水溶性CdTe量子点的光稳定性研究及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着生物医学研究和显微镜技术的发展,对新一代荧光探针的研究展现出越来越多的必要性和发展潜力。水溶性半导体荧光量子点由于其良好的光学特性,如高量子效率、尺寸可调的荧光发射波长、宽带吸收与窄带荧光、光稳定性良好、双光子吸收截面大等,被认为是非常重要的一种荧光标记材料,并且广泛地应用于细胞标记技术、蛋白示踪、DNA阵列检测技术、免疫荧光标记方法、生物活体及组织检测等方向的研究。本文围绕硫醇包裹水溶性的碲化镉量子点在活体细胞内的光稳定性行为展开,研究了CdTe量子点在细胞内的光稳定性影响因素,逐步确定了量子点光淬灭过程的步骤和机理,并基于光淬灭机理发展出量子点结合肽箐用于光动力治疗以及用表面处理的方法增加量子点光稳定性两方面的应用。主要有以下四个方面的结果:
     1.在细胞内,量子点远比叶绿素和FITC,但相对浓度较低时和绿荧光蛋白相近。发现量子点在细胞内不同浓度的区域,其光稳定性也不同,即浓度效应。并进一步从溶液和细胞两方面确定了氧气在载光淬灭中的作用。
     2.通过实验研究了量子点在水溶液中光淬灭过程的机理。拉曼光谱证明光照后量子点表面Cd-S键脱离,动态散射实验确定了光照后量子点聚集,叠氮纳影响荧光淬灭时间确定单态氧参与的光氧化过程,从而最终确认了量子点光淬灭的全过程。
     3.由直接和间接两种方法确定了量子点单态氧量子产额为1%。将量子点与肽箐结合,使量子点复合物的单态氧量子产额增加到15%,同时保留量子点光学性质,使之能够用于光动力治疗。
     4.通过表面处理的方法,增加了CdTe量子点的量子产额以及光稳定性。通过单量子点的研究,证实表面处理的方法能使量子点的光稳定增加3倍左右。
With the development of biomedical application and the microscope technology, the study of new type fluorescence probes become more reasonable and have bright future.Water-soluble semiconductor fluorescent quantum dots(QDs) are considered as a very important bio-labeling material owing to their outstanding optical properties such as size-tunable emission,broad absorption and narrow symmetric emission,high photo-stability,large 2-photon absorption cross section,and etc.This thesis focused on the photostability of thiol-capped CdTe QDs.We studied the effects of the photostability of QDs,conculed the theory of photobleaching process.Base on the theory,we developed two application:1) link QD and phthalocyanines to improve the singlet oxygen quantum yield for photodynamic therapy;2) using surface-treatment to improve photostability of QDs.The main results are listed as follows:
     1.The photostability of thiol-capped CdTe quantum dots(QDs) in Euglena gracilis (EG 277) and human embryonic kidney(HEK 293) cells was studied.The photobleaching for the cellular QDs is dependent both on the irradiation power density and the QD local concentration.The photostability of cellular QDs is better than that of chlorophyll and of green fluorescence protein(GFP) and is much better than that of FITC when the local concentration of QDs is not too low. The photobleaching of cellular QDs was remarkably reduced in the nitrogen treated EG 277 cells,indicating that photobleaching in living cells mainly results from photo-oxidation.The effect of photo-oxidation on QD photobleaching was further confirmed by comparing the situations in oxygen treated and nitrogen treated QD aqueous solutions.The photobleaching rate is related to the irradiation power density and the local density of QDs.The higher irradiation power density and oxygen abundance and lower QD concentration will result in a higher photobleaching rate.
     2.The process and mechanism of photochemical instability of thiol-capped CdTe quantum dots(QDs) in aqueous solution were experimentally studied.After laser irradiation,the corresponding Raman bands of the Cd-S bond decreased obviously, indicating bond breaking and thiol detachment from the QD surfaces.Meanwhile, a photoinduced aggregation of QDs occurred with the hydrodynamic diameter increased to hundreds of nanometers from an initial 20 nm,as detected with dynamic light scattering measurements.The bleaching of the photoluminescence of QDs under laser irradiation could be attributed to the enhanced nonradiative transfer in excited QDs caused by increased surface defects due to the losing of thiol ligands.Singlet oxygen(1O2) was involved in the photooxidation of QDs,as revealed by the inhibiting effects of 1O2 quenchers of histidine or sodium azide (NaN3) on the photobleaching of QDs.The linear relationship in Stern-Volmer measurements between the terminal product and the concentration of NaN3 demonstrated that 1O2 was the main pathway of the photobleaching in QD solutions.
     3.By means of the direct detection of near-infrared 1270 nm,we found that the water-soluble thiol-capped CdTe QDs can photoproduce 102 in deuterated water with a low quantum yield(QY) of 1%.When sulfonated aluminum phthalocyanines(AISPc's) were connected to these QDs,forming water-soluble QD-Pc composites,the 1O2 QY of the composites increased to 15%under the excitation of 532 nm.QD-Pc composites can fully utilize visible region light excitation to effectively produce 1O2,which may facilitate the applications of QD-Pc composites in broad areas.
     4..The surface treatment of thiol-capped CdTe quantum dots(QDs) was carried out with a small amount of sodium borohydride(NaBH4) in aqueous solution at room temperature.The treatment effectively enhanced the photostability of QDs and increased the photoluminescence(PL) efficiency by a factor of two as against the original ones.By measuring the PL trajectories of single QDs with a total internal reflection fluorescence microscope,the photostable lifetimes were determined to be 15.2±5.9 s for surface-treated QDs,and 5.8±1.9 s for the original ones, respectively.
引文
1.Brian Herman,Victoria E.Centonze Frohlich.Basic Concepts in Fluorescence[EB/OL].:www.olympusmicro.com,2008-5-1.
    2.Mortimer Abramowitz.Anatomy of the Fluorescence Microscope[EB/OL].:www.olympusmicro.com,2008-5-1.
    3.James B Pawley.Handbook of biological confocal microscopy[M].New York:Plenum Press,1990:13.
    4.Stephen W Paddock.Confocal Microscopy Methods and Protocols[M].New Jersey:Humana Press,1999:153.
    5.Van der Wulp.The Confocal Microscope[EB/OL].:http://www.gonda.ucla.edu/bri_core/confocal.htm,2008-5-1.
    6.Thomas J.Fellers,Michael W.Davidson.Introduction to Confocal Microscopy[EB/OL].:www.olympusmicro.com,2008-5-1.
    7.Mortimer Abramowitz.Differential Interference Contrast[EB/OL].:www.olympusmicro.com,2008-5-1.
    8.Jennifer Lippincott-Schwartz.Fluorophores for Confocal Microscopy[EB/OL].:www.olympusmicro.com,2008-5-1.
    9.I.L.Medintz,H.T.Uyeda,E.R.Goldman,H.Mattouss.Quantum dot bioconjugates for imaging,labelling and sensing.[J].Nat.Mater.,2005,4:435-446
    10.X.Michalet,F.F.Pinaud,L.A.Bentolila,J.M.Tsay,S.Doose,J.J.Li,G.Sundaresan,A.M.Wu,S.S.Gambhir,S.Weiss.Quantum Dots for Live Cells,in Vivo Imaging,and Diagnostics.[J].Science, 2005, 307: 538-544
    
    11. F. Pinaud, X. Michalet, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Iyer, S. Weiss. Advances in fluorescence imaging with quantum dot bio-probes. [J]. Biomaterials, 2006, 27: 1679-1687
    
    12. S. Le-Gac, I. Vermes, A. van den Berg. Quantum Dots Based Probes Conjugated to Annexin V for Photostable Apoptosis Detection and Imaging. [J]. Nano Lett., 2006,6: 1863-1869
    
    13. S. S. Rajan, T. Q. Vu. Quantum Dots Monitor TrkA Receptor Dynamics in the Interior of Neural PC 12 Cells. [J]. Nano Lett., 2006, 6: 2049-2059
    
    14. G. Ruan, A. Agrawa, A. I. Marcusan, S. M. Nie. Imaging and Tracking of Tat Peptide-Conjugated Quantum Dots in Living Cells: New Insights into Nanoparticle Uptake, Intracellular Transport, and Vesicle Shedding. [J]. J. Am. Chem. Soc, 2007, 129: 14759-14766
    
    15. S. J. Cho, D. Maysinger, M. Jain, B. Roder, S. Hackbarth, F. M. Winnik. Long-Term Exposure to CdTe Quantum Dots Causes Functional Impairments in Live Cells. [J]. Langmuir, 2007, 23: 1974-1980
    
    16. D. Maysinger, M. Behrendt, M. Lalancette-Hebert, J. Kriz. Real-Time Imaging of Astrocyte Response to Quantum Dots: In Vivo Screening Model System for Biocompatibility of Nanoparticles. [J]. Nano Lett., 2007, 7: 2513-2520
    
    17. A. Hoshino, N. Manabe, K. Fujioka, K. Suzuki, M. Yasuhara, K. Yamamoto. Use of fluorescent quantum dot bioconjugates for cellular imaging immune cells, cell organelle labeling, and nanomedicine: surface modifi cation regulates biological function, including cytotoxicity. [J]. J. Artif. Organs, 2007, 10: 149-157
    
    18. A. M. Derfus, W. C. W. Chan, S. N. Bhatia. Intracellular Delivery of Quantum Dots for Live Cell Labeling and Organelle Tracking. [J]. Adv. Mater, 2004, 16: 961-966
    
    19. C. M. Niemeyer. Nanoparticles, Proteins, and Nucleic Acids: Biotechnology Meets Materials Science. [J]. Angew. Chem. Int. Ed, 2001, 40: 4128-4158
    
    20. I. L. Medintz, A. R. Clapp, H. Mattoussi, E. R. Goldman, B. R. Fisher, J. M. Mauro. Self- assembled nanoscale biosensors based on quantum dot FRET donors. [J]. Nat. Mater, 2003, 2: 630- 638
    
    21. X. H. Gao, Y. Y. Cui, R. Levenson, L. W. K. Chung, S. M. Nie. In vivo cancer targeting and imaging with semiconductor quantum dots. [J]. Nat. Biotechnol., 2004, 22: 969-976
    
    22. D. S. Lidke, P. Nagy, R. Heintzmann, D. J. Arndt-Jovin, J. N. Post, H. E. Grecco, E. A. Jares- Erijman, T. M. Jovin. Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction. [J]. Nat. Biotechnol, 2004, 22: 198-203
    
    23. A. M. Smith, X. H. Gao, S. M. Nie. Quantum Dot Nanocrystals for In Vivo Molecular and Cellular Imaging. [J]. Photochem. Photobiol, 2004, 80: 337-385
    
    24. P. Alivisatos. The use of nanocrystals in biological detection. [J]. Nat. Biotechnol, 2004, 22: 47-52
    25. Y. Wang, Z. Y. Tang, N. A. Kotov. Bioapplication of nanosemiconductors. [J]. Mater. Today, 2005, 8:20-31
    
    26. W. J. Parak, T. Pellegrino, C. Plank. Labelling of cells with quantum dots. [J]. Nanotechnology, 2005, 16: R9-R25
    
    27. Y. H. Sun, Y. S. Liu, P. T. Vernier, C. H. Liang, S. Y. Chong, L. Marcu, M. A. Gundersen. Photostability and pH sensitivity of CdSe/ZnSe/ZnS quantum dots in living cells. [J]. Nanotechnology, 2006, 17:4469-4476
    
    28. Y. Zhang, J. Y. Chen, J. He, D. R. Lu, J. Guo, C. C. Wang, W. L. Yang, P. N. Wang. Time- Dependent Photoluminescence Blue Shift of the Quantum Dots in Living Cells: Effect of Oxidation by Singlet Oxygen. [J]. J. Am. Chem. Soc, 2006, 128: 13396-13401
    
    29. W. J. Parak, T. Pellegrino, C. Plank. Labelling of cells with quantum dots. [J]. Nanotechnology, 2005, 16: R9-R25
    
    30. J. Aldana, N. Lavelle, Y. J. Wang, X. G. Peng. Size-Dependent Dissociation pH of Thiolate Ligands from Cadmium Chalcogenide Nanocrystals. [J]. J. Am. Chem. Soc, 2005, 127: 2496-2504
    
    31. J. A. Kloepfer, S. E. Bradforth, J. L. Nadeau. Photophysical Properties of Biologically Compatible CdSe Quantum Dot Structures. [J]. J. Phys. Chem. B 2005, 109: 9996-10003
    
    32. A. M. Derfus, W. C. W. Chan, S. N. Bhatia. Probing the Cytotoxicity of Semiconductor Quantum Dots. [J]. Nano Lett., 2004, 4: 11-18
    
    33. A. P. Alivisatos. Semiconductor Clusters, Nanocrystals, and Quantum Dots. [J]. Science, 1996, 271: 933-937
    
    34. C. B. Murray, D. J. Norris, M. G. Bawendi. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. [J]. J. Am. Chem. Soc, 1993, 115:8706-8715
    
    35. X. G. Peng. Green chemical approaches toward high-quality semiconductor nanocrystals. [J]. Chem-Eur. J, 2002, 8: 335-339
    
    36. N. Gaponik, D. V. Talapin, A. L. Rogach, K. Hoppe, E. V. Shevchenko, A. Kornowski, A. Eychmiiller, H. Weller. Thiol-capping of CdTe nanocrystals: An alternative to organometallic synthetic routes. [J]. J. Phys. Chem. B, 2002, 106: 7177-7185
    
    37. M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Macklin, J. K. Trautman, T. D. Harris, L. E. Brus. Fluorescence intermittency in single cadmium selenide nanocrystals. [J]. Nature, 1996, 383: 802-804
    
    38. W. G. J. H. M. van Sark, P. L. T. M. Frederix, D. J. Van den Heuvel, H. C. Gerritsen. Photooxidation and Photobleaching of Single CdSe/ZnS Quantum Dots Probed by Room-Temperature Time-Resolved Spectroscopy. [J]. J. Phys. Chem. B, 2001, 105: 8281-8284
    
    39. W. G. J. H. M. van Sark, P. L. T. M. Frederix, A. A. Bol, H. C. Gerritsen, A. Meijerink. Blueing, Bleaching, and Blinking of Single CdSe/ZnS Quantum Dots. [J]. ChemPhysChem, 2002, 3: 871-879
    
    40. N. Myung, Y. Bae, A. J. Bard. Enhancement of the Photoluminescence of CdSe Nanocrystals Dispersed in CHC13 by Oxygen Passivation Surface States. [J]. Nano Lett., 2003, 3: 747-749
    
    41. S. F. Wuister, C. de Mello Donega, A. Meijerink. Influence of Thiol Capping on the Exciton Luminescence and Decay Kinetics of CdTe and CdSe Quantum Dots. [J]. J. Phys. Chem. B, 2004, 108: 17393-17397
    
    42. D. J. Stephens, V. J. Allan. Light Mivroscopy Techniques for Live Cell Imaging. [J]. Science, 2003, 300: 82-86
    
    43. C. J. Weijer. Visualizing Signals Moving in Cells. [J]. Science, 2003, 300: 96-100
    
    44. W. C. W. Chan, S. M. Nie. Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection. [J]. Science, 1998, 281: 2016-2018
    
    45. M. J. Bruchez, M. Moronne, P. Gin, S. Weiss, A. P. Alivisatos. Semiconductor Nanocrystals as Fluorescent Biological Labels. [J]. Science, 1998, 281: 2013-2015
    
    46. P. Reiss, J. Bleuse, A. Pron. Highly Luminescent CdSe/ZnSe Core/Shell Nanocrystals of Low Size Dispersion [J]. Nano Lett., 2002, 2: 781 -784
    
    47. H. Mattoussi, J. M. Mauro, E. R. Goldman, G. P. Anderson, V. C. Sundar, F. V. Mikulec, M. G. Bawendi. Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein. [J]. J. Am. Chem. Soc, 2000, 122: 12142-12150
    
    48. G. P. Mitchell, C. A. Mirkin, R. L. Letsinger. Programmed assembly of DNA functionalized quantum dots. [J]. J. Am. Chem. Soc, 1999, 121: 8122-8123
    
    49. E. R. Goldman, E. D. Balighian, H. Mattoussi, M. K. Kuno, J. M. Mauro, P. T. Tran, G. P. Anderson. Avidin: a natural bridge for quantum dot-antibody conjugates. [J]. J. Am. Chem. Soc, 2002, 124: 6378-6382
    
    50. D. Gerion, F. Pinaud, S. C. Williams, W. J. Parak, D. Zanchet, S. Weiss, A. P. Alivisatos. Synthesis and properties of biocompatible water-soluble silica coated CdSe/ZnS semiconductor quantum dots. [J]. J. Phys. Chem. B, 2001, 105: 8861-8871
    
    51. F. Osaki, T. Kanamori, S. Sando, T. Sera, Y. A. Aoyama. Quantum Dot Conjugated Sugar Ball and Its Cellular Uptake on the Size Effects of Endocytosis in the Subviral Region. [J]. S. Am. Chem. Soc, 2004, 126: 6520-6521
    
    52. L. C. Mattheakis, J. M. Dias, Y. J. Choi, J. Gong, M. P. Bruchez, J. Q. Liu, E. Wang. Optical coding of mammalian cells using semiconductor quantum dots. [J]. Anal. Biochem., 2004, 327: 200- 208
    
    53. W. C. W. Chan, D. J. Maxwell, X. H. Gao, R. E. Bailey, M. Y. Han, S. M. Nie. Luminescent quantum dots for multiplexed biological detection and imaging. [J]. Curr. Opin. Biotech, 2002, 13: 40- 46
    
    54. S. Rosenthal, A. Tomlinson, E. Adkins, S. Schroeter, S. Adams, L. Swafford, J. McBride, Y. Wang, L. DeFelice, R. Blakely. Targeting cell surface receptors with ligand-conjugated nanocrystals [J]. J. Am. Chem. Soc, 2002, 124: 4586-4594
    
    55. M. E. Akerman, W. C. W. Chan, P. Laakkonen, S. N. Bhatia, E. Ruoslahti. Nanocrystal targeting in vivo [J]. Proc. Natl. Acad. Sci., 2002, 99: 12617-12621.
    
    56. J. O. Winter, T. Y. Liu, B. A. Korgel, C. E. Schmidt. Recognition molecule directed interfacing between semiconductor quantum dots and nerve cells. [J]. Adv. Mater., 2001, 13: 1673-1677
    
    57. X. Y. Wu, H. J. Liu, J. Q. Liu, K. N. Haley, J. A. Treadway, J. P. Larson, N. F. Ge, F. Peale, M. P. Bruchez. Immunofiuorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. [J]. Nat. Biotechnol., 2003, 21: 41-46
    
    58. K. I. Hanaki, A. Momo, T. Oku, A. Komoto, S. Maenosono, Y. Yamaguchi, K. Yamamoto. Semiconductor quantum dot/albumin complex is a long-life and highly photostable endosome marker. [J]. Biochem. Bioph. Res. Co., 2003, 302 496-501
    
    59. J. A. Kloepfer, R. E. Mielke, M. S. Wong, K. H. Nealson, G. Stucky, J. L. Nadeau. Quantum dots as strain- and metabolism-specific microbiological tables. [J]. Appl. Environ. Microbiol., 2003, 69: 4205-4213
    
    60. D. Gerion, W. J. Parak, S. C. Williams, D. Zanchet, C. Micheel, A. P. Alivisatos. Sorting fluorescent nanocrystals with DNA. [J]. J. Am. Chem. Soc, 2002, 124 7070-7074
    
    61. S. Pathak, S. K. Choi, N. Arnheim, M. E. Thompson. Hydroxylated quantum dots as luminescent probes for in situ hybridization. [J]. J. Am. Chem. Soc, 2001, 123: 4103-4104
    
    62. B. Dubertret, P. Skourides, D. Norris, V. Noireaux, A. Brivanlou, A. Libchaber. In vivo imaging of quantum dots encapsulated in phospholipids micelles. [J]. Science, 2002, 298: 1759-1762
    
    63. M. Dahan, S. Levi, C. Luccardini, P. Rostaing, B. Riveau, A. Triller. Diffusion dynamics of glycine receptors revealed by singlequantum dot tracking. [J]. Science 2003, 302: 442-445
    
    64. N. Billinton, A. W. Knight. Seeing the Wood through the Trees: A Review of Techniques for Distinguishing Green Fluorescent Protein from Endogenous Autofluorescence. [J]. Anal. Biochem., 2001,291: 175-197
    
    65. D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, W. W. Webb. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. [J]. Science, 2003, 300: 1434-1436
    
    66. M. Akerman, W. Chan, P. Laakkonen, S. Bhatia, E. Ruoslahti. Nanocrystal targeting in vivo. [J]. Proc. Natl. Acad. Sci, 2002, 99: 12617-12621.
    
    67. S. Kim, Y. T. Lim, E. G. Soltesz, A. M. D. Grand, J. Lee, A. Nakayama, J. A. Parker, T. Mihaljevic, R. G. Laurence, D. M. Dor, L. H. Cohn, M. G. Bawendi, J. V. Frangion. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. [J]. Nat. Biotechnol., 2004, 22: 93-97
    
    68. B. Ballou, B. C. Lagerholm, L. A. Ernst, M. P. Bruchez, A. S. Waggoner. Noninvasive imaging of quantum dots in mice. [J]. Bioconj. Chem., 2004, 15: 79-86
    
    69. E. B. Voura, J. K. Jaiswal, H. Mattoussi, S. M. Simon. Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy. [J]. Nat. Med., 2004, 10: 993-998
    
    70. M. J. Levene, D. A. Dombeck, K. A. Kasischke, R. P. Molloy, W. W. Webb. In vivo multiphoton microscopy of deep brain tissue. [J]. J. Neurophys., 2004, 91: 1908-1912
    
    71. E. A. Jares-Erijman, T. M. Jovin. FRET imaging. [J]. Nat. Biotechnol, 2003, 21: 13871395
    
    72. N. N. Mamedova, N. A. Kotov, A. L. Rogach, J. Studer. Albumin-CdTe nanoparticle bioconjugates: preparation, structure, and interunit energy transfer with antenna effect. [J]. Nano Lett, 2001, 1: 281- 286
    
    73. D. M. Willard, L. L. Carillo, J. Jung, A. Van Orden. CdSe-ZnS quantum dots as resonance energy transfer donors in a model protein-protein binding assay. [J]. Nano Lett, 2001, 1: 469-474
    
    74. P. T. Tran, E. R. Goldman, G. P. Anderson, J. M. Mauro, H. Mattoussi. Use of luminescent CdSe- ZnS nanocrystal bioconjugates in quantum dot-based nanosensors. [J]. Phys. Status Solidi B, 2002, 229: 427-432
    
    75. A. R. Clapp, I. L. Medintz, B. R. Fisher, G. P. Anderson, H. Mattoussi. Can luminescent quantum dots be efficient energy acceptors with organic dye donors. [J]. J. Am. Chem. Soc, 2005, 127: 1242- 1250
    1.J.Guo,W.L.Yang,C.C.Wang.Systematic Study of the Photoluminescence Dependence of Thiol-Capped CdTe Nanocrystals on the Reaction Conditions.[J].J.Phys.Chem.B,2005,109:17467-17473
    1.STEPHENS DJ.Light microscopy techniques for live cell Imaging[J].SCIENCE,2003,300:82.
    2.WEIJER CJ.Visualizing signals moving in cells[J].SCIENCE,2003,300:96.
    3.BRUCHEZ M.Semiconductor nanocrystals as fluorescent biological labels[J].SCIENCE,1998,281:2013.
    4.CHAN WCW.Luminescent quantum dots for multiplexed biological detection and imaging[J].CURRENT OPINION IN BIOTECHNOLOGY,2002,13:40.
    5.CHAN WCW.Quantum dot bioconjugates for ultrasensitive nonisotopic detection[J].SCIENCE,1998,281:2016.
    6.PARAK WJ.Biological applications of colloidal nanocrystals[J].NANOTECHNOLOGY,2003,14:R15.
    7.ALIVISATOS P.The use of nanocrystals in biological detection[J].NATURE BIOTECHNOLOGY,2004,22:47.
    8.QU LH.Control of photoluminescence properties of CdSe nanocrystals in growth[J].JOURNAL OF THE AMERICAN CHEMICAL SOCIETY,2002,124:2049.
    9.KIPPENY T.Semiconductor nanocrystals:A powerful visual aid for introducing the particle in a box[J].JOURNAL OF CHEMICAL EDUCATION,2002,79:1094.
    10.YU WW.Experimental determination of the extinction coefficient of CdTe,CdSe,and CdS nanocrystals[J].CHEMISTRY OF MATERIALS,2003,15:2854.
    11.GAO XH. Quantum-dot nanocrystals for ultrasensitive biological labeling and multicolor optical encoding [J]. JOURNAL OF BIOMEDICAL OPTICS, 2002, 7: 532.
    
    12.PARAK WJ. Labelling of cells with quantum dots [J]. NANOTECHNOLOGY, 2005, 16: R9.
    13.K.APITONOV AM. Luminescence properties of thiol-stabilized CdTe nanocrystals [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 1999, 103: 10109.
    
    14.GAO XH. Molecular profiling of single cells and tissue specimens with quantum dots[J]. TRENDS IN BIOTECHNOLOGY, 2003, 21: 371.
    
    15.HANAKI K. Semiconductor quantum dot/albumin complex is a long-life and highly photostable endosome marker [J]. BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2003, 302: 496.
    
    16.ALDANA J. Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols[J] JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123:8844.
    17.ZHANG H. Hydrothermal synthesis for high-quality CdTe nanocrystals [J]. ADVANCED MATERIALS, 2003, 15: 1712.
    
    18.GUO J. Systematic study of the photoluminescence dependence of thiol-capped CdTe nanocrystals on the reaction conditions [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109: 17467.
    19.KANG L. Neodymium cations Nd3+ were transported to the interior of Euglena gracilis 277 [J]. CHINESE SCIENCE BULLETIN, 2000, 45: 585.
    
    20.KIM IS.Physicochemical characterization of poly(L-lactic acid) and poly(D,L-lactide-co-glycolide) nanoparticles with polyethylenimine as gene delivery carrier[J]. INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2005, 298: 255.
    
    21.XU Y. Establishment of green fluorescent protein-expressing hepatocellular carcinoma cell lines with different metastatic potential: relevant models for in vivo monitoring of metastasis and angiogenesis[J]. JOURNAL OF CANCER RESEARCH AND CLINICAL ONCOLOGY, 2004, 130: 375.
    
    22.BROWN JS. ABSORPTION AND FLUORESCENCE-SPECTRA OF CHLOROPHYLL- PROTEINS ISOLATED FROM EUGLENA-GRACILIS [J]. BIOCHIMICA ET BIOPHYSICA ACTA, 1980,591:9.
    
    23. EINICKERLAMAS M. Euglena gracilis as a model for the study of Cu2+ and Zn2+ toxicity and accumulation in eukaryotic cells [J]. ENVIRONMENTAL POLLUTION, 2002, 120: 779.
    24.LI ZF. Water-soluble poly(acrylic acid) grafted luminescent silicon nanoparticles and their use as fluorescent biological staining labels[J]. NANO LETTERS, 2004, 4: 1463.
    
    25.HOSHINO A. Applications of T-lymphoma labeled with fluorescent quantum dots to cell tracing markers in mouse body [J]. BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2004, 314: 46.
    
    26.SMITH AM. Quantum dot nanocrystals for in vivo molecular and cellular imaging[J]. PHOTOCHEMISTRY AND PHOTOBIOLOGY,2004, 80: 377.
    
    27.HOSHINO A. Applications of T-lymphoma labeled with fluorescent quantum dots to cell tracing markers in mouse body [J]. BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2004, 314: 46.
    
    28.DERFUS AM. Probing the cytotoxicity of semiconductor quantum dots [J]. NANO LETTERS, 2004,4: 11.
    
    29.KLOEPFER JA. Photophysical properties of biologically compatible CdSe quantum dot structures[J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109: 9996.
    
    30.HOSHINO A. Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification [J].NANO LETTERS, 2004, 4: 2163.
    
    31. KIRCHNER C. Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles [J]. NANO LETTERS, 2005,5:331.
    
    32.SPANHEL L. PHOTOCHEMISTRY OF COLLOIDAL SEMICONDUCTORS .20. SURFACE MODIFICATION AND STABILITY OF STRONG LUMINESCING CDS PARTICLES [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1987, 109: 5649.
    
    33.NIRMAL M. Fluorescence intermittency in single cadmium selenide nanocrystals [J]. NATURE, 1996, 383: 802.
    1.MURRAY CB.Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies[J].ANNUAL REVIEW OF MATERIALS SCIENCE,2000,30:545.
    2.QU LH.Control of photoluminescence properties of CdSe nanocrystals in growth[J].JOURNAL OF THE AMERICAN CHEMICAL SOCIETY,2002,124:2049.
    3.CHAN WCW.Quantum dot bioconjugates for ultrasensitive nonisotopic detection[J].SCIENCE,1998,281:2016.
    4.BRUCHEZ M.Semiconductor nanocrystals as fluorescent biological labels[J].SCIENCE,1998,281:2013.
    5.SEYDEL C.Quantum dots get wet[J].SCIENCE,2003,300:80.
    6.UREN RF. Cancer surgery joins the dots [J]. NATURE BIOTECHNOLOGY, 2004, 22: 38.
    7. POPESCU MA. In vivo optical imaging using quantum dots for the management of brain tumors [J]. EXPERT REVIEW OF MOLECULAR DIAGNOSTICS, 2006, 6: 879.
    
    8.YU WW. Water-soluble quantum dots for biomedical applications [J]. BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2006, 348: 781.
    
    9.MANABE N. Quantum dot as a drug tracer in vivo [J]. IEEE TRANSACTIONS ON NANOBIOSCIENCE, 2006, 5: 263.
    
    10.KLOSTRANEC JM. Quantum dots in biological and biomedical research: Recent progress and present challenges [J]. ADVANCED MATERIALS, 2006, 18: 1953.
    
    11.WANG F. Luminescent nanomaterials for biological labelling [J]. NANOTECHNOLOGY, 2006, 17: R1.
    
    12.NECHYPORUKZLOY V. Single plasma membrane K+ channel detection by using dual-color quantum dot labeling [J]. AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2006, 291:C266.
    
    13.SHI LF. Synthesis and application of quantum dots FRET-based protease sensors [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128: 10378.
    
    14.ZHANG H. Hydrothermal synthesis for high-quality CdTe nanocrystals [J]. ADVANCED MATERIALS, 2003, 15: 1712.
    
    15.WENG JF. Highly luminescent CdTe quantum dots prepared in aqueous phase as an alternative fluorescent probe for cell imaging [J]. TALANTA, 2006, 70: 397.
    
    16.LI ZH. Immunofluorescent, labeling of cancer cells with quantum dots synthesized in aqueous solution [J]. ANALYTICAL BIOCHEMISTRY, 2006, 354: 169.
    
    17.WU SM. Quantum-dot-labeled DNA probes for fluorescence in situ hybridization (FISH) in the microorganism Escherichia coli [J]. CHEMPHYSCHEM, 2006, 7: 1062.
    
    18.GAO XH. Molecular profiling of single cells and tissue specimens with quantum dots [J]. TRENDS IN BIOTECHNOLOGY, 2003, 21: 371.
    
    19. MA J. Photostability of thiol-capped CdTe quantum dots in living cells: the effect of photo- oxidation [J]. NANOTECHNOLOGY, 2006, 17: 2083.
    
    20.GUO J. Systematic study of the photoluminescence dependence of thiol-capped CdTe nanocrystals on the reaction conditions[J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109: 17467.
    21.DAI XD. Hematoporphyrin monomethyl ether photodynamic damage on HeLa cells by means of reactive oxygen species production and cytosolic free calcium concentration elevation[J]. CANCER LETT, 2004,216:43.
    22.GORSKA M. APPLICATION OF RANDOM-ELEMENT ISODISPLACEMENT MODEL TO LONG-WAVELENGTH OPTICAL PHONONS IN CDSECHITE1-CHIMIXED CRYSTALS [J]. PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1974, 65: 193.
    
    24.BYRNE SJ. Optimisation of the synthesis and modification of CdTe quantum dots for enhanced live cell imaging [J]. JOURNAL OF MATERIALS CHEMISTRY, 2006, 16: 2896.
    
    25. IPE BI. Dynamic light-scattering analysis of the electrostatic interaction of hexahistidine-tagged cytochrome P450 enzyme with semiconductor quantum dots [J]. CHEMPHYSCHEM, 2006, 7: 1112.
    
    26.SAMIA ACS. Semiconductor quantum dots for photodynamic therapy [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125: 15736.
    
    27.MISKOSKI S. INFLUENCE OF THE PEPTIDE-BOND ON THE SINGLET MOLECULAR OXYGEN-MEDIATED (O-2[(1)DELTA(G)]) PHOTOOXIDATION OF HISTIDINE AND METHIONINE DIPEPTIDES - A KINETIC-STUDY [J]. PHOTOCHEMISTRY AND PHOTOBIOLOGY, 1993, 57: 447.
    
    28. TELFER A. ISOLATED PHOTOSYNTHETIC REACTION-CENTER OF PHOTOSYSTEM-II AS A SENSITIZER FOR THE FORMATION OF SINGLET OXYGEN - DETECTION AND QUANTUM YIELD DETERMINATION USING A CHEMICAL TRAPPING TECHNIQUE [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 1994, 269: 13244.
    
    29. GAO MY. Strongly photoluminescent CdTe nanocrystals by proper surface modification [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 1998, 102: 8360.
    
    30. WANG Q. Luminescent properties of water-soluble denatured bovine serum albumin-coated CdTe quantum dots[J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110: 16860.
    
    31.FOOTE CS. QUENCHING OF SINGLET OXYGEN[J]. ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 1970, 171: 139.
    1.DOUGHERTY TJ.Photodynamic therapy[J].JOURNAL OF THE NATIONAL CANCER INSTITUTE,1998,90:889.
    2.BONNETT R.PHOTOSENSITIZERS OF THE PORPHYRIN AND PHTHALOCYANINE SERIES FOR PHOTODYNAMIC THERAPY[J].CHEMICAL SOCIETY REVIEWS,1995,24:19.
    3.WHITACRE CM.Photodynamic therapy with the phthalocyanine photosensitizer Pc 4 of SW480 human colon cancer xenografts in athymic mice[J]. CLINICAL CANCER RESEARCH, 2000, 6: 2021.
    
    4.MORRIS RL. Fluorescence resonance energy transfer reveals a binding site of a photosensitizer for photodynamic therapy[J]. CANCER RESEARCH, 2003, 63: 5194.
    
    5.BENHUR E. Silicon phthalocyanine Pc 4 and red light causes apoptosis in HIV-infected cells [J]. PHOTOCHEMISTRY AND PHOTOBIOLOGY, 1997, 65: 456.
    
    6.MINN0CK A. Photoinactivation of bacteria. Use of a cationic water-soluble zinc phthalocyanine to photoinactivate both gram-negative and gram-positive bacteria [J]. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY, 1996, 32: 159.
    
    7. TAU P. Comparative photocatalytic efficiency of oxotitanium(IV) phthalocyanines for the oxidation of l-hexene[J]. JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL, 2007, 273: 149.
    
    8.ILIEV V. Catalytic and photocatalytic oxidation of 2-mercaptobenzothiazole in water medium [J]. OXIDATION COMMUNICATIONS, 2002, 25: 279.
    
    9.SEYDEL C. Quantum dots get wet [J]. SCIENCE, 2003, 300: 80.
    
    10.POPESCU MA. In vivo optical imaging using quantum dots for the management of brain tumors [J]. EXPERT REVIEW OF MOLECULAR DIAGNOSTICS, 2006, 6: 879.
    
    11.YU WW. Water-soluble quantum dots for biomedical applications [J]. BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2006, 348: 781.
    
    12.QU LH. Control of photoluminescence properties of CdSe nanocrystals in growth[J], JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124: 2049.
    
    13.CHAN WCW. Quantum dot bioconjugates for ultrasensitive nonisotopic detection [J]. SCIENCE, 1998,281:2016,
    
    14.SAMIA ACS. Semiconductor quantum dots for photodynamic therapy [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125: 15736.
    
    15.DUBERTRET B. SCIENCE, 2003, 289: 1759.
    
    16.BALLOU B. Noninvasive imaging of quantum dots in mice [J]. BIOCONJUGATE CHEMISTRY, 2004, 15: 79.
    
    17.SHI LX. Singlet oxygen generation from water-soluble quantum dot-organic dye nanocomposites [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128: 6278.
    
    18.TSAY JM. Singlet oxygen production by peptide-coated quantum dot-photosensitizer conjugates [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129: 6865.
    
    19. ZHANG H. Hydrothermal synthesis for high-quality CdTe nanocrystals [J]. ADVANCED MATERIALS, 2003, 15: 1712.
    
    20.ROGACH AL. Aqueous synthesis of thiol-capped CdTe nanocrystals: State-of-the-art [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111: 14628.
    21.GUO J. Systematic study of the photoluminescence dependence of thiol-capped CdTe nanocrystals on the reaction conditions[J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109: 17467.
    
    22.WEBER JH. COMPLEXES DERIVED FROM STRONG FIELD LIGANDS .19. MAGNETIC PROPERTIES OF TRANSITION METAL DERIVATIVES OF 4,4',4",4"'- TETRASULFOPHTHALOCYANINE [J]. INORGANIC CHEMISTRY, 1965, 4: 469.
    
    23.NIEDRE M. Direct near-infrared luminescence detection of singlet oxygen generated by photodynamic therapy in cells in vitro and tissues in vivo [J]. PHOTOCHEMISTRY AND PHOTOBIOLOGY, 2002, 75: 382.
    
    24.WILKINSON F. QUANTUM YIELDS FOR THE PHOTOSENSITIZED FORMATION OF THE LOWEST ELECTRONICALLY EXCITED SINGLET-STATE OF MOLECULAR-OXYGEN IN SOLUTION[J]. JOURNAL OF PHYSICAL AND CHEMICAL REFERENCE DATA, 1993,22: 113.
    
    25.AGBOOLA B. Comparative efficiency of immobilized non-transition metal phthalocyanine photosensitizers for the visible light transformation of chlorophenols[J]. JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL, 2006, 248: 84.
    
    26.KUZNETSOVA NA. New reagents for determination of the quantum efficiency of singlet oxygen generation in aqueous media[J]. RUSSIAN JOURNAL OF GENERAL CHEMISTRY, 2001, 71: 36.
    
    27.WUISTER SF. Highly luminescent water-soluble CdTe quantum dots [J]. NANO LETTERS, 2003, 3:503.
    
    28.MA J. Photochemical instability of thiol-capped CdTe quantum dots in aqueous solution and living cells: Process and mechanism [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2007, 111: 12012.
    
    29.SKOVSEN E. Two-photon singlet oxygen microscopy: The challenges of working with single cells[J]. PHOTOCHEM PHOTOBIOL, 2006, 82: 1187.
    
    30.OGILBY PR. CHEMISTRY OF SINGLET OXYGEN .42. EFFECT OF SOLVENT, SOLVENT ISOTOPIC-SUBSTITUTION, AND TEMPERATURE ON THE LIFETIME OF SINGLET MOLECULAR-OXYGEN (1-DELTA-G) [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1983, 105: 3423.
    
    31. LI MY. Quenching of singlet molecular oxygen (0-1(2)) by azide anion in solvent mixtures [J]. PHOTOCHEMISTRY AND PHOTOBIOLOGY, 2001, 74: 760.
    
    32.HUANG R. Kinetics for singlet oxygen formation by riboflavin photosensitization and the reaction between riboflavin and singlet oxygen [J]. JOURNAL OF FOOD SCIENCE, 2004, 69: C726.
    
    33.GOLLNICK K. MERBROMIN (MERCUROCHROME) AND OTHER XANTHENE DYES - QUANTUM YIELDS OF TRIPLET SENSITIZER GENERATION AND SINGLET OXYGEN FORMATION IN ALCOHOLIC SOLUTIONS[J]. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY, 1992, 12: 57.
    34.IDOWU M.Photoinduced energy transfer between water-soluble CdTe quantum dots and aluminium tetrasulfonated phthalocyanine[J].NEW JOURNAL OF CHEMISTRY,2008,32:290.
    35.PAQUETTE B,SULFONATED PHTHALIMIDOMETHYL ALUMINUM PHTHALOCYANINETHE EFFECT OF HYDROPHOBIC SUBSTITUENTS ON THE INVITRO PHOTOTOXICITY OF PHTHALOCYANINES[J].PHOTOCHEMISTRY AND PHOTOBIOLOGY,1991,53:323.
    1.MURRAY CB.Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies[J].ANNUAL REVIEW OF MATERIALS SCIENCE,2000,30:545.
    2.CHAN WCW.Quantum dot bioconjugates for ultrasensitive nonisotopic detection[J].SCIENCE, 1998,281:2016.
    
    3.BRUCHEZ M. Semiconductor nanocrystals as fluorescent biological labels [J]. SCIENCE, 1998, 281: 2013.
    
    4.MITCHELL P. Turning the spotlight on cellular imaging - Advances in imaging are enabling researchers to track more accurately the localization of macromolecules in cells [J]. NATURE BIOTECHNOLOGY, 2001, 19: 1013.
    
    5.KLARREICH E. Biologists join the dots [J]. NATURE, 2001, 413: 450.
    
    6.JOVIN TM. Quantum dots finally come of age [J]. NATURE BIOTECHNOLOGY,2003, 21: 32.
    7.SEYDEL C. Quantum dots get wet [J]. SCIENCE, 2003, 300: 80.
    
    8.TATON TA. Bio-nanotechnology: Two-way traffic [J]. NATURE MATERIALS, 2003, 2: 73.
    9.UREN RF. Cancer surgery joins the dots [J]. NATURE BIOTECHNOLOGY, 2004, 22: 38.
    10.QU LH. Control of photoluminescence properties of CdSe nanocrystals in growth[J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124: 2049.
    
    11. YU WW. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals [J]. CHEMISTRY OF MATERIALS, 2003, 15: 2854.
    
    12.GAO XH. Quantum-dot nanocrystals for ultrasensitive biological labeling and multicolor optical encoding [J]. JOURNAL OF BIOMEDICAL OPTICS, 2002, 7: 532.
    
    13.NIRMAL M. Luminescence photophysics in semiconductor nanocrystals [J]. ACCOUNTS OF CHEMICAL RESEARCH, 1999, 32: 407.
    
    14.SMITH AM. Quantum dot nanocrystals for in vivo molecular and cellular imaging[J]. PHOTOCHEMISTRY AND PHOTOBIOLOGY, 2004, 80: 377.
    
    15.PARAK WJ. Labelling of cells with quantum dots [J]. NANOTECHNOLOGY, 2005, 16: R9.
    16.ZHANG H, Hydrothermal synthesis for high-quality CdTe nanocrystals [J]. ADVANCED MATERIALS, 2003, 15: 1712.
    
    17.GUO J. Systematic study of the photoluminescence dependence of thiol-capped CdTe nanocrystals on the reaction conditions [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109: 17467.
    18.ALDANA J. Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123: 8844.
    
    19.MA J. Photostability of thiol-capped CdTe quantum dots in living cells: the effect of photo- oxidation [J]. NANOTECHNOLOGY, 2006, 17: 2083.
    
    20.HOHNG S. Near-complete suppression of quantum dot blinking in ambient conditions [J] JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126: 1324.
    21.CLARKE SJ. Photophysics of dopamine-modified quantumdots and effects on biological systems[J]. NATURE MATERIALS, 2006, 5: 409.
    22.JANG E. Surface treatment to enhance the quantum efficiency of semiconductor nanocrystals [J]. JOURNAL OF PHYSICAL CHEMISTRY B,2004, 108: 4597.
    
    23.GANG ZR. Using a non-radioisotopic, quantitative TRAP-based method detecting telomerase activities in human hepatoma cells [J]. CELL RESEARCH, 2000,10: 71.
    
    24.DICKSON RM. Three-dimensional imaging of single molecules solvated in pores of poly(acrylamide) gels [J]. SCIENCE, 1996, 274: 966.
    
    25.CASTRORODRIGUEZ R. Obtaining of polycrystalline CdTeO3 by reactive pulse laser deposition[J]. THIN SOLID FILMS, 2005, 484: 100.
    
    26.GULINO A. Synthesis and characterization of thin films of cadmium oxide [J]. CHEMISTRY OF MATERIALS, 2002, 14: 704.
    
    27.DOU Y. N-type doping in CdO ceramics: a study by EELS and photoemission spectroscopy [J]. SURFACE SCIENCE, 1998, 398: 241.
    
    28.KUNO M. Modeling distributed kinetics in isolated semiconductor quantum dots[J]. PHYSICAL REVIEW B, 2003, 67: 125304.
    
    29. VAN SARK WGJHM. Photooxidation and photobleaching of single CdSe/ZnS quantum dots probed by room-temperature time-resolved spectroscopy [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105: 8281.
    
    30.DAHAN M. Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking [J]. SCIENCE, 2003, 302: 442.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700