新型稀土激光材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光材料是激光技术发展的核心和基础,具有里程碑的意义和作用。自20世纪60年代第一台红宝石激光器问世以来,激光的应用已经遍及科技、经济、军事和社会发展的许多领域。在过去的十多年里,信息技术的空前发展宣告了第三次工业革命的来临。激光和激光技术正以其强大的生命力推动着光电子技术和产业的发展。成为世界先进制造业、信息产业强国是我国21世纪的发展战略目标,实现该目标的关键之一是必须能充分提供基础性的激光材料及其元器件。一代材料,一代器件。鉴于传统的激光器在性能上存在的许多局限性,科学家们长期以来一直致力于发展新型激光材料以期获得更加完美的激光器。因此,探索和开发新型激光工作物质和材料不仅是未来研制新型高效率激光器及激光系统的前提和基础,而且具有巨大的潜在应用价值和重要的战略意义。
     鉴于此,新型激光材料的研究和开发正是本文的核心内容。在本论文中,我们综合评估了国内外激光工作物质的发展趋势,深入分析了已有技术路线的优缺点,并在此基础上研究开发了几类新型的稀土激光材料,并对新体系的性能和技术可行性作了系统的理论和实验研究,取得了重要进展,为发展新型激光器奠定了基础。
     本文的主要研究内容如下:
     1.针对目前以重金属氧化物玻璃基质的掺铒基质材料中铒存在着较严重的激发态吸收和上转换,最终导致材料和器件整体量子效率低下的技术瓶颈问题,成功地开发出新型的掺铒激光材料。有效地抑制了Er~(3+)的激发态吸收引起的上转换,极大地提高了材料的发光强度,并制备了高量子效率的宽带新型掺铒非石英基质放大器。
     2.制备了新型的四核钕有机配合物并表征了其结构,然后进一步掺杂到有机基质如氟氯油、PMMA中,通过吸收光谱、荧光光谱、荧光寿命等测试分析技术,表征了材料的光学性能。与一些传统的钕有机材料如单核、氘代、氟代材料相比,该新型材料成本低,性能优良,在PMMA中受激发射截面达到2.55×10~(-20)cm~2,超过了无机材料LaF_3:Nd的发射截面值,表现出优良的激光特性,为进一步开发低成本、小功率稀土有机激光工作物质提供了理论基础和技术储备。
     3.从稀土离子络合法和分散法两条途径出发,研究开发新型稀土液体激光材料。将多核钕配合物大量溶解在强极性溶剂DMF中,得到均一、透明、稳定、低毒的液体激光介质,受激发射截面达到3.13×10~(-20) cm~2。同时运用Forster荧光共振能量转移理论研究了体系中钕离子的淬灭机理。为了进一步减少体系中C—H和O—H键的振动影响,我们制备了新型的氟代配合物(C_2F_5COO)_3Nd(Phen),然后溶解到DMSO-d_6中开发液体激光介质。与其他一些已经报道的相关材性能比较,该新型材料有着较长的荧光寿命和较高的量子效率,表现出优异的光学性能;创造性地提出了“流动的固体”的全新概念,将钕磷酸盐玻璃微球均匀分散到特定的有机液体中制得新型流体激光介质。分析结果表明,该材料荧光寿命长达300μs,受激发射截面达到3.0×10~(-20)cm~2,非常适合用作高增益的流体激光介质。
     4.系统研究了液体介质对液体激光出光性能的影响。筛选出了DMSO-d_6和MMAF等性能优良的液体介质,针对这些材料的光谱参数,设计了相关泵浦方案并进行了激光振荡阈值的估算。在分散法体系中,通过多次实验研究,开发了性能优良的有机折射率匹配液,成功地克服了散射问题。在激光发振实验中我们首次成功地实现了激光输出并详细研究了其输出特性,在高能流体激光领域取得了突破性的进展。
As the basic elements, laser materials have significant importance for the development of laser and laser technology. Since a laser system was first demonstrated in 1960, laser technologies had been widely applied in various fields and served for the humanity. In the past decades, rapid development of modern science and technology declared the coming of the Third Industrial Revolution. Laser and its technology are promoting fast development of the optical telecommunication industries with power and energy. In order to realize the strategy of being a worldwide powerful country with advanced manufacturing and information industry in the 21st century, the most important thing is to supply the great demands on laser materials and components. Novel materials bring up novel devices. Due to some technical problems and inherent limitations of conventional lasers, much work has been devoted to studying on novel materials in order to obtain ideal lasers. Therefore, to explore and develop novel laser materials is not only the basic step of fabricating high efficient lasers and laser systems for future, but also has great potential application value and significant meaning.
     The main subject of this thesis focused on developing novel laser media. After reviewing the developing status of laser materials home and abroad and analyzing the merits and faults of the existing technology routes, we produced some kinds of novel rare-earth doped laser media. Technical requirements and technology routes of the new systems have been researched theoretically and experimentally. Important progresses have been made, which lays the foundation for new lasers.
     Main contents of the thesis are summarized as follows:
     1. In order to resolve the bottleneck issues to the further development of the erbium-doped heavy metal oxide glasses which suffering from low quantum efficiency due to serious excited state absorption, we successfully developed a novel erbium-doped bismuth-based glass system. The excited state absorption and up-conversion of erbium were restrained, emission intensity was enhanced and novel amplifiers with broadband and good properties were made.
     2. A novel tetranuclear neodymium complex was synthesized and the structure was characterized. Laser media were prepared by dissolving the complex into organic media such as polytrifluorochloroethylene oil, PMMA. Optical properties such as absorption spectrum, photoluminescence spectrum and fluorescent lifetime were investigated. Compared with some other Nd~(3+) complexes where all the protons of the ligands are either deuterated or fluorinated, these materials showed outstanding properties. The stimulated emission cross-section in PMMA was 2.55×10~(-20) cm~2, which was comparable to the value of 1.35×10~(-20) cm~2 from the well known host LaF3: Nd. With these advantages, this material has potential applications in the ongoing search for low-cost and low power rare-earth doped organic lasers.
     3. Explore novel liquid laser materials in two ways: Nd~(3+) dissolved in organic solutions and micro-balls dispersed into organic solutions. Tetranuclear neodymium complex was dissolved in DMF with high concentration, forming a liquid laser medium with uniformity, transparency, stability and low toxicity. The stimulated emission cross-section was 3.13×10~(-20)cm~2. Fluorescent Resonance Energy Transfer theory was applied to investigate the quenching mechanism of the liquid sample. In order to decrease the influence of C-H and O-H bonds, novel fluorinated complex (C_2F_5COO)_3Nd(Phen) was prepared and dissolved in DMSO-d_6 to form liquid laser medium. Compared with some other Nd~(3+) liquid materials reported previously, fluorescent lifetime and quantum efficiency were improved effectively. Besides, the concept of "flowing solid" lasing material was first brought forward and novel liquid laser material was obtained by dispersing neodymium phosphate glass micro-balls into specific organic liquids. Optical characterization and theoretical analysis demonstrated that this novel material had excellent laser optical properties. The fluorescence lifetime was 300μs and the stimulated emission cross section was 3.0×10~(-20) cm~2, showing that it is quite suited for being used as a high-energy laser medium.
     4. Technical requirements of liquid solvents for novel liquid lasers were investigated in detail. Solvents with good properties such as DMSO-d_6 and MMAF were selected. According to the spectrum properties, pumping conditions were designed and the probabilities as laser materials were analyzed and evaluated. For the micro-ball dispersion system, the serious influences of scattering loss were overcome by applying specific organic liquid to get the refractive index suitably matched. In the laser experiment, laser output was successfully achieved and laser output characteristic was further studied. This is the first time that a neodymium liquid laser might be truly put into practical application.
引文
[1]范岱年,赵中立,许良英编译.爱因斯坦文集(第二卷)(第一版).北京:商务印书馆.1977
    [2]Maiman T.H.,Stimulated optical radiation in ruby.Nature,1960,187:493-494
    [3]Anthony E.S.,Lasers.California:University Science Books.1986
    [4]周炳琨,高以智,陈倜嵘,陈家骅.激光原理(第4版).北京:国防工业出版社.2000
    [5]W.克希耐尔(孙文 江泽文等翻译).固体激光工程.北京:北京科学出版社.2002
    [6]Danielmeyer H.G.,Ostermayer F.W.,Diode-pump-modulated Nd:YAG laser.Appl.Phys.,1972,43:2911-2913
    [7]张世文,王福章,姚广涛等.新型掺杂YAG特性及其重复率锁模运转.中国激光,1983,548:8-9
    [8]Moulton P.F.,Spectroscopic and laser characteristics of Ti:Al_2O_3.J.Opt.Soc.Am.B 1986,3:125-133
    [9]Deng P.Z.,Investigation on improvement of laser quality of tunable Al_2O_3:Ti~(3+)crystals.Proc.SPIE,1990,1338:207-215
    [10]干福熹,邓佩珍.激光材料.上海:上海科学技术出版社,1995
    [11]Shazer D.L.,Vanadate crystals exploit diode-pump technology.Laser Focus World,1994,30:88-93
    [12]Ikesue A.,Kinoshita T.,Kamata K.,et al.Fabrication and optical properties of high performance polycrystalline Nd:YAG ceramics for solid-state lasers.J.Am.Ceram.Soc.,1995,78:1033-1040
    [13]Jeong Y.,Sahu J.K.,Payne D.N.,et al.Ytterbium-doped large-core fiber laser with 1.36kw continuous-wave output power.Opt.Exp.,2004,12:6088-6092
    [1]杨祥林.光放大器及其应用.电子工业出版社,2000
    [2]Robinson C.C.,Multiple sites for Er~(3+) in alkali-silicate glasses.J.Non-Cryst.Solids,1974,15:1-9
    [3]Peters P.M.,Walter H.N.,Local structure of Er~(3+) in multi-component glass.J.Non-Cryst.Solids,1998,239:162-165
    [4]Reisfeld R.,Jorgensen C.K.,Lasers and excited states of rare earths.Berlin:Spring-Verlag.1977
    [5]Weber M.J.,Rare earth lasers.In:Handbook on the physics and chemistry of rare earths.Amsterdam:North-Holland Publishing Company.1979
    [6]Judd B.R.,Optical absorption intensities of rare-earth ions.Phys.Rev.,1962,127:750-761
    [7]Ofelt G.S.,Intensities of crystal spectra of rare-earth ions.J.Chem.Phys.,1962,37:511-520
    [8]何琛娟.稀土离子基本光谱性质和上转换行为研究.北京师范大学博士学位论文.2000
    [9]Carnall W.T.,Fields P.R.,Wybourne B.G.,Spectral intensities of the trivalent lanthanides and actinides in solution.Ⅰ pr~(3+),Nd~(3+),Er~(3+),Tm~(3+),and Yb~(3+).J.Chem.Phys.,1968,42:3797-3806
    [10]Carnall W.T.,Fields P.R.,Rajnak K.,Spectral intensities of the trivalent lanthanides and actinides in solution.Ⅱ Pm~(3+),Sm~(3+),Eu~(3+),Gd~(3+),Tb~(3+),Dy~(3+)and Ho~(3+).J.Chem.Phys.,1968,49:4412-4423
    [11]Carnall W.T.,Fields P.R.,Rajnak K.,Electronic energy levels in the trivalent lanthanide aquo ions.Ⅰ.Pr~(3+),Nd~(3+),pm~(3+),Sm~(3+),Dy~(3+),Ho~(3+),Er~(3+) and Tm~(3+).J.Chem.Phys.,1968,49:4424-4442
    [12]Condon E.U.,Shortley G.H.,The theory of atomic spectra.Cambridge:Cambridge University Press.1963
    [13]Pisarska J.,Pisarski W.A.,Dominiak-Dzik G.,Ryba-Romanowski W.,Spectroscopic investigations of Nd~(3+) ions in B_2O_3-PbO-Al_2O_3-WO_3 glasses.J.Mol.Struct.,2006,792-793:201-206
    [14]Wang H.S.,Qian G.D.,Zhang J.H.,Luo Y.S.,Wang Z.Y.,Wang M.Q.,Luminescent properties of neodymium organic complexes and as-doped organically modified silicate films.Thin Solid Films.2005,479:216-222
    [15]William F.K.,Radiative transition probabilities within the 4f~3 ground configuration of Nd:YAG.J.Quantum.Electron.,1971,7:153-159
    [1]Snitzer E.,Woodcock R.,Yb~(3+)-Er~(3+) glass laser.Appl.Phys.Lett.,1965,6:45-46
    [2]Snitzer E.,Woodcock R.,Segre J.,Phosphate glass Er~(3+) laser.IEEE J.Quantum.Electron.,1968,4:360-362
    [3]Galagan B.I.,Godovikova E.A.,Denker B.I.,et al.Efficient bleachable filter based on Co~(2+):MgAl_2O_4 crystals for Q-switching of λ=1.54μm erbium glass lasers.Quantum Electronics,1999,29:189-190
    [4]Gapontsev V.G.,Matitsin S.M.,Isineev A.A.,et al.Erbium glass lasers and their applications.Opt.and Laser Tech.,1982,14:189-196
    [5]Hanna D.C.,et al.A 1.54μm Er glass laser pumped by a 1.064μm Nd:YAG laser.Optics Communications,1987,63:417-420
    [6]Laporta P.,Silvestri S.DE.,Magni V.,et al.Diode-pumped cw bulk Er:Yb:glass laser.Opt.Lett.,1991,16:1952-1954
    [7]Denker B.I.,Galagan B.I.,Osiko V.V.,et al.Materials and components for miniature diode-pumped 1.54μm erbium glass lasers.Physics of Lasers,2002,12:692-701
    [8]Karlsson G.,Laurell F.,Tellefsen J.,et al.Development and characterization of Yb-Er laser glass for high average power laser diode pumping.Appl.Phys.B,2002,75:41-46
    [9]Laporta P.,Taccheo S.,Svelto O.,High-power and high-efficiency diode-pumped Er~(3+)、Yb~(3+) glass laser.Electron.Lett.,1992,28:490-492
    [10]Hutchinson J.A.,Toomas H.A.,Diode array-pumped Er/Yb:phosphate glass laser.Appl.Phys.Lett.,1992,60:1424-1426
    [11]Cerullo G.,Silvestri S.DE.,Laporta P.,et al.Continuous-wave mode locking of a bulk erbium-ytterbium glass laser.Opt.Lett.,1994,19:272-274
    [12]Konstantin V.Y.,Saturable absorber Co~(2+):MgAl_2O_4 crystal for Q switching of 1.34μm Nd~(3+):YAlO_3 and 1.54μm Er~(3+):glass lasers.Appl.Optics,1999,38:6343-6346
    [13]Haring R.,Paschotta R.,Fluck R.,et al.Passively Q-switched microchip laser at 1.54μm.J.Opt.Soc.Am.B,2001,18:1805-1812
    [14]Karlsson G.,Pasiskevicius V.,Laurell E,et al.Q-switching of an Er-Yb:glass microchip laser using an acousto-optical modulator.Opt.Commun.,2003,217:317-324
    [15]Zeller S.C.,Krainer L.,Spuhler G.J.,et al.Passively mode-locked 40GHz Er: Yb:glass laser.Appl.Phys.B,2003,76:787-788
    [16]Lai N.D.,Brunel M.,Bretenaker F.,Two-frequency Er-Yb:glass microchip laser Passively Q-switched by a Co:ASL saturable absorber.Opt.Lett.,2003,28:328-330
    [17]Grawert F.J.,Gopinath J.T.,Ilday F.O.,et al.220fs erbium-ytterbium glass laser mode-locked by a broadband low-loss silicon/germanium saturable absorber.Opt.Lett.,2005,30:329-331
    [18]Spuhler G.J.,Krainer L.,Innerhofer E.,et al.Soliton mode-locked Er:Yb:glass laser.Opt.Lett.,2005,30:263-265
    [19]Song F.,Chen X.B.,Myers M.J.,et al.LD pumped Er:Yb:phosphate glass laser.Chin.J.Lasers,1999,26:790-793
    [20]Meng F.,Song F.,Zhang C.,et al.Laser diode pumped 1.54μm Er:Yb:phosphate glass continuous wave compact laser.Chin.Phys.Lett.,2003,20:1739-1740
    [21]Meng Z.,Kamebayashi J.,Higashihata M.,et al.1.55μm Ce-Er-ZBLAN fiber laser operation under 980nm pumping:experiment and simulation.IEEE Photonics Technology Letters,2002,14:609-611
    [22]Huang Y.,Luo Z.,Wang G.,Optical transition probabilities for Er~(3+) in KY(WO_4)_2crystal.Opt.Commun.,1992,88:42-46
    [23]Wang G.,Luo Z.,Crystal growth of KY(WO_4)_2:Er~(3+):Yb~(3+).J.Crystal Growth,1992,116:505-506
    [24]Pujol M.C.,Rico M.,Zaldo C.,et al.Crystalline structure and optical spectroscopy of Er~(3+)-doped KGd(WO_4)_2 single crystal.Appl.Phys.B,1999,68:187-197
    [25]Poole S.B.,Payne D.N.,et al.Fabrication of low-loss optical fibers containing rare-earth ions.Electron.Lett.,1985,21:737-738
    [26]Levoshkin A.,Petrov A.,Montagne J.E.,High-efficiency diode-pumped Q-switched Yb:Er:glass laser.Optics Communications,2000,185:399-405
    [27]Huang B.C.,Jiang S.,et al.Erbium-doped phosphate glass fiber amplifiers with gain per unit length of 2.1dB/cm.Electron.Lett.,1999,35:1007-1009
    [28]Huang B.C.,Jiang S.,Luo T.,Perormance of high-concentration Er~(3+)-doped phosphate fiber amplifiers.IEEE Photonics Technology Letters,2001,13:197-199
    [29]Tanabe S.,Yoshii S.,Hirao K.,Soga N.,Upconversion properties,multiphonon relaxation,and local environment of rare-earth ions in fluorophosphate glasses.Phys.Rev.B,1992,45:4620-4625
    [30]Soga K.,Inoue H.,Makishima A.,Calculation and simulation of spectroscopic properties for rare earth ions in chloro-fluorozirconate glasses.J.Non-Cryst.Solids,2000,274:69-74
    [31]Tanabe S.,Sugimoto N.,Ito S.,Hanada T.,Broad-band 1.5μm emission of Er~(3+)ions in bismuth-based oxide glasses for potential WDM amplifier.J.Lumin.,2000,87:670-672
    [1]黄春辉等,光电功能超薄膜.北京:北京大学出版社,2001
    [2]Akcelrud L.,Electroluminescent polymers.Prog.Polym.Sci.,2003,28:875-962
    [3]Liedenbaum C.,Croonen Y.,van de Weijer P.,et al.Low voltage operation of large area polymer LEDs.Synth.Met.,1997,91:109-111
    [4]Hung L.S.,Chen C.H.,Recent progress of molecular organic electroluminescent materials and devices.Materials Science and Engineering R.,2002,39:143-222
    [5]Kikuchi H.,Negishi T.,Organic EL element manufacturing technologies.Displays,2001,22:57-59
    [6]Kido J.,Hayase H.,Hongawa K.,Nagai K.,.Okuyama K.,Bright red light-emitting organic electroluminescent devices having a europium complex as an emitter.Appl.Phys.Lett.,1994,65:2124-2126
    [7]Zheng Y.X.,Fu L.S.,Zhou Y.H.,Yu J.B.,et al.Electroluminescence based on a beta-diketonate ternary samarium complex.J.Mater.Chem.,2002,12:919-923
    [8]Kido J.,Okamoto Y.,Organo lanthanide metal complexes for electroluminescent materials.Chem.Rev.,2002,102:2357-2368
    [9]Yanagida S.,Hasegawa Y.,Murakoshi K.,Wasa Y.,Nakashima N.,Yamanaka T.,Strategies for enhancing photoluminescence of Nd~(3+) in liquid media.Coord.Chem.Rev.,1998,171:461-480
    [10]Hasegawa Y.,Sogabe K.,Wada Y.,Kitamura T.,Nakasima N.,Yanagida S.,Enhanced luminescence of lanthanide(Ⅲ) complexes in polymer.Chem.Lett.,1999,1:35-36
    [11]Yanagida S.,Hasegawa Y.,Wada Y.,Remarkable luminescence of novel Nd(Ⅲ)complexes with low-vibrational hexafluoroacetylacetone and DMSO-d(6)molecules.J.Lumin.,2000,87:995-998
    [12]Hasegawa Y.,Ohkubo T.,Sogabe K.,Kawamura Y.,Wada Y.,Nakashima N.,Yanagida S.,Luminescence of novel neodymium sulfonylaminate complexes in organic media.A.Chem.Int.Ed.,2000,39:357-359.
    [13]Lin S.,Feuerstein R.J.,Mickelson A.,A study of neodymium-chelate-doped optical polymer waveguides.,J.Appl.Phys.,1996,79:2868-2870.
    [14]Iwamuro M.,Hasegawa Y.,Wada Y.,Murakoshi K.,et al.Luminescence of Nd~(3+)complexes with some asymmetric ligands in organic solutions.J.Lumin.,1998,79:29-38
    [15]Setyawati I.A.,Liu S.,Retting S.J.,Orvig C.,Homotrinuclear lanthanide(Ⅲ) arrays: assembly of and conversion from mononuclear and dinuclear units. Inorg. Chem., 2000, 39: 496-507
    [16] Ziessel R., Maestri M., Prodi L., Balzani V., Van Dorsselaer A., Dinuclear europium(3+), terbium(3+) and gadolinium(3+) complexes of a branched hexaazacyclooctadecane ligand containing six 2,2'-bipyridine pendant units. Inorg. Chem., 1993, 32: 1237-1241
    
    [17] Yu J.B., Zhang H.J., Fu L.S., Deng R.P., et al. Synthesis, structure and luminescent properties of a new praseodymium(m) complex with 6-diketone. Inorg. Chem. Commun., 2003, 6: 852-854
    [18] Wu R. H., Su Q. D., A study of intramolecular energy relaxation processes of rare earth complexes [Ln(TTA)_3-2H_2O, Ln=Nd, Eu, Gd]. J. Mol. Struct., 2001, 559: 195-199
    [19] Hasegawa Y., Kimura H., Murakoshi K., Wada Y., et al. Enhanced emission of deuterated tris(hexafluoroacetylacetonato)neodymium(III) complex in solution by suppression of radiationless transition via vibrational excitation. J. Phys. Chem., 1996,100:10201-10205
    [20] Faulkner S., Beeby A., Carrie M.C., Dadabhoy A., et al. Time-resolved near-IR luminescence from ytterbium and neodymium complexes of the lehn cryptand. Inorg. Chem. Commun., 2001, 4: 187-190
    [21] Slooff L. H., Polman A., Klink S. I., et al. Optical properties of lissamine functionalized Nd~(3+) complexes in polymer waveguides and solution. Opt. Mater., 2000, 14: 101-107
    [22] Weber M. J., Radiative and multiphonon relaxation of rare-earth ions in Y_2O_3. Phys. Rev., 1968,171: 283-291
    [23] Bassett A. P., Magennis S. W., Glover P. B., Lewis D. J., et al. Highly luminescent, triple- and quadruple-stranded, dinuclear Eu, Nd, and Sm(III) lanthanide complexes based on bis-diketonate ligands., J. Am. Chem. Soc, 2004, 126: 9413-9424.
    [24] Fan T. Y., Kokta M. R., End-pumped Nd: LaF_3 and Nd:LaMgAl_(11)nO_(19) lasers. IEEE J. Quantum. Electron., 1989, 25: 1845-1849
    [25] Stouwdam J. W., van Veggel F. C. J. M. V., Near-infrared emission of redispersible Er~(3+), Nd~(3+), and Ho~(3+) doped LaF_3 nanoparticles. Nano Lett., 2002, 2: 733-737
    [26] Hasegawa Y., Wada Y., Yanagida S., Strategies for the design of luminescent lanthanide(Ⅲ) complexes and their photonic applications.Journal of Photochemistry and Photobiology C:Photochemistry Reviews,2004,5:183-202
    [1] Laser Glass Product Catalog, Hoya Corporation USA, Fremont, CA, 1994
    [2] Laser Glass Product Catalog, Schott Glass Technologies, 1995
    
    [3] Izumitani T. S., Optical glass, American institute of Physics translation series, New York, 1986
    [4] Izumitani T., Matsukawa M., Miyade H., Laser induced damage in optical materials, National Institute of Standards and Technology (special publication), 1988, 756: 29-31
    [5] Peterson P. F., Inertial fusion energy: a tutorial on the technology and economics, lecture note of UC Berkeley, 1999
     [6] Rautian S.G., Sobelman I.I., Remarks on negative absorption. Optika I Spektroskopiya, 1961,10:134-135
    [7] Stockman D.L., Mallory W.R., Tittel F.K., Stimulated emission in aromatic organic compounds. Proc. IEEE, 1964, 52: 318-319
    [8] Sorokin P.P., Lankard J.R., Stimulated emission observed from an organic dye, chloroaluminum phthalocyanine. IBM J. Res. Develop., 1966, 10: 162-163
    [9] Peterson O.G., Tuccio S.A., Snavely B.B., cw operation of an organic dye solution laser. Appl. Phys. Lett., 1970,17: 245-247
    [10] Albrecht G. F., Sutton S. B., George E. V., et al. Solid state heat capacity disk laser. Laser and Particle, 1998,16: 605-625
    
    [11] Jones-Bey H. A., Flowing neodymium offers improved heart management. Laser Focus World, 2004, 3:15-20
    
    [12] Brinkschulte H., Fill E., Lang R., Spectral Output Properties of the Nd POCl_3 Inorganic Liquid Laser. J. Appl. Phys., 1972,43:1807-1811
    [13] Heller A., A high-gain room-temperature liquid laser: trivalent neodymium in selenium oxychloride. Appl. Phys. Lett., 1966, 9:106-108
    [14] Heller A., Formation of hot OH bonds in the radiationless relaxations of excited rare earth ions in aqueous solutions. J. Am. Chem. Soc, 1966, 88: 2058-2059
    [15] Schimitschek E.J., Laser Emission of a Neodymium Salt Dissolved in POCl_3. J. Appl. Phys., 1968, 39: 6120-6121
    [16] Bondarev A. S., Buchenkov V. A., New low-toxicity inorganic Nd activated liquid medium for lasers. Sov. J. Quant. Electron., 1976, 6: 202-205
    [17] Brinkschulte H., A repetitively pulsed, Q-switched, inorganic liquid laser. J. Appl. Phys. 1974, 7: 1361-1368
    [18]Heller A.,Liquid laser-design of neodymium-based inorganic ionic systems.J.Mol.Spectro.,1968,28:101-117
    [19]Sarkies J.R.,Rutt H.N.,Spectroscopic and optical properties of the rare earth-doped liquid PBr_3/AlBr_3/SbBr_3.Opt.Mater.,1999,13:231-238
    [20]叶云霞,余柯涵等.Nd~(3+)螯合物的含氢有机溶液光谱性能研究.物理学报,2006,55:6424-6429
    [21]Heller A.,Fluorescence and room-temperature laser action of trivalent neodymium in an organic liquid solution.J.Am.Chem.Soc.,1967,89:167-169
    [22]Yanagida S.,Hasegawa Y.,Murakoshi K.,Wasa Y.,Nakashima N.,Yamanaka T.,Strategies for enhancing photoluminescence of Nd~(3+) in liquid media.Coord.Chem.Rev.,1998,171:461-480
    [23]Hasegawa Y.,Sogabe K.,Wada Y.,Kitamura T.,Nakasima N.,Yanagida S.,Enhanced luminescence of lanthanide(Ⅲ) complexes in polymer.Chem.Lett.,1999,1:35-36
    [24]Yanagida S.,Hasegawa Y.,Wada Y.,Remarkable luminescence of novel Nd(Ⅲ)complexes with 1 ow-vibrational hexafluoroacetylacetone and DMSO-d(6)molecules.J.Lumin.,2000,87:995-998
    [25]Bassett A.P.,Magennis S.W.,Glover P.B.,Lewis D.J.,et al.Highly luminescent,triple- and quadruple-stranded,dinuclear Eu,Nd,and Sm(Ⅲ)lanthanide complexes based on bis-diketonate ligands.,J.Am.Chem.Soc.,2004,126:9413-9424
    [26]Banerjee S.,Huebner L.,Romanelli M.,Kumar G.A.,Riman R.,Emge T.,Brennan J.,Oxoselenido clusters of the lanthanides:Rational introduction of oxo ligands and near-IR emission from Nd(Ⅲ).,J.Am.Chem.Soc.,2005,127:15900-15906
    [27]Caird J.A.,Ramponi A.J.,Staver P.R.,Quantum efficiency and excited-state relaxation dynamics in neodymium-doped phosphate laser glasses.J.Opt.Soc.Am.B,1991,8:1391-1403
    [28]Forster T.,Intermolecular energy migration and fluorescence.Ann.Phys.,1948,2:55-75
    [1]Winston H.,Marsh O.J.,Suzuki C.K.,et al.Fluorescence of europium thenoyltrifluoroacetonate:evaluation of laser threshold parameters.J.Chem.Phys.,1963,39:267-271
    [2]Lempicki A.,Samelson H.,Optical maser action in europium benzoylacetonate.Phys.Lett.,1963,4:134-135
    [3]Schemitschek E.J.,Richard B.N.,John A.T.,Laser action in fluorinated europium chelates in acetonitrile.J.Chem.Phys.,1965,42:788-790
    [4]Samelson H.,Lempicki A.,Brecher C.,et al.Room temperature operation of a europium chelate liquid laser.Appl.Phys.Lett.,1964,5:173-175
    [5]Bjorklund S.,Kellermeyer G.,Hurt C.R.,Laser action from terbium trifluoroacetonate in p-dioxane and acetonitrile at room temperature.Appl.Phys.Lett.,1967,10:160-162
    [6]Heller A.,Laser action in liquids.Physics Today,1967,20:35-41
    [7]Lempicki A.,Heller A.,Characteristics of the Nd~(3+):SeOCl_2 liquid laser.Appl.Phys.Lett.,1966,9:108-110
    [8]Watson W.,Reich S.,Lempicki A.,et al.M-7-a circulating -liquid laser system.J.Quantum Electron.,1968,QE-4:842-849
    [9]Heller A.,Liquid lasers:preparative techniques for selenium oxychloride based laser solutions.J.Am.Chem.Soc.,1968,90:3711-3713
    [11]Brinkschulte H.,Fill E.,Lang R.,Spectral output properties of the Nd-POCI_3inorganic liquid laser.J.Appl.Phys.,1972,43:1807-1811
    [12]中国科学院吉林应用化学研究所,无机液体激光器的参量及其特性.激光,1975.2:20-23
    [13]吉林省联合研制组.YJG-Ⅰ型液体激光微区光谱分析仪.激光,1976,3:20-22
    [14]石春山,吕玉华.无机液体激光工作物质Nd:POCl_3/ZrCl_4体系折射率梯度的测定及某些添加物的影响.中国激光.1983,10:298-230
    [15]Zhang J.H.,He J.Z.,Yao K.M.,Investigation of the effects of various rare-earth ions on the performance of Nd~(3+)-doped inorganic liquid lasers systems.Chinese physics,1982,2:436-439
    [16]Yanagida S.,Hasegawa Y.,Murakoshi K.,Wasa Y.,Nakashima N.,Yamanaka T.,Strategies for enhancing photoluminescence of Nd3+ in liquid media.Coord.Chem.Rev.,1998,171:461-480
    [17]Valenzuela A.G.,Gomar M.P.,Segundo C.G.,et al.Dynamic reflectometry near the critical angle for high-resolution sensing of the index of refraction,Sensors and Actuators B,1998,52:236-238
    [18]Jackson J.D.,经典电动力学(3rd Edition).高等教育出版社,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700