II类主要组织相容性抗原在肺纤维化的表达及其机制探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肺纤维化是一组由多种病因所引起的间质性肺疾病,是许多慢性肺病的共同结局。其病理特点包括肺泡上皮损伤、肺成纤维细胞积聚以及细胞外基质的过度沉积,最终导致不可逆性损伤。肺纤维化病因复杂、发病机制尚不明确。近年研究表明,免疫机制参与了肺纤维化的发病。主要组织相容性抗原(MHC)II类分子是抗原呈递细胞将外源性抗原提呈给CD4+Th细胞的必要载体,同时影响着T细胞的选择、免疫耐受的诱导及抗体产生等,是机体免疫反应的关键环节。II类反式激活蛋白(CIITA)是MHC II类分子表达的限速因子,人白细胞抗原(HLA)-DR是经典的MHC II类抗原。MHC II类抗原在靶器官的异常表达是组织特异性炎症免疫性疾病的重要标记。研究表明,MHC II类分子参与了肝、肾纤维化的发病过程。MHC II类分子参与肝脏纤维化的机制可能是MHC II类分子相关的抗原呈递导致B细胞的分化,由此产生高免疫球蛋白血症;而在肾脏则认为与MHC II类分子的抗原呈递作用刺激初始T细胞的特异性免疫应答,Th1/Th2极化失衡有关。MHC II类分子与肺纤维化之间的关系目前尚不清楚。
     目的:在博来霉素诱导的大鼠肺纤维化模型上,观察肺组织MHC II类分子及其上游调控因子CIITA表达水平的变化,临床实验观察HLA-DR在特发性肺纤维化的表达,探讨MHC II类分子在肺纤维化发病中可能的病理生理意义。
     方法:(1)雄性Wistar大鼠20只,随机分为对照组、肺纤维化组(经气管内注入BLMA5 5mg/kg),分别于造模后第7天、28天取肺组织行HE染色、Masson染色,并依据szapiel方法对肺部病变进行半定量评分;生化方法检测肺组织羟脯氨酸含量;(2)免疫组化染色观察大鼠肺组织MHC II类分子表达,实时定量PCR技术测定肺组织总CIITA及I型、III型、IV型CIITAmRNA和TGF-β1mRNA表达;(3)ELISA法检测大鼠肺泡灌洗液中IFN-γ及IL-4水平变化;(4)收集肺活检的特发性肺纤维化(IPF)患者肺组织石蜡标本10例,免疫组化染色观察肺组织HLA-DR的表达情况。
     结果:(1)气管内给予博莱霉素后第7天及第28天,大鼠肺组织MHC II阳性细胞明显增多(P<0.05, P<0.01),第28天较第7天增多(P<0.05);(2)第7天时,纤维化组大鼠肺组织总CIITA较对照组升高170.4%(P<0.05),I型CIITA较对照组升高258.8%(P<0.05),IV型CIITA较对照组降低87.2%(P<0.01);第28天时,纤维化组大鼠肺组织总CIITA较对照组升高98.6%(P<0.05),I型CIITA较对照组升高137.1%(P<0.05),IV型CIITA仍较对照组低,但差异无统计学意义;纤维化组肺组织IV型CIITA在第28天时较第7天时升高667.3%(P<0.01);(3)纤维化组肺组织第7天TGF-β1mRNA水平升高,达对照组的8倍多(P<0.01),第28天TGF-β1mRNA较第7天略有下降,但仍显著高于对照组(P<0.01),约为对照组的4倍;(4)纤维化组大鼠第7天及第28天BALF中IFN-γ含量均较对照组下降(均P<0.01),而同时期BALF中IL-4含量均较对照组升高(均P<0.01);(5)IPF肺组织细支气管肺泡上皮HLA-DR表达上调,与对照组比较差异具有统计学意义(Z=-3.002, P=0.001)。
     结论:肺组织MHCII/CIITA体系参与了博莱霉素诱导的肺纤维化的病理生理过程,这可能是通过调节肺组织局部的Th1/Th2平衡实现的;纤维化肺组织上皮细胞异常表达MHC II类抗原,推测这可能使这些上皮组织更易遭受MHC II类分子介导的免疫损伤,导致上皮损伤及异常修复的持续存在,最终导致肺纤维化形成并持续进展。
Pulmonary fibrosis (PF) is the final common pathway of a diverse group of lung disorders known as a devastating disease. It’s characterized by epithelial injury, the formation of distinctive fibroblast/myofibroblast foci, and excessive extracellular matrix accumulation. The mechanisms by which lung fibrosis develops are not fully ascertained. Recent studies proved that abnormality of immune function might play an important role in the development of PF. Major histocompatibility complex (MHC) class II molecules play a critical role in the induction and regulation of adaptive immune responses through presentation of processed antigen to CD4+T lymphocytes, and they contribute to the maintenance of self-tolerance, as well as to the breakdown of tolerance in autoimmune diseases. The class II transactivator CIITA is the key regulator for expression of MHC class II molecules. The highly regulated expression pattern of CIITA ultimately dictates the cell type specificity, induction and level of MHC class II expression. Human leukocyte antigen (HLA)-DR is the classical MHC class II antigen. MHC class II molecules, when aberrantly expressed on epithelial cells, result in the activation of autoreactive lymphocytes and play a primary role in the initiation of autoimmune disease. It has been proved that MHC class II molecules were involved in the development of hepatic and renal fibrosis in rats. In the liver, it presumes that antigen presentation by MHC class II molecules induces differentiation of B cells and acts as an accelerator of immunoglobulin production, and high immunoglobulinemia and deposition of immunoglobulin in the liver. And in the kidney, it is said that MHC class II expressing cells presents antigens to unprimed T cells, which determines Th1/Th2 lymphocyte polarization in turn. But to date, the role of MHC class II molecules in the pathogenesis of pulmonary fibrosis has not been reported.
     Objective: (1) To explore the expression levels of MHC class II molecules and its regulator gene CIITA on bleomycin-induced pulmonary fibrosis in rats. (2) To study the expression of HLA-DR molecules on lungs in patients with idiopathic pulmonary fibrosis.
     Methods: (1) Twenty male Wistar rats were randomly divided into control group, fibrosis group. The rats were either treated with a single intratracheal bleomycin injection (fibrosis group) or normal saline injection (control group). Four to six rats in each group were sacrificed 7 and 28 days after intratracheal instillation. Histological changes in the lungs were evaluated by hematoxylin-eosin and masson stain, and scored. Contents of hydroxyproline in lung tissues were detected. (2) The expression of MHC class II molecules in lung tissues was evaluated, and the percentage of MHC class II positive cells was measured. The amounts of total CIITA and type I, III and IV CIITA and TGF-β1 mRNA of lung tissues were measured by real-time PCR using Taqman probe. (3) Levels of IFN-γand IL-4 in bronchoalveolar lavage fluid (BALF) of rats were measured by enzyme-linked immunosorbent assay (ELISA). (4) HLA-DR antigens in lung specimens from 10 cases of idiopathic pulmonary fibrosis (IPF) were detected using immunohistochemical technology.
     Results: (1) The percentage of MHC class II positive cells in lung tissues increased significantly in fibrosis group compared with that of control group on the 7th day and 28th day(P<0.05, P<0.01, respectively); In fibrosis group, the percentage on day 28 was higher than that on day 7 (P<0.05); (2) Compared with control group on the 7th day, total CIITA mRNA increased 170.4%(P<0.05), type I CIITA mRNA increased 258.8%(P<0.05), while type IV CIITA mRNA decreased 87.2%(P<0.01); On the 28th day, total CIITA mRNA increased 98.6%(P<0.05), type I CIITA mRNA increased 137.1%(P<0.05), type IV CIITA mRNA still decreased, but there was no significant difference (P>0.05); In fibrosis group, type IV CIITA mRNA was 667.3%(P<0.01)higher on day 28 than that on day 7; (3) The amount of TGF-β1 mRNA increased significantly in fibrosis group compared with that of control group on day 7, 28(P<0.01, respectively); (4) The concentration of IFN-γin BALF of fibrosis group was significantly lower than that of control group on day 7, 28(P<0.01, respectively), yet the IL-4 of fibrosis group was significantly higher than that of control group(P<0.01, respectively); (5) The HLA-DR antigens were abnoamally expressed on hyperplastic bronchio-alveolar epithelial cells in IPF, but not in normal control lung tissues. The accumulated positive scores of HLA-DR was 27 in the IPF group and 2 in control group (Z=-3.002, P=0.001).
     Conclusion: (1) MHCII/CIITA system of lung tissues was involved in the bleomycin-induced rat pulmonary fibrosis. It might participate in the pathogenesis of lung fibrosis by regulating the Th1/Th2 balance in the lung. (2) Inappropriate MHC class II molecules expression was present in bronchio-alveolar epithelium in pulmonary fibrosis. Epithelial cells expressing class II MHC molecules might be better recognized by autoreactive CD4+T cells and serve as better targets for MHC class II mediated immunic injury, which might lead to repeated lung injury and abnormal repair and remodeling. This might lead to the formation of lung fibrosis and further progression.
引文
[1] Gunther E, Walter L. The major histocompatibility complex of the rat (rattus norvegicus). Immunogenetics, 2001,53(7):520-542。
    [2] Brown JH, Jardetzky TS, Gorga JC, et al. Three-demensional structrure of the human class II histocompability antigen HLA-DR1. Natrure, 1993, 364(6432):33-39.
    [3] Kadota Y, Okumura M, Miyoshi S, et al. Altered T cell development in human thymoma is related to impairment of MHC class II transactivator expression induced by interferon-gamma(IFN-gamma). Clin Exp Immunol, 2000, 121:59-68.
    [4] Dani A, Chaudhry A, Mukherjee P, et al. The pathway for MHCII-mediated presentation of endogenous proteins involves peptide transport to the endo-lysosomal compartment. J Cell Sci, 2004, 117(18):4219-4230.
    [5] Groothuis T, Neefjes J. The many roads to cross-presentation. J Exp Med, 2005, 202:1313-1318
    [6] Zhe L, Yun C, Ying Y, et al. The effect on MHC expression and apoptosis in placenta by IFN-γ administration. Contraception, 2002, 65:177-184.
    [7] Henderson A, Calame K. Transcriptional regulation during B cell development. Annu Rev Immunol, 1998,16:163-200.
    [8] Motta MC, Caretti G, Badaracco GF, et al. Interaction of the CCAAT-binding trimer NF-Y with nucleosome. J Biol Chem, 1999, 274(3):1326-1333.
    [9] Moreno CS, Beresford GW, Louis-Plence P. CREB regulates MHC class II expression in a CIITA-dependent manner. Immunity, 1999, 10(2):143-151.
    [10] Wright KL, Ting JP. Epigenetic regulation of MHC-II and CIITA genes. Trends Immunol, 2006, 27:405-412.
    [11] Waldburger JM, Masternak K, Muhlethaler-Mottet A, et al. Lessons from the bare lymphocyte syndrome: molecular mechanisms regulating MHC class II expression. Immunol Rev, 2000, 178:148-165.
    [12] Nekrep N, Jabrane-Ferrat N, Peterlin BM. Mutation in the bare lymphocytesyndrome defines critical steps in the assembly of the regulatory factor X complex. Mol Cell Biol, 2000, 20(12):4455-4461.
    [13] Villard J, Peretti M, Masternak K, et al. A functionally essential domain of RFX5 mediates activation of major histocompatibility complex class II promoters by promoting cooperative binding between RFX and NF-Y. Mol Cell Biol, 2000, 20(10):3364-3376.
    [14] Westerheide SD, Boss JM. Orientation and positional mapping of the subunits of the multicomponent transcription factors RFX and X2BP to the major histocompatibility complex class II transcriptional enhancer. Nucleic Acids, 1999, 27(7):1635-1641.
    [15] Peretti M, Villard J, Barras E, et al. Expression of the three human major histocompatibility complex class II isotypes exhibits a differential dependence on the transcription factor RFXAP. Mol Cell Biol, 2001, 21(17):5699-5709.
    [16] Masternak K, Reith W. Promoter-specific functions of CIITA and the MHC class II enhanceosome in transcriptional activation. EMBO J, 2002, 21(6):1379-1388.
    [17] Muhlethaler-Mottet A, Otten LA, Steimle V, et al. Expression of MHC class II molecules in different cellular and functional compartments is controlled by differential usage of multiple promoters of the transactivator CIITA. EMBO J, 1997, 16:2851-2860.
    [18] Reith W, Mach B. The bare lymphocyte syndrome and the regulation of MHC expression. Annu Rev Immunol, 2001,19:331-373.
    [19] Raval A, Howcroft TK, Weissman JD, et al. Transcriptional coactivator, CIITA, is an acetyltransferase that bypasses a promoter requirement for TAF (II) 250. Mol Cell, 2001, 7:105-115.
    [20] Fontes JD, Jiang B, Peterlin BM. The class II trans-activator CIITA interacts with the TBP-associated factor TAFII32. Nucleic Acid Res, 1997, 25(12):2522-2528.
    [21] Harton JA, O’Connor W jr, Conti BJ, et al. Leucine-rich repeats of the class II transactivator control its rate of nuclear accumulation. Hum Immunol, 2002, 63:588-601.
    [22] Ting JP, Trowsdale J. Genetic control of MHC class II expression. Cell, 2002,109 (Suppl 2):s21-33.
    [23] Reith W, Leibundgut-Landmann S, Waldburger JM. Regulation of MHC class II gene expression by the class II transactivator. Nat Rev Immunol, 2005, 5:793-806.
    [24] Harton JA, Ting JP. Class II transactivator: mastering the art of major histocompatibility complex expression. Mol Cell Biol, 2000, 20:6185-6194.
    [25] LeibundGut-Landmann S, Waldburger JM, Reis e Sousa C, et al. MHC class II expression is differentially regulated in plasmacytoid and conventional dendritic cells. Nat Immunol, 2004, 5(9):899-908.
    [26] Waldburger JM, Rossi S, Hollander GA, et al. Promoter IV of the class II transactivator gene is essential for positive selection of CD4+T cells. Blood, 2003,101(9):3550-3559.
    [27] van den Elsen PJ, Van der Stoep N, Vietor HE, et al. Lack of CIITA expression is central to the absence of antigen presentation functions of trophoblast cells and is caused by methylation of the IFN-γ inducible promoter (pIV) of CIITA. Hum Immunol, 2000, 61(9):850-862.
    [28] Silacci P, Mottet A, Steimle V, et al. Developmental extinction of major histocompatibility complex class II gene expression in plasmocytes is mediated by silencing of the transactivator gene CIITA. J Exp Med, 1994, 180:1329-1336.
    [29] Landmann S, Mühlethaler-Mottet A, Bernasconi L, et al. Maturation of dendritic cells is accompanied by rapid transcriptional silencing of class II transactivator (CIITA) expression. J Exp Med, 2001, 194:379-392.
    [30] Kwak B, Mulhaupt F, Veillard N, et al. The HMG-CoA reductase inhibitor simvastatin inhibits IFN-gamma induced MHC class II expression in humanvascular endothelial cells. Swiss Med Wkly, 2001, 131:41-46.
    [31] Hong TM, van der Stoep N, Quinten E, et al. Activated human T cell accomplish MHC class II expression through T cell-specific occupation of class II transactivator promoter III. J Immunol, 2002, 168:763-770.
    [32] O’Keefe GM, Nguyen VT, Benveniste EN. Class II transactivator and class II MHC gene expression in microglia: modulation by the cytokines TGF-β, IL-4, IL-13 and IL-10. Eur J Immunol, 1999, 29:1275-1285.
    [33] Le Roy E, Muhlethaler-Mottet A, Davrinche C, et al. Escape of human cytomegalovirus from HLA-DR-restricted CD4+T-cell response is mediated by repression of gamma interferon-induced class II transactivator expression. J Virol, 1999, 73:6582-6589.
    [34] Sisk TJ, Nickerson K, Kwok RP, et al. Phosphorylation of class II transactivator regulates its interaction ability and transactivation function. Int Immunol, 2003, 15:1195-1205.
    [35] Spilianakis C, Papamatheakis J, Kretsovali A. Acetylation by PCAF enhances CIITA nuclear accumulation and transactivation of major histocompatibility complex class II genes. Mol Cell Biol, 2000, 20:8489-8498.
    [36] Chang CH, Guerder S, Hong SC, et al. Mice lacking the MHC class II transactivator (CIITA) show tissue-specific impairment of MHC class II expression. Immunity, 1996, 4(2):167-178.
    [37] Arancibia-Carcamo CV, Osawa H, Arnett HA, et al. A CIITA-independent pathway that promotes expression of endogenous rather than exogenous peptides in immune-privileged sites. Eur J Immunol, 2004, 34:471-480.
    [38] Morris AC, Beresford GW, Mooney MR, et al. Kinetics of a gamma interferon response: expression and assembly of CIITA promoter IV and inhibition of methylation. Mol Cell Biol, 2002, 22:4781-4791.
    [39] Muhlethaler-Mottet A, Di Beraradino W, Otten LA, et al. Activation of the MHC class II transactivator CIITA by interferon-gamma requires cooperativeinteraction between STAT1 and USF-1. Immunity, 1998, 8:157-166.
    [40] Imada K, Leonard WJ. The jak-STAT pathway. Mol Immunol, 2000, 37:1-11.
    [41] Dong Y, Tang L, Letterio JJ, et al. The Smad3 protein is involved in TGF-b inhibition of class II transactivator and class II MHC expression. J Immunol, 2001, 167:311-319.
    [42] Yang WS, Han NJ, Kim CS, et al. STAT1-independent down-regulation of interferon-gamma-induced class II transactivator and HLA-DR expression by transforming growth factor beta-1 in human glomerular endothelial cells. Nephron Exp Nephrol, 2005, 100:e124–e131.
    [43] Wiszniewski W, Fondaneche MC, Le Deist F, et al. Mutation in the class II transactivator leading to a mild immunodeficiency. J Immunol, 2001, 167(3):1787-1794.
    [44] Conant SB, Swanborg RH. Application of tetramer technology in studies on autoimmune disease. Autoimmun Rev, 2003, 2(1):43-49.
    [45] Chinen J, Shearer WT. Basic and clinical immunology. J Allergy Clin Immunol, 2003, 111(3Suppl):S813-818.
    [46] Ballardini G, Mirakian R, Bianchi FB, et al. Aberrant expression of HLA-DR antigens on bileduct epithelium in primary biliary cirrhosis: relevance to pathogenesis. Lancet, 1984, 2(8410):1009-1013.
    [47] Inukai A, Kuru S, Liang Y, et al. Expression of HLA-DR and its enhancing molecules in muscle fibers in polymyositis. Muscle Nerve, 2000,23(3):385-392.
    [48] Nepon GT, Ehrlich H. MHC class II molecules and autoimmunity. Annu Rev Immunol, 1991, 9:493-525.
    [49] Suter T, Malipiero U, Otten LA, et al. Dendritic cells and differential usage of the MHC class II transactivator promoters in the central nervous system in experimental autoimmune encephalitis. Eur J Immunol, 2000, 30(3):794-802.
    [50] Mora C, Wong FS, Chang CH, et al. Pancreatic infiltration but not diabetes occurs in the relative absence of MHC Class II-restricted CD4 T cells: studiesusing NOD/CIITA-deficient mice. J Immunol, 1999, 162(8):4576-4588.
    [51] Stuve O, Youssef S, Slavin AJ, et al. The role of the MHC class II transactivator in class II expression and antigen presentation by astrocytes and in susceptibility to central nervous system autoimmune disease. J Immunol, 2002, 169:6720-6732.
    [52] Herkel J, Jagemann B, Wiegard C, et al. MHC class II-expressing hepatocytes function as antigen-presenting cells and activate specific CD4+T lymphocytes. Hepatology, 2003, 37:1079-1085.
    [53] Li YS, Kanamoto N, Hataya Y, et al. Transgenic mice producing major histocompatibility complex class II molecules on thyroid cells do not develop apparent autoimmune thyroid diseases. Endocrinology, 2004, 145:2524-2530.
    [54] Kimura H, Kimura M, Tzou SC, et al. Expression of class II major histocompatibility complex molecules on thyrocytes does not cause spontaneous thyroiditis but mildly increases its severity after immunization. Endocrinology, 2005, 146(3):1154-1162.
    [55] Baba Y, Saeki K, Onodera T, et al. Serological and immunohistochemical studies on porcine-serum-induced hepatic fibrosis in rats. Exp Mol Pathol, 2005, 79(3): 229-235.
    [56] Yamate J, Sato K, Ide M, et al. Participation of different macrophage populations and myofibroblastic cells in chronically developed renal interstitial fibrosis after cisplatin-induced renal injury in rats. Vet Pathol, 2002, 39(3):322-333.
    [57] 周同, 吴开胤, 孙桂芝, 等. 树突状细胞在 5/6 肾切除大鼠中分布及与肾间质纤维化的关系. 上海医学, 2004, 27:567-570.
    [58] 孙桂芝, 周同, 吴开胤, 等. 树突状细胞在大鼠单侧输尿管梗阻后肾组织中的分布与作用. 上海第二医科大学学报, 2004, 24:174-177.
    [59] 周同, 孙桂芝, 张玉梅, 等. 大鼠单侧输尿管梗阻后粘附分子与树突状细胞表达分布及抗粘附干预的影响. 中国微循环, 2003, 7:337-340.
    [60] Kaiyin Wu, Tong Zhou, Guizhi Sun, et al. Valsartan inhibited the accumulation of dendritic cells in rat fibrotic renal tissue. Cell Mol Immunol,2006, 3(3):213-220.
    [61] Garrido F, Cabrera T, Concha A, et al. Natural history of HLA expression during tumor development. Immunol Today, 1993, 14(3):491-499.
    [62] Brunner CA, Gokel JM, Riethmuller, et al. Expression of HLA-D subloci DR and DQ by breast carcinomas is correlated with distinct parameters of favourable prognosis. Eur J Cancer, 1991, 27:411-416.
    [63] Hilton DA, West KP. An evaluation of the prognostic significance of HLA-DR expression in gastric carcinoma. Cancer, 1990, 66:1154-1157.
    [64] Andersen SN, Rognum TO, Lund E, et al. Strong HLA-DR expression in large bowel carcinomas is associated with good prognosis. Br J Cancer,1993, 68:80-85.
    [65] Esteban F, Ruiz-Cabello F, Concha A, et al. HLA-DR expression is associated with excellent prognosis in squamous cell carcinoma of the larynx. Clin Exp Metastasis, 1990, 8:319-328.
    [66] Ostmeier H, Fuchs B, Otto F, et al. Prognostic immunohistochemical markers of primary human melanomas. Br J Dermatol, 2001, 145:203-209.
    [67] Wang HY, Peng G., Guo Z, et al. Recognition of a new ARTC1 peptide ligand uniquely expressed in tumor cells by antigen-specific CD4+ regulatory T cells. J Immunol, 2005, 174:2661-2670.
    [68] Aoudjit F, Guo W, Gagnon-Houde JV, et al. HLA-DR signaling inhibits Fas mediated apoptosis in A375 melanoma cells. Exp Cell Res, 2004, 299:79-90.
    [69] 魏海明, 张笑人, 田志刚. 肿瘤免疫逃逸的分子机制研究. 国外医学:免疫学分册, 2000,23(6):324-328.
    [70] Martin BK, Frelinger JG, Ting JP. Combination gene therapy with CD86 and the MHC class II transactivator in the control of lung tumor growth. J Immunol, 1999, 162(11):6663-6670.
    [71] Jabrane-Ferrat N, Campbell MJ, Esserman LJ, et al. Challenge with mammary tumor cells expressing MHC class II and CD80 prevents the development of spontaneously arising tumors in MMTV-neu transgenic mice. Cancer GeneTher, 2006, 13:1002-1010.
    [72] Lauritzsen GF, Weiss S, Dembic Z, et al. Naive idiotype-specific CD4+T cells and immunosurveillance of B-cell tumors. Proc Natl Acad Sci USA, 1994,91(12):5700-5704.
    [73] Sanda T, Iida S, Kayukawa S, et al. Induction of class II major histocompatibility complex expression in human multiple myeloma cells by retinoid. Haematologica, 2007, 92(1):115-120.
    [74] Meazza R, Comes A, Orengo AM, et al. Tumor rejection by gene transfer of the MHC class II transactivator in murine mammary adenocarcinoma cells. Eur J Immunol, 2003, 33:1183–1192.
    [75] Mortara L, Castellani P, Meazza R, et al. CIITA-Induced MHC Class II expression in mammary adenocarcinoma leads to a Th1 polarization of the tumor microenvironment, tumor rejection, and specific antitumor memory. Clin Cancer Res, 2006, 12(11):3435-3443.
    [76] Felix NJ, de-Serres S, Meyer AA, et al. Comparison of Abeta (b-/-), H2-DM (-), and CIITA (-/-) in second-set skin allograft rejection. J Surg Res, 2002, 102:185-192.
    [77] Kim TW, Choi YM, Seo JN, et al. Delayed allograft rejection by the suppression of class II transactivator. Exp Mol Med, 2006, 38(3):210-216.
    [78] June BW, Felix NJ, Griffiths R, et al. Prolonged survival of class II transactivator-deficient cardiac allograft.Transplantation,2002,74(9):1341-1348.
    [79] Li Y, Koster T, Morike C, et al. Pravastatin prolongs graft survival in an allogeneic rat model of orthotopic single lung transplantation. Eur J Cardiothorac Surg, 2006,30(3):515-524.
    [80] Accolla RS, De Lerma Barbaro A, Mazza S, et al. The MHC class Ⅱ transactivator: prey and hunter in infectious diseases. Trends Immunol, 2001, 22(10):560-563.
    [81] Lang C, Algner M, Beinert N, et al. Diverse mechanisms employed byToxoplasma gondii to inhibit IFN-gamma-induced major histocompatibility complex class II gene expression. Microbes Infect, 2006, 8(8):1994-2005.
    [82] Hegde NR, Chevalier MS, Johnson DC. Viral inhibition of MHC class Ⅱ antigen presentation. Trends Immunol, 2003, 24(5):278-285.
    [83] Abendroth A, Slobedman B, Lee E, et al. Modulation of major histocompatibility class II protein expression by varicella-zoster virus. J Virol, 2000, 74(4):1900-1907.
    [84] Rakoff-Nahoum S, Chen H, Kraus T, et al . Regulation of class Ⅱ expression in monocytic cells after HIV-1 infection. J Immunol, 2001,167(4):2331-2342.
    [85] Repique CJ, Li A, Brickey WJ, et al. Susceptibility of mice deficient in the MHC class II transactivator to infection with mycobacterium tuberculosis scand. J Immonol, 2003, 58(1):15-22.
    [86] Sisk TJ, Gourley T, Roys S, et al. MHC class II transactivator inhibits IL-4 gene transcription by competing with NF-AT to bind the coactivator CREB binding protein (CBP)p300. J Immunol, 2000, 165(5):2511-2517.
    [87] Patel DR, Kaplan MH, Chang CH. Altered Th1 cell differentiation programming by CIITA deficiency. J Immunol, 2004,173(9):5501-5508.
    [88] Otten LA, Tacchini-Cottier F, Lohoff M, et al. Deregulated MHC class II transactivator expression lead to a strong Th2 bias in CD4+T lymphocytes. J Immunol, 2003, 170(3):1150-1157.
    [89] Park WS, Bae Y, Chung DH, et al. T cell expression of CIITA represses Th1 immunity. Int Immunol, 2004, 16(10):1355-1364.
    [90] Patel DR, Li W, Park JS, et al. Constitutive expression of CIITA directs CD4+T cells to produce Th2 cytokines in the thymus. Cell Immunol, 2005, 233(1):30-40.
    [91] Kim TW, Park HJ, Choi EY, et al. Overexpression of CIITA in T cells aggravates Th2-mediated colitis in mice. J Korean Med Sci, 2006, 21(5):877-882.
    [92] Gross TJ, Hunninghake GW. Idiopathic pulmonary fibrosis. N Engl J Med,2001, 345(7):517-525.
    [93] Meltzer EB, Noble PW. Idiopathic pulmonary fibrosis. Orphanet J Rare Dis, 2008, 3(1):8.
    [94] King TE Jr, Schwarz MI, Brown K, et al. Idiopathic pulmonary fibrosis: relationship between histopathologic features and mortality. Am J Respir Crit Care Med, 2001, 164(6):1025-1032.
    [95] Kinnard W, Tuder R, Papst P, et al. Regulation of alveolar type II cell differentiation and proliferation in adult rat lung explants. Am J Respir Cell Mol Biol, 1994, 11(4):416-425.
    [96] Shannon JM, Hyatt BA. Epithelial-mesenchymal interactions in the developing lung. Annu Rev Physiol, 2004, 66:625-645.
    [97] Mason RJ. Biology of alveolar type II cells. Respirology, 2006, 11(Suppl):S12-15.
    [98] Kasai H, Allen JT, Mason RM, et al. TGF-betal induces human alveolar epithelial to mesenchymal cell transition (EMT). Respir Res, 2005, 6:56.
    [99] Zavadil J, Bottinger EP. TGF-beta and epithelial-to-mesenchymal transitions. Oncogene, 2005,24:5764-5774.
    [100] Willis BC, Liebler JM, Luby-Phelps K, et al. Induction of epithelial-mesenchymal transition in alveolar epithelial cells by transforming growth factor-beta1: potential role in idiopathic pulmonary fibrosis. Am J Pathol, 2005, 166:1321-1332.
    [101] Wu Z, Yang L, Cai L, et al. Detection of epithelial to mesenchymal transition in airways of a bleomycin induced pulmonary fibrosis model derived from an α-smooth muscle actin-Cre transgenic mouse. Respiratory Research, 2007, 8:1-11.
    [102] Serrano-Mollar A, Nacher M, Gay-Jordi G, et al. Intratracheal transplantation of alveolar type II cells reverses bleomycin-induced lung fibrosis. Am J Respir Crit Care Med, 2007, 176:1261-1268.
    [103] Selman M, Pardo A. Role of epithelial cells in idiopathic pulmonary fibrosis.Proc Am Thorac Soc, 2006, 3:364-372.
    [104] Jindal SK, Aqarwal R. Autoimmunity and interstitial lung disease. Curr Opin Pulm Med, 2005, 11(5):438-446.
    [105] Takahashi T, Wada I, Ohtsuka Y, et al. Autoantibody to alanyl-tRNA synthetase in patients with idiopathic pulmonary fibrosis. Respirology, 2007, 12(5):642-653.
    [106] Feghali-Bostwick CA, Tsai CG, Valentine VG,et al. Cellular and humoral autoreactivity in idiopathic pulmonary fibrosis. J Immunol, 2007, 179(4):2592-2599.
    [107] Marchal-Somme J, Uzunhan Y, Marchand-Adam S,et al. Dendritic cells accumulate in human fibrotic lung disease. Am J Respir Crit Care Med, 2007, 176(10):1007-1014.
    [108] Kallenberg CG, Schilizzi BM, Beaumont F, et al. Expression of class II major histocompatibility complex antigens on alveolar epithelium in interstitial lung disease: relevance to pathogenesis of idiopathic pulmonary fibrosis. J Clin Pathol, 1987,40:725-733.
    [109] Kaneko Y, Kuwano K, Kunitake R, et al. B7-1, B7-2 and class II MHC molecules in idiopathic pulmonary fibrosis and bronchiolitis obliterans-organizing pneumonia. Eur Respir J, 2000, 15:49-55.
    [110] Debbabi H, Ghosh S, Kamath AB, et al. Primary type II alveolar epithelial cells present microbial antigens to antigen-specific CD4+Tcells. Am J Physiol Lung Cell Mol Physiol, 2005, 289:L274-L279.
    [111] Okajima K. Regulation of inflammatory responses by endothelial cells--understanding the molecular mechanism(s) and its therapeutic application to sepsis. Masui, 2008, 57(3):311-320.
    [112] Catravas JD, Lazo JS, Dobuler KJ, et al. Pulmonary endothelial dysfunction in the presence or absence of interstitial injury induced by intratracheally injected bleomycin in rabbits. Am Rev Respir Dis, 1983, 128:740-746.
    [113] Slosman DO, Polla BS, Donath A. 123I-MIBG pulmonary removal: abiochemical marker of minimal lung endothelial cell lesions. Eur J Nucl Med, 1990, 16:633-637.
    [114] Takabatake N, Arao T, Sata M, et al. Involvement of pulmonary endothelial cell injury in the pathogenesis of pulmonary fibrosis: a clinical assessment of by 123I-MIBG lung scintigraphy. Eur J Nucl Med Mol Imaging, 2005, 32:221-228.
    [115] Ihn H, Sato S, Fujimoto M, et al. Characterization of autoantibodies to endothelial cells in systemic sclerosis (SSc) association with pulmonary fibrosis. Clin Exp Immunol, 2000, 119:203-209.
    [116] Wusirika R, Ferri C, Marin M, et al. The assessment of antiendothelial cell antibodies in scleroderma-associated pulmonary fibrosis. A study of indirect immunofluorescent and western blot analysis in 49 patients with scleroderma. Am J Clin Pathol, 2003,120:596-606.
    [117] Dobashi N, Fujita J, Ohstukin Y, et al. Circulating cytokeratin 8: anti-cytokeratin 8 antibody immune complexes in sera of patients with pulmonary fibrosis. Respiration, 2000, 67:397-401.
    [118] Dobashi N, Fujita J, Murota M, et al. Elevation of anti-cytokeratin 18 antibody and circulating cytokeratin 18: anti-cytokeratin 18 antibody immune complexes in sera of patients with idiopathic pulmonary fibrosis. Lung, 2000, 178:171-179.
    [119] Fujita J, Dobashi N, Ohtsuki Y, et al. Elevation of anti-cytokeratin 19 antibody in sera of the patients with idiopathic pulmonary fibrosis and pulmonary fibrosis associated with collagen vascular disorders. Lung, 1999, 177:311-319.
    [120] Magro CM, Waldman WJ, Knight DA, et al. Idiopathic pulmonary fibrosis related to endothelial injury and antiendothelial cell antibodies. Human Immunology, 2006, 67:284-297.
    [121] Parra ER, Kairalla RA, Ribeiro de Carvalho CR, et al. Inflammatory cell phenotyping of the pulmonary interstitium in idiopathic interstitial pneumonia. Respiration, 2007, 74:159–169.
    [122] Izbicki G, Segel MJ, Christensen TG, et al. Time course of bleomycin-induced lung fibrosis. Int J Path, 2002, 83(3):111-119.
    [123] Daniil Z, Kitsanta P, Kapotsis G, et al. CD8+T lymphocytes in lung tissue from patients with idiopathic pulmonary fibrosis. Respir Res, 2005, 6:81-89.
    [124] Fireman E, Vardinon N, Burke M, et al. Predictive value of response to treatment of T-lymphocyte subpopulations in idiopathic pulmonary fibrosis. Eur Respir J, 1998,11:706-711.
    [125] Szapiel SV, Elson NA, Fulmer JD, et al. Bleomycin-induced interstitial pulmonary disease in the nude, athymic mouse. Am Rev Respir Dis, 1979, 120:893-899.
    [126] Helene M, Lake-Bullock V, Zhu J, et al. T cell independence of bleomycin-induced pulmonary fibrosis. J Leukoc Biol, 1999, 65:187-195.
    [127] Janick-Buckner D, Ranges GE, Hacker MP. Effect of cytotoxic monoclonal antibody depletion of T-lymphocyte subpopulations on bleomycin-induced lung damage in C57BL/6J mice. Toxicol Appl Pharmacol, 1989, 100:474-484.
    [128] Schrier DJ, Phan SH, McGarry BM. The effects of the nude (nu/nu) mutation on bleomycin-induced pulmonary fibrosis. Am Rev Respir Dis, 1983,127:614-617.
    [129] Sharma SK, MacLean JA, Pinto C, et al. The effect of an anti-CD3 monoclonal antibody on bleomycin-induced lymphokine production and lung injury. Am J Respir Crit Care Med, 1996, 154:193-200.
    [130] Pochetuhen K, Luzina IG, Lockatell V, et al. Complex regulation of pulmonary inflammation and fibrosis by CCL18. Am J Pathol, 2007, 171:428-437.
    [131] Marchal-Somme J, Uzunhan Y, Marchand-Adam S, et al. Cutting edge: nonproliferating mature immune cells form a novel type of organized lymphoid structure in idiopathic pulmonary fibrosis. J Immunol, 2006,176: 5735-5739.
    [132] Agostini C, Chilosi M, Zambello L, et al. Pulmonary immune cells in health and disease: lymphocytes. Eur Respir J, 1993,6:1378-1401.
    [133] Harris NL, Watt V, Ronchese F, et al. Differential T cell function and fate in lymph node and nonlymphoid tissues. J Exp Med, 2002, 195:317-326.
    [134] Sime PJ, O’Reilly KM. Fibrosis of the lung and other tissues: new concepts in pathogenesis and treatment. Clin Immunol, 2001, 99:308-319.
    [135] Wallace WA, Ramage EA, Lamb D, et al. A type 2 (Th2-like) pattern of immune response predominates in the pulmonary interstitium of patients with cryptogenic fibrosing alveolitis (CFA). Clin Exp Immunol, 1995, 101:436-441.
    [136] Majumdar SD, Ansari T, Pantelidis PC, et al . Different cytokine profiles in cryptogenic fibrosing alveolitis and fibrosing alveolitis associated with systemic sclerosis. J Eur Respir, 1999, 14( 2):251-257.
    [137] Shimizu Y, Kuwabara H, Ono A, et al. Intracellular Th1/Th2 balance of pulmonary CD4+T cells in patients with active interstitial pneumonia evaluated by serum KL-6. Immunopharmacol Immunotoxicol, 2006, 28(2):295-304.
    [138] Pignatti P, Brunetti G, Moretto D, et al. Role of the chemokine receptors CXCR3 and CCR4 in human pulmonary fibrosis. Am J Respir Crit Care Med, 2006, 173:310-317.
    [139] Yoshinouchi T, Naniwa T, Shimizu S, et al. Expression of chemokine receptors CXCR3 and CCR4 in lymphocytes of idiopathic nonspecific interstitial pneumonia. Respir Med, 2007, 101(6):1258-64.
    [140] Arras M, Huaux F, Monique AV, et al. Interleukin-9 reduces lung fibrosis and type 2 immune polarization induced by silica particles in a murine model. Am J Respir cell Mol Biol, 2001, 24(4):368-375.
    [141] Westermann W, Schobl R, Rieter EP, et al. Th2 cell as effectors in postirradiation pulmonary damage preceding fibrosis in the rat. Int J Radiat Biol, 1999, 75:629-638.
    [142] Zhang K, Gharaee-Kermani M, Jones ML, et al. Lung monocyte chemoattractant protein-1 gene expression in bleomycin-induced pulmonary fibrosis. J Immunol, 1994, 153:4733-4741.
    [143] Gharaee-Kermani M, McGarry B, Lukacs N, et al. The role of IL-5 in bleomycin-induced pulmonary fibrosis. J Leukocyte Biol, 1998, 64:657-666.
    [144] Belperio JA, Dy M, Murray L, et al. The role of the Th2 CC chemokine ligand CCL17 in pulmonary fibrosis. J Immunol, 2004, 173:4692-4698.
    [145] 王浩凌, 谢敏, 刘涛. γ干扰素对博来霉素诱导的大鼠肺纤维化的干预作用. 中国呼吸与危重监护杂志, 2007 , 6(2):105-110.
    [146] Kim JH, Kim HY, Kim S, et al. Natural killer T (NKT) cells attenuate bleomycin-induced pulmonary fibrosis by producing interferon-gamma. Am J Pathol, 2005, 167(5):1231-1241.
    [147] Selman M, Thannickal VJ, Pardo A, et al. Idiopathic pulmonary fibrosis: pathogenesis and therapeutic approaches. Drugs, 2004, 64(4):405-430.
    [148] Eickelberg O, Pansky A, Koehler E, et al. Molecular mechanisms of TGF-beta antagonism by interferon-gamma and cyclosporine A in lung fibroblasts. FASEB J, 2001,15( 3):797-806.
    [149] Ghosh AK. Factors involved in the regulation of type I collagen gene expression: implication in fibrosis. Exp Biol Med, 2002, 227(5):301-314.
    [150] Nagahori T, Dohi M, Matsumoto K, et al . Interferon-gamma upregulates the c-Met/hepatocyte growth factor receptor expression in alveolar epithelial cells. Am J Respir Cell Mol Biol, 1999, 21(4):490-497.
    [151] Chen ES, Greenlee BM, Wills-Karp M, et al. Attenuation of lung inflammation and fibrosis in interferon-gamma-deficient mice after intracheal bleomycin. Am J Respir Cell Mol Biol, 2001, 24:545-555.
    [152] Ziesche R, Hofbauer E,Wittmann K, et al. A preliminary study of long-term treatment wit h interferon gamma-1b and low-dose prednisolone in patients wih idiopat hic pulmonary fibrosis. N Engl J Med, 1999, 341(17):1264-1269.
    [153] Raghu G, Spada C, Otaki Y, et al. Interferon gamma in the treatment ofadvanced idiopathic pulmonary fibrosis (IPF) and fibrotic nonspecific interstitial pneumonia (NSIP-F): prospective, preliminary clinical observations in one center. Chest, 2001, 120(Suppl):S185.
    [154] Karla S, Utz JP, Ryu JH. Interferon gamma-1b therapy for advanced idiopathic pulmonary fibrosis. Mayo Clin Proc, 2003, 78(9):1082-1087.
    [155] Honore I, Nunes H, Groussard O, et al. Acute respiratory failure after interferon-γ therapy of end-stage pulmonary fibrosis. Am J Respir Crit Care Med, 2003, 167:953-957.
    [156] Raghu G, Brown KK, Bradford WZ, et al. A placebo-cont rolled trial of interferon gamma-1b in patients with idiopathic pulmonary fibrosis. N Engl J Med, 2004, 350(2):125-133.
    [157] Bajwa EK, Ayas NT, Schulzer M, et al. Interferon-γ1b therapy in idiopathic pulmonary fibrosis. Chest, 2005, 128:203-206.
    [158] Antoniou KM, Nicholson AG, Dimadi M, et al. Long-term clinical effects of interferon gamma-1b and colchicine in idiopathic pulmonary fibrosis. Eur Respir J, 2006, 28(3):496-504.
    [159] Turesson C. Endothelial expression of MHC class II molecules in autoimmune disease. Curr Pharm Des, 2004, 10(2):129-143.
    [160] Lukacs NW, Hogaboam C, Chensue SW, et al. Type1/type2 cytokine paradigm and the progression of pulmonary fibrosis. Chest, 2001, 120:5S-8S.
    [161] Kunkel SL, Chensue SW, Lukacs N, et al. Cytokine phenotypes serve as a paradigm for experimental immune-mediated lung diseases and remodeling. Am J Respir Cell Mol Biol, 2003, 29(3 Suppl):S63-S66.
    [162] 马靖, 何冰. 阿奇霉素对博莱霉素致大鼠肺损伤的干预作用及其机制的探讨. 中华结核和呼吸杂志, 2002, 25(7):392-395.
    [163] Wong ML, Medrano JF. Real-time PCR for mRNA quantification. Biotechniques, 2005, 39(1):75-85.
    [164] Pai RK, Askew D, Boom WH, et al. Regulation of class II MHC expression inAPCs: roles of types I, III, and IV class II transactivator. J Immunol, 2002, 169:1326-1333.
    [165] 王少杰, 白文, 王春玲, 等. 人工冬虫夏草菌液对博莱霉素致小鼠肺纤维化的保护作用. 中国中药杂志, 2007, 32(24):2623-2627.
    [166] Bartram U, Speer CP. The role of transforming growth factor-β in lung development and disease. Chest, 2004, 125:754-765.
    [167] Sheppard D. Transforming growth factor beta: a central modulator of pulmonary and airway inflammation and fibrosis. Proc Am Thorac Soc, 2006, 3:413-417.
    [168] 赵志杰, 周国鹏, 焦红梅, 等. 转化生长因子 β1 在老龄大鼠博来霉素诱导肺纤维化模型肺脏中的表达变化. 中国现代医学杂志, 2006, 16(22):3401-3408.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700