发动机燃用低热值气体燃料燃烧性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:近年来,由于全球石油资源日渐枯竭和生态环境日趋恶化,代用燃料.的研究成为发动机领域的重要研究方向,其中低热值气体燃料是现阶段正在受到广泛关注的代用气体燃料。本文以数值模拟和台架试验为主要研究手段,对发动机燃用低热值气体燃料的点火、缸内燃烧和排放特性进行了系统研究。研究工作为发动机高效低污染的燃用此类燃料提供理论依据和优化改进的方法,对理解低热值气体燃料燃烧特性具有重要的理论意义和工程实用价值。
     本文建立了基于离散粒子的发动机燃用低热值气体燃料的点火模型。模型由火花塞放电子模型、离散粒子发展速度子模型、组分燃烧率子模型和火花塞效应子模型组成。离散粒子发展速度子模型中加入了火花塞附近整体对流速度的影响,在组分燃烧率子模型中引入了分形概念,基于分形理论、以火焰折皱度因子来描述湍流对火核发展阶段瞬时燃烧率的影响,同时基于详细化学反应机理完成火核焰后化学反应放热的计算。在火焰传播阶段中,基于Damkohler判据建立了发动机燃用低热值气体燃料的湍流燃烧模型,该模型具有自适应功能,根据当前湍流和化学反应时间尺度的比较来确定该单元的组分燃烧率的计算方法。同时,在计算中引入了详细化学反应机理,并实现了与缸内流场的耦合计算。
     在开发的KIVA/CHEMKIN耦合计算软件性能分析的基础上,建立了基于MPI和OpenMP复合算法的并行计算系统,分别利用了消息传递模型和共享存储模型的优势使引入详细化学反应机理后的计算时间大幅降低,使得耦合化学反应动力学的工程应用成为可能。
     基于建立的发动机燃用低热值气体燃料的燃烧模型,运用开发的并行计算软件对低热值气体燃料燃烧性能进行了研究。结果发现,随着湍流脉动速度强度和涡流比的增加,火核生长速度加快,分形维数增大,表明火核表面折皱程度增大,燃烧更加剧烈。点火能量主要影响火核初期半径的大小,低热值气体燃料的惰性组分系数越大,火核生长的速度越慢,分形维数降低。当过量空气系数增大时(稀燃极限内),火核生长速度会明显降低,分形维数也随之下降。低热值气体燃料缸内主要污染物NOX、CO的分布具有明显的规律性,甲醛生成量相比常规排放物小两个数量级。HC排放主要由未燃燃料、醇类和醛类的CH3OH、CH2O,少量的烯烃和烷烃类的C2H4、C2H6组成,UHC主要分布在缸壁附近和壁面淬熄区。惰性组分系数的增加能减小同一曲轴转角下的高温分布区域,同时,OH根的浓度明显下降,火焰发展期增加,NO生成量会随之降低。增大发动机点火提前角,低热值气体发动机动力性能明显提高,但同时NO浓度值也大幅增加。
     本研究搭建了发动机测试台架,开展了发动机燃用低热值气体燃料的试验研究。结果发现低热值气体燃料中惰性组分会增加火焰发展期,而对快速燃烧期的影响相对较小,同时会导致发动机放热率曲线型心偏离上止点,燃烧等容度变差。低热值气体燃料的惰性组分系数增大会导致循环变动加强,而当低热值气体惰性组分系数小于20%时,平均指示压力与最大缸压具有强线性相关性,但当惰性组分系数超过30%,小负荷工况下燃烧循环变动明显增加。低热值气体燃料中掺入氢气降低了发动机工作循环的火焰发展期和快速燃烧期,尤其是降低了火焰发展期的持续时间。同时,燃料中掺氢降低了发动机的循环变动,随着掺氢比的增加,发动机平均指示压力的分布区域向其均值靠近,而且平均指示压力和最大缸压之间的相关性明显加强。发动机燃用低热值气体燃料的CO和HC排放随着惰性组分系数的增加而增加,NOx排放则随着惰性组分系数的增加迅速降低,尤其是当燃料中的惰性气体为CO2时尤为明显。在低热值气体燃料中掺入氢气能够有效降低CO和HC排放,但同时会大幅的增加NOx排放。
ABSTRACT:In recent years, due to the shortage of the global petroleum resource and the serious pollution to living environment, the research on clean alternative fuels is becoming an important direction of engine techniques. Lower heating value (LHV) gas has been considered as an alternative gas fuel nowadays. In this study, the characteristics of ignition, combustion and emissions about the engine fuelled with LHV gas was investigated using fully coupled multi-dimensional CFD and detailed chemical kinetics model combined with experiments. It is useful to promote the effective and clean combustion in engine fuelled with LHV gas and the study has important theoretic and engineering practical value.
     Based on discrete particles method, the ignition model for engine fuelled with LHV gas is developed. The model is composed of four parts, Electric energy deposition sub-model, Discrete particle velocjty sub-model, Burn rate sub-model, spark plug protrusion and electrode heat transfer sub-model. In the discrete particle model, a convection velocity has been considered. Using fractal theory, a coefficient used to describe the wrinkling effect of turbulent combustion has been defined. In flame propagation period, a self-adapting turbulent combustion model based on Damkohler number was built. The model has been used to calculate the burn rate in proper way by comparison of turbulence and chemical kinetics time scale. At the same time, detailed chemical kinetics model has been combined with CFD.
     Based on the analysis of coupled simulation software consisting of KIVA and CHEMKIN, the parallel calculation system by MPI and OpenMP is built. The system combines the advantage of Message-passing model and Shared-memory model, so the time consuming is reduced markedly.
     Based on the parallel simulation system for engine fuelled with LHV gas, the characteristics of ignition and combustion was studied. The simulation results indicate that with the increase of turbulent intensity and swirl ratio, the velocity of flame kernel development increases. Meanwhile, fractal dimension inceases and the combustion process are enhanced. Ignition energy mainly influence the initial stage of fame kernel radius. With the increase of the volume fraction of inert gas in fuel, the velocity of fame kernel radius development and fractal dimension decrease. It shows the same behavior if the excess air ratio increases. The normal exhaust emissions like NOX, CO have clear distribution regularity in cylinder. The amount of CH2O is two order of magnitudes lower than that of normal emissions. UHC emissions mostly reside in the vicinity of cylinder wall, and the compositions are mainly composed of unburned CH4, CH2O, CH3OH, C2H4 and C2H6. Meanwhile, with the increase of the volume fraction of inert gas in fuel, the higher temperature area decreases at the same crank angle. At the same time, the flame development duration increase remarkably, but the amount of NO emission reduce. Advancing spark timing can increase the maximum pressure value, but the amount of NO emission also increase.
     The experimental bench for engine fuelled with LHV gas was built and the combustion characteristics of the engine has been tested. The results show that the inert gas in the LHV gas fuel has great effect on the flame development duration, but less effect on the rapid combustion duration. Meanwhile, the inert gas causes the center of the heat release curve to move apart from TDC and with the increase of inert gas volume fraction, the degree of departure is enhanced. The level of inert gas fraction has strong influence on the cyclic variations at low load operations. With the increase of inert gas fraction, cyclic variation of the engine fuelled with LHV gas is strengthened. When the level of inert gas volume fraction is lower than 20%, the combustion process has good stability under all tested load conditions and the indicated mean pressure has strong linear correlation with the maximum pressure. But if the level of inert gas fraction in blend is higher than 30%, the engine fuelled with LHV gas shows poor stability performance, especially in the case of the low load conditions. Hydrogen addition can decrease the flame development duration and rapid combustion duration, but hydrogen gives the larger influence on the flame development duration than on the rapid combustion duration. At the same time, hydrogen addition into the LHV gas decreases the cycle-by-cycle variation. For a specified inert gas fraction, the indicated mean pressure shows higher and concentrated value when hydrogen addition is introduced. This effectiveness becomes more remarkably at high hydrogen addition fraction. Strong independency between indicated mean pressure and peak pressure is presented with the increase of hydrogen fraction. With the increase of inert gas fraction, CO and HC emissions increase, but NOX emission decreases markedly especially with CO2 dilution gas. Hydrogen addition can decrease CO and HC emissions effectively, but the amount NOx emission increases obviously meanwhile.
引文
[1]黄佐华,蒋德明,王锡斌.内燃机燃烧研究及面临的挑战[J].内燃机学报,2008,26:101-106.
    [2]辛木,国内外代用燃料汽车的应用现状[J],汽车与安全,2007,8:62-67.
    [3]镭射,能源危机孕育汽车工业新的发展机遇[J],上海汽车,2008,11:1.
    [4]蒋德明,黄佐华,等.内燃机替代燃料燃烧学[M],西安交通大学出版社,2007
    [5]汪卫东,我国汽车代用燃料的研究发展现状及前景[J],北京汽车,2006,1:37-41.
    [6]张勇,天然气-氢气-空气混合燃料预混层流燃烧特性基础研究[D],硕士学位论文,西安交通大学,2005.
    [7]车长波,邱海峻,刘成林,等,国家层面的煤层气资源评价思路和方法要点[J],中国煤层气,2004,1(1):10-12..
    [8]Zuo,C.J., Qian,Y.J.,Tan,J. et al., An experimental study of combustion and emissions in a spark-ignition engine fueled with coal-mine methane [J], Energy,2008,33(3):455-461
    [9]郑云龙,凌志强,我国煤层气产业化:挑战与机遇并存[J],中国石化,2008,11:27-29
    [10]刘文革,余小素.我国煤矿区煤层气发电技术及潜力分析[J],中国电力,2004,37:17-20
    [11]郭东,低浓度煤层气资源利用现状及效益分析[J],中国煤层气,2008,5:42-47
    [12]张莹莹,开发利用煤层气,减少CO2排放[J],科技情报开发与经济,2008,25:204-205
    [13]张志刚,文光才,孙东玲,煤矿区煤层气开发潜力评价方法研究[J],矿业安全与环保,2008,35(5):28-33
    [14]徐会军,顾大钊.我国煤层气开发利用现状及对策建议[C],2002年第三届国际煤层气论坛论文集,中国矿业大学出报社
    [15]国家经贸委资源节约与综合利用司.2000~2015年新能源和可再生能源产业发展规划要点.2002.
    [16]范维澄,陈义良,洪茂玲,计算燃烧学[M],安徽科技出版社,1987.
    [17]蒋德明,陈长佑,杨嘉林,杨中级,高等车用内燃机原理[M],西安交通大学出版社,2006.
    [18]S. Goto, et al. Advanced Gas Engine Fueled By A Coal Seams Methane Gas.2001 International Coal-bed Methane Symposium, May 14-18,2001, Tuscaloosa, Alabama
    [19]Brown, A. K., and Maunder, H. D., "Using Landfill Gas:A UK Perspective," 1994, Renewable Energy,5, pp.774-781
    [20]http://www.methanetomarkets.org/expo/docs/postexpo/coal_takahashi.pdf
    [21]郭娟彦蒋东翔等.煤层气发电技术现状及我—国煤层气发电存在的问题[J].中国煤层气,2004,1(2)
    [22]K. C. Midkiff, et al. Fuel Composition Effects on Emissions From a Spark-Ignited Engine
    Operated on Simulated Biogases. Transactions of the ASME Vol.123, January 2001
    [23]Saiful Bari. Effect of carbon dioxide on the performance of biogas-diesel duel-fuel engine. WREC1996:1007~1010
    [24]Anne Roubaud, et al. Improving performances of a lean burn cogeneration biogas engine equipped with combustion prechambers. Fuel.2004.02.023
    [25]左承基,郭威,钱叶剑等.火花点火式变组分煤层气发动机的工作稳定性和排放特性[J]。内燃机学报,2001,21(5):329-332
    [26]熊树生,陈勇.沼气发动机快速燃烧系统实验研究[J]。燃烧科学与技术,2001,7(4):239-242
    [27]蒋德明,夏来庆,袁大宏,王绍光,火花点火发动机的燃烧[M],西安交通大学出版社,1991.
    [28]Heywood J B, Internal Combustion Engine Fundamentals [M], New York McGraw-Hill Book company,1988.
    [29]蒋德明,内燃机燃烧与排放学[M],西安交通大学出版社,2001.
    [30]毕小平,蒋德明.火花点火发动机点火过程的数值模拟[J].内燃机学报,1991,9:1-6
    [31]沈慧贤,花火点火发动机火核形成与初期发展的研究[D],博士学位论文,西安交通大学,1991
    [32]周重光,LPG发动机三维燃烧模拟计算与试验研究[D],博士学位论文,浙江大学,2003.
    [33]张强,生物质气发动机工作过程的数值模拟及试验研究[D],博士学位论文,山东大学,2006.
    [34]O.Pajot, C.Mounaim-Rousselle, Instantaneous Flow Field Effects on the Flame Kernel in S.I. Engine by Simultaneous Optical Diagnostics [C], SAE 2000-01-1796,2000
    [35]Thierry Mantel, Three Dimensional Study of Flame Kernel Formation Around a Spark Plug. [C],SAE paper 920587,1992.1087-1103
    [36]E.SHER,J.BEN-YA'ISH, T.KRVCHIK, On the birth of Spark Channels[J], Combustion and Flame,1992,89:186-194
    [37]ERAN SHER, JAMES C.KECK, Spark Ignition of Combustible Gas Mixtures[J], Combustion and Flame,1986,66:17-25
    [38]S.REFAEL, E. SHER, A Theoretical Study of the Ignition of a Reactive Medium by Means of an Electrical Discharge[J], Combustion and Flame,1985,59:17-30.
    [39]K.W.Jenkins, M.Klein, N.Chakraborty, R.S.Cant, Effects of strain rate and curvature on the propagation of a spherical flame kernel in the thin-reaction-zones regime [J], Combustion and Flame,2006,145:415-434
    [40]T.D.Dunstan, K.W.Jenkins, Flame surface density distribution in turbulent flame kernels during
    the early stages of growth [J], Proceedings of the Combustion Institute,2009,32:1427-1434
    [41]Peter Eckert, Song-Charng Kong, Rolf D.Reitz. Modeling Autoignition and Engine Knock Under Spark Igniton Conditions [C], SAEpaper 2003-01-0011,2003
    [42]Zhichao Tan, Rolf D.Reitz, An ignition and combustion model based on the level-set method for spark ignition engine multidimensional modeling [J], Combustion and Flame,2006,145:1-15
    [43]L.Fan, G.Li, Z.Han,R.D.Reitz, Modeling Fuel Preparation and Stratified Combustion in a Gasoline Direct Injection Engine [C], SAEpaper 1999-01-0175,1999
    [44]Li Fan, Rolf D.Reitz, Development of an Ignition and Combustion Model for Spark-Ignition Engines [C], SAEpaper 2000-01-2809,2000
    [45]Li Fan, Muti-dimensional Modeling of Mixing and Combustion of Direct Injection Spark Ignition Engines [D], University of Wisconsin-Madison,2000
    [46]O.Colin, A.Benkenida, C.Angelberger,3D Modeling of Mixing, Ignition and Combustion Phenomena in Highly Stratified Gasoline Engines[J], Oil& Gas Science and Technology,2003, 58:47-62
    [47]杨迪,湍流预混燃烧的多维模拟[D],博士学位论文,西安交通大学,1997
    [48]刘亮,定容燃烧弹中预混湍流燃烧的数值模拟和实验研究[D],博士学位论文,西安交通大学,1997
    [49]Zhao X., Matthews, R.D.,Ellzey, J.L., Numerical Simulation of Combustion in SI Engines: Comparison of the Fractal Flame Model to the Coherent Flame Model [C], International Symposium COMODIA, p.157-162,1994
    [50]Mattavi J N, Amann C A, Combustion Modeling in Reciprocating Engines [M], Plenum Press, 1980
    [51]谢茂昭,内燃机计算燃烧学[M],大连理工大学出版社,2005
    [52]张欣,电控柴油/CNG双燃料发动机燃烧过程二维数值模拟及性能试验研究[D],博士学位论文,北方交通大学,2000.
    [53]A.A.Amsden, P.J. O'Pourke, T.D.Butler, KIVA-II:A Computer Program for Chemically Reactive Flows with Sprays [R], Report LA-11560-MS, Los Alamos National Laboratory,1989
    [54]S.L. Yang, Y.K. Siow, C.Y. Teo, K.Hanjalic, A KIVA code with Reynolds-stress model for engine flow simulation [J], Energy,2005,30:427-445
    [55]Anthony A.Amsden, KIVA-3:A KIVA Program with Block-structured Mesh for Complex Geometries [R], LA-12503-MS, Los Alamos National Laboratory,1993.
    [56]Spalding D.B., Mixing and Chemical Reaction in Steady Confined Turbulent Flames,13th Symposium on Combustion,1971
    [57]Spalding D.B., Development of the eddy-break-up model of turbulent combustion [C],16th
    Symposium on Combustion,1976, pp:1657-1663
    [58]Magnussen B.F., Hjertager B.H., On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion [C],16th Symposium on Combustion, 1976, pp:719-72
    [59]Naji TW, et al., Towards a General Turbulent Combustion Model for SI engine [C]. SAEpaper, 890672,1989
    [60]F. GRASSO, F.V. BRACCO, Evaluation of a Mixing-Controlled Model for Engine Combustion [J], Combustion Science and Technology,1982,28:185-210
    [61]张顺利,郑洪涛,穆勇,EDC模型在三维燃烧流场数值模拟的应用[J],应用科技,2005,32:48-50
    [62]张俊霞,化学动力学机理耦合EDC燃烧模型对湍流扩散火焰的数值模拟[J],工业炉,2007,29(1):41-44
    [63]Magel H C, Schnell U, Hein K R G, Simulation of Detailed Chemistry in a Turbulent Combustor Flow [C],26th Symposium on Combustion,1996,1:67-74
    [64]Magnussen, B. F., On the Structure of Turbulence and a Generalized Eddy Dissipation Concept for Chemical Reaction in Turbulent Flow [J],19th AIAA Science Meeting,1981
    [65]Magnussen, The Eddy Dissipation Concept [C], Proceedings of 11th Task Leaders Meeting, IEA Working Party on Energy Conservation in Combustion,1989
    [66]ERTESVAG Ivar., Magnussen, The Eddy Dissipation turbulence energy cascade model [J], Combustion science and technology,2000,159:213-235
    [67]Sangjin Hong, Dennis N. Assanis, Margaret S., et al., Modeling of Diesel Combustion and NO Emissions Based on a Modified Eddy Dissipation Concept [C], SAEpaper,2004-01-0107,2004
    [68]SangJin Hong,3-D CFD Modeling of In-cylinder ignition, combustion and Pollutant Formation Processes with Detailed Chemistry and Mixing Effects [D], The University of Michigan,2001
    [69]SangJin Hong, Wooldridge, D.N. Assanis, Modeling of Chemical and Mixing Effects on Methane Autoignition under Direct-Injection, Stratified Charged Conditions [J], Proceedings of the Combustion Institute,2002,29:711-718
    [70]蒋勇,邱榕,董刚,范维澄,耦合天然气详细反应机理的三维湍流预混火焰结构数值预测[J],燃烧科学与技术,2005,11:109-115
    [71]L.Andreassi, S. Cordiner, V.Mulone, V.Rocco, An Analysis of 3D Simulation of SI Combustion with an Improved Version of the KIVA-3V Code:Numerical Formulation and Experimental Validation [C], SAEpaper,2003-01-0012,2003
    [72]Abraham J., Bracco F.V., Reitz R.D., Comparisons of Computed and Measured Premixed Charge Engine Combustion [J], Combustion and Flame,1985,60:309-322
    [73]Reitz R.D., Assessment of Wall Heat Transfer Models for Premixed-Charge Engine Combustion Computation [C], SAEpaper,910267,1991
    [74]Reitz R.D., Kuo T.W., Modeling of HC emissions Due to Crevice Flows in Premixed Charge Engines[.C], SAEpaper,900251,1990
    [75]Atsushi Teraji, Yoshihiro Imaoka, Tsuyoshi Tsuda, et al., Development of a time-scale interaction combustion model and its application to gasoline and diesel engines [J], Proceedings of the Combustion Institute,2009,32:2751-2758
    [76]Williams F.A., Turbulent Mixing in Non-Reactive Flows [M]. MURTHY S N B ed.,1975
    [77]Peters N., Laminar Diffusion Flamelet Models in Non-Premixed Turbulent Combustion [J], Progress in Energy and Combustion Science,1984,10:319-339
    [78]Pitsch H, Wan Y P, Peters N,. Numerical investigation of soot formation and oxidation under diesel engine conditions [C], SAEpaper,952357,1995
    [79]Barths H, Hasse C, Bikas G, et al., Simulation of combustion in direct diesel engines using a Eulerian particle flamelet model [C],28th Symposium on Combustion,2000, pp: 1161-1168
    [80]Hergart C, Peters N., Simulating the Combustion in a DI Diesel Engine Applying a New Model for the Conditional Scalar Dissipation Rate [C], SAEpaper,2001-01-1001,2001
    [81]Barths H, Hasse C, Peters N., Computational fluid dynamics modeling of non-premixed combustion in direct diesel engines [J], International Journal of Engine Research, 2000,1:249-267
    [82]Herart C, Barths H, Peter N., Modeling the Combustion in a small-Bore Diesel Engine Using a Method Based on Representative Interactive Flamelets [C], SAEpaper,1999-01-3550,1999
    [83]侯凌云,杨成仁,傅维标,小火焰模型在贫燃预混火焰中的研究[J],工程热物理学报,2003,24:873-876
    [84]张其斌,武文斐,李义科,湍流预混燃烧的小火焰模型[J],节能技术,2006,24:342-345
    [85]Changyou Chen, Mark E.A. Bardsley, Richard J.R. Johns, Two-Zone Flamelet Combustion Model [C], SAEpaper,2000-01-2810,2000
    [86]Atsushi Teraji, Tsuyoshi Tsuda, Toru Noda, et al., Development of a Novel Flame Propagation Model(UCFM:Universal Coherent Flamelet Model) for SI Engines and Its Application to Knocking Prediction [C], SAEpaper,2005-01-0199,2005
    [87]Hyuksun Kwon, Kyoungdoug Min, Premixed Combustion Modeling in an SI Engine Considering the Burned Gas Composition [C], SAEpaper,2005-01-2108,2005
    [88]T.A.Baritaud, J.M. Duclos, A. Fusco, Modeling turbulent combustion and pollutant formation in stratified charge SI engines [C],26th Symposium on Combustion,1996,pp:2627-2635
    [89]Norbert Peters, Turbulent Combustion [M], Camerigde University Press,2000
    [90]N. Peters, The turbulent Burning Velocity for Large Scale and Small Scale Turbulence [J], J. Fluid Mech.,1999,384:107-132
    [91]Williams, F.A., Turbulent Combustion, in J. Buckmaster, editor, the Mathematics of Combustion,1985, pp:97-131
    [92]杨成仁,侯凌云,傅维标,预混湍流燃烧的level-set小火焰方法研究[J],航空动力学报,2003,18:358-362
    [93]Zhichao Tan, Rolf D.Reitz, Development of a Universal Turbulent Combustion Model for Premixed and Direct Injection Spark/Compression Ignition Engines [C], SAEpaper, 2004-01-0102,2004
    [94]Zhichao Tan, Rolf D.Reitz, Modeling Ignition and Combustion in Spark-ignition Engines Using a Level Set Method [C], SAEpaper,2003-01-0722,2003
    [95]Zhichao Tan, Multi-Dimensional Modeling of Ignition and Combustion in Premixed and DIS/CI(Direct Injection Spark/Compression Ignition) Engines [D], University of Wisconsin-Madison,2003
    [96]Long Liang, Rolf D.Reitz, Spark Ignition Engine Combustion Modeling Using a Level Set Method with Detailed Chemistry [C], SAEpaper,2006-01-0243,2006
    [97]Long Liang, Multidimensional Modeling of Combustion and Knock in Spark-Ignition Engines with Detailed Chemical Kinetics [D], University of Wisconsin-Madison,2006
    [98]M.Baratta, A.E. Catania, E.Spessa, A.Vassallo, Development and Assessment of a Multizone Combustion Simulation Code for SI Engines Based on a Novel Fractal Model [C],SAEpaper, 2006-01-0048,2006
    [99]Matthews R D, Chin Y W, Use Fractals to Model Turbulent Combustion in Spark Ignition Engines [C], SAEpaper,910079,1991
    [100]Chin Y W, Matthews R D, Nichols S P, et al. Use of Fractal Geometry to Model Turbulent Combustion in SI Engines [J], Combustion Science and Technology,1992,86:1-30
    [101]Wu CM, Roberts C E, Matthews R D, et al., Effects of Engine Speed on Combustion in SI Engines:Comparisons of Predictions of a Fractal Burning Model with Experimental Data [C], SAEpaper,932714,1993
    [102]Gerhard Regner, Ho Teng, Peter Van Wieren, Performance Analysis and Valve Event Optimization for SI Engines Using Fractal Combustion Model [C], SAEpaper, 2006-01-3238,2006
    [103]Liou D, Santavicca, et al., A Fractal Model of Turbulent Flame Kernel Growth[C], SAEpaper, 900024,1990
    [104]Matthews R D, Hall M J, Dai W, et al., Combustion Modeling in SI Engines With a
    Peninsula-Fractal Combustion Model [C], SAEpaper,960072,1996
    [105]A.Babajimopoulos, D.N. Assanis, D.L. Flower, et al., A Fully Integrated CFD and Multi-Zone Model with Detailed Chemical Kinetics for the Simulation of PCCI Engines [J],15th International Multidimensional Engine Modeling User's Group Meeting,2005
    [106]Song-Charng Kong, A study of natural gas/DME combustion in HCCI engines using CFD with detailed chemical kinetics [J], FUEL,2007,86:1483-1489
    [107]Aristotelis B., Development of sequential and fully integrated CFD/Multi-Zone models with detailed chemical kinetics for the simulation of HCCI engines [D], The University of Michigan, 2005
    [108]S.C. Kong, R.D. Reitz, Use of detailed chemical kinetics to study HCCI engine combustion with consideration of turbulent mixing effects [J], Journal of Engineering for Gas Turbines and Power,2002,124:702-707
    [109]S.R. Turns, An Introduction to Combustion:Concepts and Applications [M], McGraw-Hill, 2000
    [110]蒋勇,邱榕,范维澄,耦合详细反应机理的低碳烷烃预混火焰结构三维数值预测[J],自然科学进展,2002,12:442-445
    [111]L. Liang, R.D.Reitz, J.Yi, et al., A G-Equation Combustion Model Incorporating Detailed Chemical Kinetics for PFI/DI SI Engine Simulations [C],16th International Multidimensional Engine Modeling User's Group Meeting,2006
    [112]Long Liang, Song-Charng Kong, Chulhwa Jung, et al., Development of a Semi-implicit Solver for Detailed Chemistry in Internal Combustion Engine Simulations [J], Journal of Engineering for Gas Turbines and Power,2007,129:271-279
    [113]王福军,计算流体动力学分析—CFD软件原理与应用[M],清华大学出版社,2004
    [114]A. A. Amsden, "KIVA-3V:A KIVA Program with Block-Structured Mesh for Complex Geometries," Report LA-12503-MS, Los Alamos National Lab.,1993.
    [115]A. A. Amsden, "KIVA-3V:A Block-structured KIVA Program for Engines with Vertical or Canted Valves," Report LA-13313-MS, Los Alamos National Lab.,1997.
    [116]El Tahry SH.κ-ε Equation for Compressible Reciprocating Engine Flows[J]. AIAA J.Energy,1983,7:345-353.
    [117]El Tahry S H. Application of a Reynolds Stress Model to Engine Like Flow Caculations[J]. ASME J. Fluids Eng.,1985,107:444-450.
    [118]谢茂昭.内燃机气缸内湍流流动的数值模拟[J].应用力学学报.1990,7:58-64
    [119]Brognakke C, Xiao Y. Compressible Turbulence Predicted by Reynolds Stress Models[C]. SAE 910260,1991.
    [120]陈义良.湍流计算模型[M].合肥:中国科技大学出版社,1991.
    [121]Han Z, Reitz R D. Tubulence modeling of Internal Combustion Engines Using RNG κ-ε Models [J]. Combust. Sci. and Tech.,1995,106:267-295.
    [122]卢美秀.柴油机燃烧过程多维数值模拟分析研究[D].硕士学位论文,北京交通大学,2005.
    [123]马贵阳,谢茂昭.用RNG κ-ε模型计算内燃机缸内湍流流动[J].燃烧科学与技术,2002,8:171-175.
    [124]D.C. Haworth, A Review of Turbulent Combustion Modeling for Multidimensional In-Cylinder CFD [C], SAEpaper,2005-01-0993,2005
    [125]Herweg, R. Maly, R.R., A Fundamental Model for flame Kernel Formation in SI Eniges [C], SAE 922243,1992.
    [126]Pischinger, S., Hey wood, J.B., A Model for flame Kernel Development in a Spark Ignition Engine[C],23rd Symposium on Combustion, p:1033-1040,1990.
    [127]Boulder,P., Henriot,S., Poinsot,T, Baritaud,T., A Model for Turbulent Flame Ignition and Propagation in Spark Ignition Engines [C],24th Symposium on Combustion, pp:503-510, 1992.
    [128]Huixian Shen, Peter C. Hinze, J.B. Heywood. A model for flame initiation and early development in SI engine and its application to cycle-to-cycle variations [C]. SAE 942049, 1994.
    [129]Claudia Fajardo, Volker Sick. Flow field assessment in a fired spray-guided spark-ignition direct-injection engine based on UV particle image velocimetry with sub crank angle resolution [J]. Proceedings of the Combustion Institute.2007,31:3023-3031.
    [130]O.Pajat, C.Mounaim Rousselle. Instantaneous Flow Field Effects on the Flame Kernel in SI Engine by Simultaneous Optical Diagnostics [C]. SAE 2000-01-1796,2000.
    [131]M. Metghalchi and J. C. Keck, "Burning Velocities of Mixtures of Air with Methanol, Isooctane, and Indolene at High Pressures and Temperatures [J]," Combust. Flame, vol.48, pp. 191-210,1982.
    [132]O. L. G"ulder, "Correlations of Laminar Combustion Data for Alternative S.I. Engine Fuels [C]," SAE Paper 841000,1984.
    [133]S. Singh, L. Liang, S.-C. Kong, and R. D. Reitz, "Development of a Flame Propagation Model for Dual-Fuel Partially Premixed Compression Ignition Engines [J]," Int. J. Engine Res., vol.7, pp.65-75,2006.
    [134]Blizzard, N.C., Keck, J.C., Experimental and Theoretical Investigation of Turbulent Burning Model for Internal Combustion Engines [C]. SAE 740191,1974
    [135]M. Baratta, A.E. Catania, E.Spessa, A.Vassallo. Development and Assessment of a Multizone Combustion Simulation Code for SI Engines Based on a Novel Fractal Model [C]. SAE 2006-01-0048,2006.
    [136]Stephen R.Turns. An Introduction to Combustion Concepts and Applications [M]. New York McGraw-Hill Book company,2000.
    [137]R. J. Kee, F. M. Rupley, and J. A. Miller, "CHEMKIN-Ⅱ:A FORTRAN Chemical Kinetics Package for the Analyses of Gas Phase Chemical Kinetics," tech. rep., Sandia Report,1989.
    [138]http://www.me.berkeley.edu/gri_mech/
    [139]P. N. Brown, G. D. Byrne, and A. C. Hindmarsh, "VODE, A Variable Coefficient ODE Solver [J]," SIAM J. Sci. Stat. Comput., vol.10, pp.1038-1051,1989.
    [140]迟学斌,张林波,莫则尧.2003年高性能计算培训班材料.中国科学院,2003.
    [141]Yasar O., Rutland C J, Parallelization of KIVA-II on the IPSC-860 supercomputer[C], Proceedings of the conference on Parallel computational fluid dynamics,1992,pp:419-425
    [142]Zolver Marc, Klahr Diego., Bohbot J, Reactive CFD in engines with a new unstructured parallel solver [J], Oil and Gas Science and Technology,2003,58:33-46
    [143]王玉君,张欣,李从心,吴剑锋,耦合CFD和详细化学动力学的燃烧模拟及其并行计算的实现[J],燃烧科学与技术,2008,14:474-479
    [144]都志辉,高性能计算之并行编程技术--MPI并行程序设计[M],清华大学出版社,2001
    [145]Eric Innocenti, Xavier Silvani, Alexandre Muzy, et al., A software framework for fine grain parallelization of cellular models with OpenMP:Application to fire spread [J], Environmental Modeling and Software,2009,24:819-831
    [146]陈文光,MPI与OpenMP并行程序设计:C语言版[M],清华大学出版社,2004
    [147]Zuohua Huang, Jinhua Wang, Bing Liu, Ke Zeng, Jinrong Yu, Deming Jiang. Combustion characteristics of a direct-injection engine fueled with natural gas-hydrogen blends under different ignition timings[J]. Fuel,2007,86,381~387.
    [148]Sebastian Verhelst, Roger Sierens, Stefaan Verstraeten. A critical review of experimental research on hydrogen fueled SI engines[C]. SAE 2006-01-0430,2006.
    [149]周龙保,内燃机学,第二版,[M].机械工业出版社,2006.
    [150]魏宗舒,概率论与数理统计教程[M],高等教育出版社,1983.
    [151]范庆虎,李红艳,尹全森,等.低浓度煤层气液化技术及其应用[J].天然气工业,2008,28(3):117-120.
    [152]王周秀.平顶山矿区煤层气合作井中氮气含量偏高问题探讨[J].煤田地质与勘探,2002,30(5):17-20.
    [153]Zervas E. Comparative study of some experimental methods to characterize the combustion process in a SI engine[J]. Energy 2005,30:1803-1806.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700