美国黄松引种区气候分析及生长评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对我国35个美国黄松引种地的年平均气温、极端温度、无霜期、年日照时数、平均风速、年平均相对湿度和年降雨量等13个气候因子及美国黄松生长状况进行了主成分分析、聚类分析和相关性分析。结果表明:低温因子(包括年均气温、最冷月均温、极端最低气温、无霜期、≥10℃的积温、年日照时数、年平均相对湿度)比高温因子(包括最热月均温。平均海拔;年降雨量;极端最高气温;年均风速)重要。湿度因子也是重要的权重因子。在植物引种驯化过程中,低温因子可能会成为美国黄松引种的限制因子。如果高温再加上干旱也将成为美国黄松引种成功与否的关键因子。
     美国黄松年均树高生长量与最热月均温,极端最高温度,年日照时数,年蒸发量,平均海拔等气候因子呈正相关关系;与年均温,最冷月均温,降雨量,极端最低温度,无霜期,≥10℃年积温,年均风速,相对湿度%和气候综合指标呈负相关关系。选择相关系数最大的两个气候因子(年降雨量,年均相对湿度)与年平均树高生长量进行空间分析。美国黄松年平均树高生长量最大值出现在降雨量相对较小(400mm左右),年平均相对湿度在80—70%之间的范围内,年平均树高生长量可达0.35m以上。
     美国黄松年均年胸径生长量与气候因子:最热月均温,极端最高温度,年日照时数,年蒸发量,平均海拔等呈正相关关系;亦与年均温,最冷月均温,降雨量,极端最低温度,无霜期,≥10℃年积温,年均风速,相对湿度%和气候综合指标呈负相关关系。选择相关系数最大的两个气候因子(年降雨量,年均相对湿度)与年平均胸径生长量进行空间分析。美国黄松年平均胸径生长量最大值出现在降雨量相对较小(400mm左右),年平均相对湿度在70%左右的范围内,年平均胸径生长量可达0.45cm以上。
     美国黄松生长质量指标与气候因子:最热月均温,极端最高温度,年蒸发量,平均海拔等呈正相关关系;亦与年均温,最冷月均温,降雨量,极端最低温度,无霜期,≥10℃年积温,年日照时数,年均风速,相对湿度%,气候综合指标呈负相关关系。选择相关系数最大的两个气候因子(年降雨量,年均相对湿度)与美国黄松生长质量指标进行空间分析。美国黄松黄松生长质量指标最大值出现在降雨量相对较小(400mm左右),年平均相对湿度在70%左右的范围内,美国黄松生长质量指标可达0.10以上。
     依据美国黄松生长质量综合指标Ft(?)的范围,可将35个引种区划分为3个区:生长优良地区>生长良好地区>可生长地区。
     美国黄松在中国的生长优良区域(生长迅速,抗寒、抗旱,无病虫危害)主要是黄土高原地区,包括北京、河北、山西、陕西、甘肃等地,生长质量指标在>=0.03。
     美国黄松可以生长的引种地点有:南京中山植物园,江西庐山植物园,吉林长春森林植物园,沈阳生态研究所树木园,浙江富阳林科所,上海,武昌,长沙等地,生长质量指标在0~0.01之间。
     其他地点为生长良好区,生长质量指标在0.01~0.03之间。
To analyze the 13 climate factors(Annual average temperature, Extreme temperatures, Frost-free period, Annual sunshine hours, average wind speed, Annual average relative humidity and rainfall, etc) in 35 Pinus ponderosa introduction sites of China by using Principal Component Analysis, Cluster Analysis and Correlation Analysis showed that the Low temperature factors (Average annual temperature, Coldest month average temperature, Minimum temperature, Frost-free period,≥10℃of accumulated temperature, Annual sunshine hours, Annual average relative humidity)are more important than the High temperature factors (Hottest monthly temperature, Average altitude in rainfall, Extreme maximum temperature, Annual average wind speed). The Humidity factor is also the important elements in the weighting factors. In the plant introduction and acclimatization process, the Low temperature factor may become limiting factor for introduction of Pinus ponderosa. If the High temperature combined with drought, will also be the key factor in Pinus ponderosa introduction.
     Average annual tree height increment of Pinus ponderosa is positively related with Warmest month average temperature, Extreme maximum temperature, Annual sunshine hours, Annual evaporation; and is negatively correlated with Average annual temperature, Coldest month average temperature, annual rainfall, Extreme minimum temperature, Frost-free period,≥10℃accumulated temperature, Annual average wind speed and annual relative humidity. The two closely related climatic factors (Annual rainfall and Average relative humidity) with Average annual tree height increment for spatial analysis showed that the maximum tree height increment of Pinus ponderosa (>0.35m.) appears in a relatively small rainfall (about 400mm) with a average relative humidity around 80-70%.
     Average annual diameter increment of Pinus ponderosa is positively related with Hottest monthly temperature, Extreme maximum temperature, Annual sunshine hours, Annual evaporation; and is negatively correlated with Annual temperature, Coldest month temperature, Rainfall, Extreme minimum temperature, Frost-free period,≥10℃accumulated temperature, Annual average wind speed and annual relative humidity. The two closely correlated climatic factors (Annual rainfall, Average relative humidity) with Average annual diameter increment for spatial analysis showed that maximum average diameter increment of Pinus ponderosa (>0.45cm) appears in a relatively smaller rainfall (about 400mm) with a 70% average relative humidity.
     Growth quality index of Pinus ponderosa is positively related with Hottest monthly temperature, Extreme highest temperature, Annual evaporation; and is negatively correlated with Annual temperature, Coldest month temperature, annual rainfall, Extreme minimum temperature, Frost-free period,≥10℃accumulated temperature, Annual sunshine hours, Annual average wind speed, and annual average relative humidity. The two closely correlated climatic factors (Annual rainfall, Average relative humidity) with Average annual diameter growth for spatial analysis showed that the maximum growth-quality index of Pinus ponderosa is greater than 0.10 which appears in a relatively smaller rainfall (around 400 mm) with a higher average relative humidity (about 70%).
     Basing on growth-index, the 35 introduction sites for Pinus ponderosa in China can be divided into three areas:Best growing area> better growing area> survival area.
     The best area(Pinus ponderosa is growing fast without any disease and pests) for introduced Pinus ponderosa in China are Beijing, Hebei, Shanxi, Shaanxi, Gansu et al. around loess plateau with a Growth-quality indicator greater than 0.03.
     The introduction sites with growth-quality indicator ranging from 0 to 0.01 are the survival area for Pinus ponderosa in China including Nanjing, Jiangxi Lushan, Changchun, Shenyang, Zhejiang, Shanghai, Hubei Wuchang, and Changsha. et al.
     The other places are the Pinus ponderosa growing better area with growth-quality indicator ranging between 0.01 and 0.03.
引文
白红霞,陈延,曹锋.2008.黑龙潭树木园引种美国黄松生长调查.陕西林业科技,(1):80~81,91
    白慧强.2009.主成分分析法在SPSS中的应用.科技情报开发与经济,19(9):173~176
    陈斌,葛宏元.2006.河西走廊引种栽培美国黄松试验.林业实用技术,(8):42
    陈俊愉.1966.植物的引种驯化与栽培繁殖.植物引种驯化集刊(2):1-6
    程金水.2000.园林植物遗传育种学.北京:林业出版社
    达尔文.动物和植物在家养下的变异.方宗熙,叶晓译.1963.北京:科学出版社
    东篱小菊.2010.亚利桑那黄松.http://baike.baidu.com/view/3361632.html[2010-05-2]
    杜纲,王世忠.1997.林木生长影响模型及其在人工林林地质量评价中的应用.数理统计与管理,16(2):9~13
    樊军锋,周永学.1998.美国黄松介绍.陕西林业科技,(4):70~73
    龚月桦,周永学,樊军锋,刘迎洲,庞珂佳.2006.美国黄松、班克松和油松的抗寒性比较.应用生态学报,17(8):1389~1392
    鬼画符.2009.杜兰戈.http://baike.baidu.com/view/788939.htm[2010-5-3]
    鬼画符.2009.圣路易斯波托西.http://baike.baidu.com/view/764407.htm?fr=ala0_1[2010-5-3]
    何亮.2007.主成分分析在SPSS中的应用.山西农业大学学报,6(5):20~22
    洪长福,陈希英,安平.1997.按树引种实践对林木引种理论的验证.福建林业科技,24(4):65~68
    侯琳,唐德瑞,王思恭.2002.不同营养土配方对美国黄松苗生长影响研究.陕西林业科技,(2):35~36,53
    侯琳,唐德瑞,李骁.2003.不同种源美国黄松苗期生长差异分析.内蒙古农业大学学报,24(1):98~102
    侯琳,唐德瑞,王谊,李骁.2003.美国黄松个体高生长过程研究.西南林学院学报,23(1):10~12,20
    金吉列留学.2010.南达科达州.http://www.overseas-edu.com/edu/usa/dlhj/168276.shtml[2010-5-3]
    金吉列留学.2010.北达科达州.http://www.overseas-edu.com/edu/usa/dlhj/168269.shtml[2010-5-3]
    景慧丽.2008.主成分分析和因子分析比较.学术探讨,(8)254~255
    腊尔夫A.雷德.1980.美国西部黄松不同种源后代苗木的遗传变异.Forest Science,增刊Vol 126(4).关凤琴译.1982.贵州林业科技:1~42
    李科友,唐德瑞,朱海兰.2003.美国黄松组织培养不定根诱导的研究.西北植物学报,23(3):464~467
    李科友,唐德瑞,朱海兰,赵忠,郭蔼光.2004.美国黄松离体胚培养条件下不定芽的形成与根产生的研究.林业科学,40(4):63~67
    李林,黄忠良,唐德瑞,张海忠,李科友.2005.蔗糖、活性炭对美国黄松不定芽增殖和生长的影响.福建林学院学报,25(3):260~263
    李前锋,施文.2006.浅谈林木引种与驯化.林业科技山西林业,(2):26~27
    李书靖,党宏忠,王芳,姜成英,冯克敏.2001.黄松、班克松引种试验研究.甘肃林业科技,26(1):1~4
    李霆,陈幼生译.1984.美国木本植物种子手册.北京:中国林业出版社:444~493
    李玉珍,王宜怀.2005.主成分分析及算法.苏州大学学报(自然科学版),21(1):32~36
    林海明,张文霖.2005.主成分分析与因子分析的异同和SPSS软件.统计研究,(3):65~68
    廖馥荪.1966.植物引种驯化理论研究概况.植物引种驯化集刊,(2):154~160
    落地生花.2009.不列颠哥伦比亚.http://hanyu.iciba.com/wiki/index.php?doc-view-364531 [2010-5-3]
    罗伟祥,宋西德,侯琳,杨金福.1998.黄土高原美国黄松引种生长调查研究.陕西林业科技,(1):1~8,12
    刘建军,王得祥,雷瑞德,崔宏安,王翼龙.2002.美国黄松、奥地利黑松和油松光合、蒸腾及生长特性分 析.西北林学院学报,17(3):1~4
    吕永芹,许连明,李和成.1991.美国黄松引种试验初报.吉林林业科技,(1):11~12
    Metgay.2009.喀斯喀特山.http://baike.baidu.com/view/103299.htm[2010-5-3]
    马治国,陈惠,陈家金.2009.气候变化对福州植物气候生产力的影响分析.中国农学通报,25(22):320~323
    美国地理.2008.蒙大拿州Montana,MT.http://www.taisha.org/abroad/sh/usa/mgdl/200808/20080827113115.html[2010-5-3]
    聂馥霖.2007.浅谈统计综合评价中主成分分析法的应用.工作研究,(5):46~48
    荣文静.2010.主成分和因子分析在城镇消费支出中的应用比较.四川理工学院学报(自然科学版),23(1):122~124
    潘静,唐德瑞,车少辉,张端伟.2008.我国引种太平洋黄松的气候适生区区划.西北林学院学报,23(3):80~84
    乔德奎,唐德瑞,何佳林,陈丹.2009.陕西主要叶用银杏生长特性指标与内酯相关性分析.西北林学院学报,24(3):49-53.
    宋晓东.1994.抗旱耐寒国外松的选择.辽宁林业科技,(2):9~13
    唐德瑞,罗伟祥,韩恩贤,赵辉.2005.陕西黄土高原刺槐数量化立地质量表的编制及应用.中国科技论文在线,132~139
    唐功爽.2007.基于SPSS的主成分分析与因子分析的辨析,统计教育,(2):12~14
    童成仁.1987.黄松引种初报.内蒙古林业科技,(4):14~15
    王豁然,江泽平.1995.论中国林木引种驯化策略.林业科学,31(4):367~372
    王印肖.2006.对林木引种工作的再认识.河北林业科技,增刊:8-9
    王文博,陈秀芝.2006.多指标综合评价中主成分分析和因子分析方法的比较.统计与信息论坛,21(5):19~22
    王学民.2007.主成分分析因子分析应用中值得注意的问题.知识丛林,(6)142~143
    谢智聪.2008.运用因子载荷阵分组变量的新主成分法及其应用.统计与决策,(12):19~22
    吴中伦.1983.国外树种引种概论.北京:科学出版社:135~136
    薛薇.2006.基于SPSS的数据分析.北京:中国人民大学出版社
    徐化成,唐谦.1988.西黄松不同种源在北京地区的初期表现.北京林业大学学报,10(2):102~106
    阎维平,李钧,李春.2010.基于因子分析法的煤粉锅炉燃烧工况综合优化.华北电力大学学报,37(2):54~58
    洋务大臣.2009.内华达山脉http://baike.baidu.com/view/314190.htm?fr=ala0_1 [2010-05-3]
    亿夫长.2009.爱达荷州http://baike.baidu.com/view/189988.htm?fr=ala0_1_1 [2010-05-3]
    亿夫长.2010.加利福尼亚州.http://baike.baidu.com/view/189982.htm?fr=ala0_1_1 [2010-05-3]
    亿夫长.2010.怀俄明州.http://baike.baidu.com/view/190104.htm?fr=ala0_1 [2010-05-3]
    月话.2009.圣地亚哥.http://baike.baidu.com/view/55541.htm?fr=ala0_1_1 [2010-05-3]
    于景金,陈丽华,谷建才,张锁成,武巧英.2010.基于灰色关联分析的环境因子与物种多样性关系.林业资源管理,(1):68~72
    Zebrat.2009.内布拉斯加州http://baike.baidu.com/view/122870.htm?fr=ala0_1_1[2010-05-3]
    张成高,唐德瑞.2005.美国黄松异砧嫁接繁殖研究.西北林学院学报,20(2):100~103
    张景群,王得祥,张海花.1999.美国黄松与秦岭主要松属种叶燃烧性比较.陕西林业科技,(4):53~55
    张立功,王喜武,张仁慈,刘洪涛,周绍砚,孟秀琴,董玉东,陶贵斌.1997.黄松引种研究.东北林业大学学报,25(2):9~12
    张学武,陈孝达,唐德瑞.2001.美国黄松苗木立枯病的发生与防治技术研究.西南林学院学报,21(1):31~33
    周永学,樊军锋,龚月桦.2007.美国黄松的生长特性和抗寒性研究.林业科学研究,20(4):500~505
    周永学,樊军锋,高建社,陆燕元.2005.美国黄松在陕西黄土丘陵山地引种效果分析.西北农林科技大学学报(自然科学版),33(4):83~86
    周永学,樊军锋,高建社,曹锋,黄发光.2005.美国黄松与油松生长特性的比较研究.林业科技,30(5):8~10
    周永学,樊军锋,杨培华,王军利,王兴旺,宋满洞,肖飞,吕晓锋.2005.陕西陇县引种美国黄松生长调查.西北林学院学报,20(3):74~77
    朱慧芬,张长芹,龚洵.2003.植物引种驯化研究概述.广西植物,23(1):52~60
    Alicia Mazari Edith L, Camm 1993. Effect of cytokinins on plastid development and photosynthetic polypeptides during organogenesis of Pinus ponderosa Dougl. cotyledons cultured in vitro. Plant Cell, Tissue and Organ Culture,33:81~89
    Amy Pocewicz Lee A, Vierling Leigh B, Lentile Rachel Smith 2007. View angle effects on relationships between MISR vegetation indices and leaf area index in a recently burned ponderosa pine forest. Remote Sensing of Environment,107:322~333
    Armando Gomez G, Robert F, Powers Michael J, Singer William R, Horwath 2002. N uptake and N status in ponderosa pine as affected by soil compaction and forest floor removal. Plant and Soil,242: 263~275
    Benesch J A, Gustin M S,2002. Uptake of trifluoroacetate by Pinus ponderosa via atmospheric pathway. Atmospheric Environment,36:1233~1235
    Callaway R M, DeLucia E H, Thomas E M., Schlesinger W H,1994. Compensatory responses of CO2 exchange and biomass allocation and their effects on the relative growth rate of ponderosa pine in different CO2 and temperature regimes. Oecologia,98:159~166
    Chen xue xia, Lee Vierling, Eric rowell, Thomas defelice,2004. Using lidar and effective LAI data to evaluate IKONOS and Landsat 7 ETM+vegetation cover estimates in a ponderosa pine forest. Remote Sensing of Environment 91:14~26
    Christopher R, Keyes Douglas A, Maguire 2007. Seed rain of ponderosa pine beneath partial overstories. New Forests,34:107~114
    Christopher R, Keyes Douglas A, Maguire John C, Tappeiner 2009. Recruitment of ponderosa pine seedlings in the Cascade Range. Forest Ecology and Management,257:495~501
    Christopher R, Keyes Douglas A, Maguire John C, Tappeiner 2007. Observed dynamics of ponderosa pine (Pinus ponderosa var. ponderosa Dougl. ex Laws.) seedling recruitment in the Cascade Range, USA. New Forests,34:95~105
    Curtis L and Vander Schaaf 2008. Estimating understory vegetation response to multi-nutrient fertilization in Douglas-fir and ponderosa pine stands. JFor Res,13:43-51
    Daniel C, Laughlin Jonathan D, Bakker Mark L, Daniels Margaret M, Moore Cheryl A, Casey Judith D, Springer 2008. Restoring plant species diversity and community composition in a ponderosa pine-bunchgrass ecosystem. Plant Ecol,197:139~151
    David T, Tingey Mark G, Johnson Donald L, Phillips 2005. Independent and contrasting effects of elevated CO2 and N-fertilization on root architecture in Pinus ponderosa. Trees,19:43~50
    David T, Tingey William E, Hogsett E, Henrylee John A, Latrence 2004. Stricter Ozone Ambient Air Quality Standard Has Beneficial Effect on Ponderosa Pine in California. Environmental Management, 34,(3):397~405
    Dennis W and Gray 2008. Transient increases in methylbutenol emission following partial defoliation of Pinus ponderosa. Atmospheric Environment,42:4797~4802
    Donald L, Phillips, Mark G, Johnson David T, Tingey Marjorie J, Storm, J, Timothy Ball, Dale W, Johnson 2006. CO2 and N-fertilization effects on fine-root length, production,and mortality:a 4-year ponderosa pine study. Oecologia,148:517~525
    Eileen V, Carey Ragan M, Callaway Evan H, DeLucia 1997. Stem respiration of ponderosa pines grown in contrasting climates:implications for global climate change. Oecologia,111:19~25
    Emily A, Keller Thimmappa S, Anekondab Bruce N, Smith Lee D, Hansen J, Brad St, Clair Richard S, Criddle 2004. Stress and respiration traits differ among four geographically distinct Pinus ponderosa seed sources. Thermochimica Acta,422:69~74
    Geralde E, Rehfeldt, Leonardo A, Gallo 2001. Introduction of ponderosa pine and Douglas-fir to Argentina. New Forests,21:35~44
    Goldstein A H, Hultman N E, Fracheboud J M, Bauer M R, Panek J A, Xu M, Qi Y, Guenther A B, Baugh W.2000. Effects of climate variability on the carbon dioxide, water, and sensible heat fluxes above a ponderosa pine plantation in the Sierra Nevada (CA). Agricultural and Forest Meteorology, 101:113~129
    Gyenge J E, Fernandez M E, Dalla Salda G, Schlichter T M.2002. Silvopastoral systems in Northwestern Patagonia Ⅱ:water balance and water potential in a stand of Pinus ponderosa and native grassland. Agroforestry Systems,55:47~55
    Jessica W and Wright 2007. Local adaptation to serpentine soils in Pinus ponderosa. Plant Soil, 293:209~217
    Johnson D W, Ball J T, Walker R F.1997. Effects of CO2 and nitrogen fertilization on vegetation and soil nutrient content in juvenile ponderosa pine. Plant and Soil,190:29~40
    Johnson1 D W, Cheng W, Ball J T.2000. Effects of [CO2] and nitrogen fertilization on soils planted with ponderosa pine. Plant and Soil,224:99~113
    Johnsonl D W, Cheng W, Ball J T.2000.Effects of CO2 and N fertilization on decomposition and N immobilization in ponderosa pine litter.Plant and Soil,224:115~122
    John Duff Bailey, William Wallace Covington 2002. Evaluating ponderosa pine regeneration rates following ecologicalrestoration treatments in northern Arizona, USA. Forest Ecology and Management,155:271~278
    Jose'F, Negro'n Kurt, Allen Blaine, Cook John R, Withrow Jr.2008. Susceptibility of ponderosa pine, Pinus ponderosa (Dougl. ex Laws.),to mountain pine beetle, Dendroctonus ponderosae Hopkins, attack in uneven-aged stands in the Black Hills of South Dakota and Wyoming USA. Forest Ecology and Management 254:327~334
    Kolb T E, Agee J K, Fule P Z, McDowell N G, Pearson K, Sala A, Waring R H.2007.Perpetuating old ponderosa pine. Forest Ecology and Management,249:141~157
    Kurpius M R, McKay M, Goldstein A H.2002. Annual ozone deposition to a Sierra Nevada ponderosa pine plantation. Atmospheric Environment,36:4503~4515
    Kurpius M R, Panek J A, Nikolov N T, McKay M, Goldstein A H.2003. Partitioning of water flux in a
    Sierra Nevada ponderosa pine plantation. Agricultural and Forest Meteorology,117:173~192
    Laurent Misson, Tang Jianwu, Xu Ming, Megan McKay, Allen Goldstein 2005. Influences of recovery from clear-cut, climate variability,and thinning on the carbon balance of a young ponderosa pine plantation. Agricultural and Forest Meteorology,130:207~222
    Law B E, Baldocchi D D, Anthoni P M.1999. Anthoni. Below-canopy and soil CO2 fluxes in a ponderosa pine forest. Agricultural and Forest Meteorology,94:171~188
    Law B E, Kelliher F M, Baldocchi D D, Anthoni P M, Irvine J, Moore D, Tuyl Van S.2001. Spatial and temporal variation in respiration in a young ponderosa pine forest during a summer drought. Agricultural and Forest Meteorology,110:27~43
    Lawa B E, Tuyl Van S, Cescatti A, Baldocchi D D.2001. Estimation of leaf area index in open-canopy ponderosa pine forests at different successional stages and management regimes in Oregon. Agricultural and Forest Meteorology,108:1~14
    Linda M, Nagel Kevin L, O'Hara 2002. Diurnal fluctuations of gas exchange and water potential in different stand structures of Pinus ponderosa. Trees,16:281~290
    LinY Q, Wager M R, Heidmann L.1991.Invitroformation of axillary buds by immature shoots of Pinus Ponderosa..Plant-Cell, Tissue and Organ Culture,26(3):161~166
    Lin Yiqun, Michael R, Wagner L J, Heidmann 1991. In vitro formation of axillary buds by immature shoots of Ponderosa pine. Plant Cell, Tissue and Organ Culture,26:161~166
    Lodhi M A K, Keith T, Killing beck 1982. Effects of Pinus-produced Chemicals on Selected Understory Species in a Pinus ponderosa Community. Journal of Chemical Ecology,8(1):275~283
    Maherali H, Willams B L, Paige K N, Delucia E H.2002. Hydraulic differentiation of Ponderosa pine populations along a climate gradient is not associated with ecotypic divergence. Functional Ecology,16:510~521
    Me Cullough D G and Wagner M R.1987. Influence of watering and trenching ponderosa pine on a pine sawfly. Oecologia(Berlin),71:382~387
    Montes-Helu M C, Kolb T, Dore S, Sullivan B, Hart S C, Koch G, Hungate B A.2009. Persistent effects of fire-induced vegetation change on energy partitioning and evapotranspiration in ponderosa pine forests. agricultural and forest me teorology,149:491~500
    Mac Kenzie M D and DeLuca T H.2006. Charcoal and shrubs modify soil processes in ponderosa pine forests of western Montana. Plant Soil,287:257~266
    Momena B, Anderson P D, Houpisc J L J, Helms J A.2002. Growth of ponderosa pine seedlings as affected by air pollution. Atmospheric Environment 36:1875~1882
    Nora M, Pasquini Guillermo E, Defosse Olga, Del Longo 2008. Upgrading germinability of ponderosa pine seeds from Patagonia, Argentina, by adjusting prechilling periods and applying the IDS technique. New Forests,36::93~102
    O'Malley D M, Allendorf F W, Blake G M.1979. Inheritance of Isozyme Variation and Heterozygosity in Pinus ponderosa. Biochemical Genetics,17(5):3~4
    Paul T, Rygiewicz, Mark G, Johnson Lisa M, Ganio, David T, Tingey, Marjorie J, Storm 1997. Lifetime and temporal occurrence of ectomycorrhizae on ponderosa pine(Pinus ponderosa Laws.) seedlings grown under varied atmospheric CO2 and nitrogen levels. Plant and Soil,189:275~287
    Peter M, Anthoni Beverly E, Law Michael H, Unsworth.1999.Carbon and water vapor exchange of an open-canopied ponderosa pine ecosystem.. Agricultural and Forest Meteorology,95:151~168
    Peter M, Anthoni Michael H, Unsworth, Beverly E, Law James, Irvine, Dennis D, Baldocchi Steve, Van Tuyl, Darrin Moore 2002. Seasonal differences in carbon and water vapor exchange in young and old-growth ponderosa pine ecosystems. Agricultural and Forest Meteorology,111:203~222
    Robert J, Sherman R., Keith Warren 1988. Factors in Pinus ponderosa and Calocedrus decurrens mortality in Yosemite Valley, USA. Vegetatio,77:79~85
    Robert G, Wagner Terry D, Petersen Darrell W, Ross Steven R, Radosevich 1989. Competition thresholds for the survival and growth of ponderosa pine seedlings associated with woody and herbaceous vegetation. New Forests,3:151~170
    Rosemary L, Sherriff Thomas T, Veblen 2007. A Spatially-Explicit Reconstruction of Historical Fire Occurrence in the Ponderosa Pine Zone of the Colorado Front Range. Ecosystems,10:311~323
    Scott R, Abella W, Wallace Covington 2006. Vegetation-environment relationships and ecological species groups of an Arizona Pinus ponderosa landscape, USA. Plant Ecology,185:255~268
    Staszak J, Grulke N E, Prus-Glowacki W.2004. Genetic Differences of Pinus ponderosa [Dougl.ex Laws.] Trees Tolerant and Sensitive to Ozone. Water, Air, and Soil Pollution,153:3~14
    Tang jianwu, Laurent Misson, Alexander, Gershenson, Cheng Weixin, Allen H, Goldstein 2005. Continuous measurements of soil respiration with and without roots in a ponderosa pine plantation in the Sierra Nevada Mountains. Agricultural and Forest Meteorology,132:212~227
    Tausz M, Olszyk D M, Monschein S, Tingey D T.2004. Combined effects of CO2 and O3 on antioxidative and photoprotective defense systems in needles of ponderosa pine. Biologia Plantarum 48 (4): 543~548
    Wagner M R and Frantz D P.1990. Influence of induced water stress in ponderosa pine on pine sawflies. Oecologia,83:452~457
    William E, Hogsett David T, Tingey E, Henry Lee, Peter A, Beedlow, Christian, Andersen P.2008.An Approach for Evaluating the Effectiveness of Various Ozone Air Quality Standards for Protecting Trees. Environmental Management,41:937~948
    Zhang jianwei, Bert M, Cregg 2005. Growth and physiological responses to varied environments among populations of Pinus ponderosa. Forest Ecology and Management,219:1~12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700