adams C J, Machaekova I, Malbeck J, Scollan C, Meyer P. Activation tagging identifies a gene from Petunia hybrida responsible for the production of active cytokinins in plants. Plant J,2002,29:797-808

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700