反应挤出法制备发泡用高熔体强度聚丙烯的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚丙烯发泡材料以其优越的物理机械性能、耐热性能和可降解回收性能等已成为新世纪发泡塑料的新宠,其应用前景十分诱人。然而,常规的聚丙烯因其熔体强度低和结晶性强而无法实现有效的发泡。寻找简单易行,成本低廉,行之有效的高熔体强度聚丙烯(HMSPP)的制备方法是制备聚丙烯发泡材料的最关键的技术。本文在青岛市重点攻关项目的资助下,通过大量试验研究,创新性地通过对常规PP进行反应挤出接枝,一步完成硅烷接枝并交联,获得了部分交联HMSPP(熔体强度比接枝前高4倍),并申请了国家发明专利。同时,创新性地优选出了复合发泡体系并加入纳米成核剂进行发泡,成功地制备除了具有均匀细腻泡孔和高闭孔率的PP发泡材料,为PP发泡材料的制备开辟了一条崭新的途径,具有重大的推广应用前景。本文详细研究了原料配方、制备工艺等对部分交联HMSPP各项性能的影响规律,并对反应机理进行了研究探索。
     1、一步法硅烷接枝交联聚丙烯的研究
     首次采用传统均聚型PP、过氧化物引发剂,不饱和硅烷接枝单体,多官能团接枝助剂,特殊催化剂,在双螺杆挤出机中反应挤出,使PP在接枝的同时实现部分交联(称为“一步法”),成功地制备出了HMSPP。并申请了发明国家专利。对上述各种试剂的品种和用量对HMSPP的接枝交联情况、熔融结晶行为、热性能等的影响规律进行了详细研究,并对一步法接枝并交联机理进行仔细探索。
     (1)首先,本论文通过反应挤出法一步实现PP的接枝与交联。研究所得的HMSPP与接枝交联前相比,熔体强度提高4倍以上,熔体
PP foam has become a new favor of the field of foaming in the 21st century owing to its wonderful mechanical property and heat resistance, its reclaimable and degradable properties, etc. The prospect of PP foam's application is very tempting. However, the traditional PP can not realize an effective foaming due to its poor melt-strength and strong crystalline performance. It is the most pivotal technology to research for a simple, low costing and effective method of preparing high-melt-strength PP (HMSPP). In this thesis, based on detailed experiment and study, a novel one-step silane cross-linking and grafting method, realized by modifying traditional PP using reactive extrusion, has been used to prepare HMSPP with partial cross-linking (the melt strength is four times of the pre-grafted). The research was funded by Qingdao Municipal Science and Technology Commission, and a correlative patent has been applied for. At the same time, the high-quality foam with fine, uniform cells and high close-cells degree has been fabricated successfully using HMSPP and a composite foaming system adding nanometer nuclear agents, which was made in our lab. This novel method opens a new approach for the preparation of PP foam, which has great prospect for application. This paper studies the influence of material prescription, art of preparation, etc. on the properties of partial cross-linked HMSPP in detail, and the reactive mechanism is also explored. 1. Research on "one-step" silane cross-linking and grafting PP
    For the first time, using traditional isotactic PP, the peroxide as an initiator, unsaturated silane as a grafting monomer, multi-functional compound as a grafting coagent and a special catalyst, a partial crosslinked PP with high melt strength is prepared successfully by the reactive extrusion in twin-screw extruder. During the process, the grafting and partial cross-linking of PP occurred simultaneity (named "one-step"). Furthermore, the national patent has been applied. The influences of type
引文
[1] Meeder J.R., Application in structural foam: polystyrene, polypropylene, and high-density polyethylene, Machine Design, 1975:135-137, Conference: Pac Tech Conf and Tech Disp (PACTEC '75), 1st Annu, Proc, Sep 16-18 1975
    [2] Las Vegas NV, Ellis Patrick A. M., Polypropylene structural foam, Mining Year Book, 1979, 25p, Conference: SPE Euretec (Eur Tech Conf), and, Mini Exhibit, 1st, Jun 14-15 1979, Belg;
    [3] Ulrich B, Robert W, Extrusion lines for the production of foamed thermoforming sheet, Kunststoffe Plast Europe, 1999, 89 (4): 7-9;
    [4] Smith S.C, Advantages of elastomeric metallocene catalyzed polyolefin foams, KGK-Kautschuk und Gummi Kunststoffe, 1998, 51 (7-8):504-505
    [5] Anon, PP foam is making in furniture., Modern Plastics, 1974, 51(5);
    [6] Lee Minhee, Tzoganakis Costas, Park CB, Effects of supercritical CO_2 on the viscosity and morphology of polymer blends, Advances in Polymer Technology, 2000,19(4): 300-311
    [7] Zhang J, Lin Z, Wong A, Kikuchi N, Li V.C, Yee A.F, Nusholtz G.S, Constitutive modeling and material characterization of polymeric foams, Journal of Engineering Materials and Technology, Transactions of the ASME, 1997,119 (3): 284-291;
    [8] Zhang J, Kikuchi N, Li V, Yee A, Nusholtz G, Constitutive modeling of polymeric foam material subjected to dynamic crash loading, International Journal of Impact Engineering, 1998, 21(5): 369-386。
    [9] Lee PC, Naguib HE, Park CB, Wang J, Increase of open-cell content by plasticizing soft regions with secondary blowing agent, Polymer Engineering and Science, 2005, 45(10): 1445-1451;
    [10] Xu X, Xu DL, Park CB, Effects of CO_2 content on the expansion behaviors of PS foams, Annual Technical Conference-ANTEC, Conference Proceedings, v 2, ANTEC 2004-Annual Technical Conference Proceedings, 2: Materials, 2004, p 2646-2652;
    [11] Xu X, Park CB, Xu DL, Pop-Iliev R, Effects of die geometry on cell nucleation of PS foams blown with CO_2, Polymer Engineering and Science, 2003, 43(7): 1378-1390;
    [12] Reichelt N, Stadlbauer M, Folland R, Park CB, Wang J, PP-blends with tailored foamability and mechanical properties, Cellular Polymers, 2003,22(5):315-327;
    [13] Lee Minhee, Park CB, Tzoganakis C, Measurements and modeling of PS/supercritical CO_2 solution viscosities, Polymer Engineering and Science, 1999,39(1): 99-109;
    [14] Lee M, Park CB, Tzoganakis C, Modeling of PS/supercritical CO_2 solution viscosities, Annual Technical Conference-ANTEC, Conference Proceedings, 1998, 2: 1902-1906;
    [15] Lee M, Tzoganakis C, Park CB, Extrusion of PE/PS blends with supercritical??carbon dioxide, Polymer Engineering and Science, 1998,38(7): 1112-1120;
    [16] Lee M, Tzoganakis C, Park CB, Effects of supercritical carbon dioxide on PE/PS blend viscosity and morphology, Annual Technical Conference-ANTEC, Conference Proceedings, 1998, 2: 2570-2574;
    [17] Park CB, Behravesh A.H., Venter R.D., A Strategy for the Suppression of Cell Coalescence in the Extrusion of Microcellular High-Impact Polystyrene Foams, ACS Symposium Series, 1997, 669:115-129;
    [18] Behravesh A.H, Park CB, Venter Ronald D, Extrusion of low-density microcellular HIPS foams using CO_2, American Society of Mechanical Engineers, Materials Division (Publication) MD, v 76, Cellular and Microcellular Materials, 1996:47-63
    [19] 孟翠省,贾秀峰,马懿,孙颜文等,聚丙烯发泡材料的国内外发展概况,塑料加工应用,2001,23(2):47-53
    [20] 贾秀峰,马懿,孙颜文等,国内外聚丙烯发泡材料的发展概况,化工新型材料,2001,29(8):1-4
    [21] Roddguez-perez M.A., Rodriguez-llorente S., Desaja J.A., Dynamic mechanical properties of polyolefin foams studied by DMA techniques, Polymer Engineering and Science, 1997, 37 (6):959-965
    [22] Richard G, Michel F, Champagne, Effect of physical foaming agents on the viscosity of various polyolefin resins, Journal of Cellular Plastics 2004,40:131-143
    [23] Ramesh N.S., Lee S.T., Lee K., Novel method for measuring the extensional viscosity of PE with blowing agent and its impact on foam, Journal of Cellular Plastics, 2003,39 July: 181-289;
    [24] Park CP., Burgun, Sandrine, Subramonian, Suresh, Macrocellular polyolefin foam having a high service temperature for acoustical applications, 20030022955.
    [25] Lee C.H., Lee K.J., Jeong H.G., Kim S.W., Growth of gas bubbles in the foam extrusion process, Advances in Polymer Technology, 2000,19(2):97-112;
    [26] Doroudiani S, Park CB, Kortschot M.T., Cheung L.K., Effect of morphology on microcellular foaming of semi-crystalline polymers Annual Technical Conference-ANTEC, Conference Proceedings, 1995, 2:2183-2188
    [27] Roddguez-Perez M.A., Alonso O, Souto J, de Saja J.A., Thermal conductivity of physically crosslinked closed cell polyolefin foams, Polymer Testing, 1997,16(3): 287-298
    [28] Schut J.H., Focused on foam, Plastics Technology, 2003, 49(7):80
    [29] Zhao J, Standlee M.B., Tusim M.H., A Comparison of the Effect of GMS in LDPE and PP Foams, Annual Technical Conference-ANTEC, Conference Proceedings,2003,2:1737-1741
    [30] Otsuki Y, Kanai T, Numerical simulation of bubble growth in viscoelastic fluid with diffusion of dissolved foaming agent, Polymer Engineering and Science, 2005, 45(9): 1277-1287
    [31] Chang Y.Z., Wen T.T., Liu S.J., Derivation of optimal processing parameters of polypropylene foam thermoforming by an artificial neural network, Polymer??Engineering and Science, 2005, 45(3):375-384
    [32] Viot P, Beani F, Lataillade J.L, Polymeric foam behavior under dynamic compressive loading, Journal of Materials Science, 2005, 40(22):5829-5837
    [33] Lee Y.H., Park CB, Wang K.I. Hyun, Lee M.H., HDPE-clay nanocomposite foams blown with supercritical CO_2, Journal of Cellular Plastics, 2005,41(5): 487-502
    [34] Murata T, Takimoto J, Koyama K, Melt property and extrusion foaming processability of polypropylene blended with polytetrafluoroethylene, Zairyo/Journal of the Society of Materials Science, Japan, 1996,45 (12) :1300-1305
    [35] Mills N.J., Time dependence of the compressive response of polypropylene bead foam, cellular polymer 1997,16(3): 194-255
    [36] 何继敏,交联挤出发泡聚丙烯的开发,1999,(5):11-13
    [37] 鲍洪杰,何继敏,一步法交联聚丙烯挤出发泡材料的开发与应用,塑料,2001,30(3):37-40
    [37] 徐志娟,何继敏,鲍洪杰等,聚丙烯一阶交联挤出发泡的研究,中国塑料,2003,17(1):63-67
    [39] 何继敏,聚丙烯发泡塑料应有发展现状及展望,中国科技成果,2003(10):28-31
    [40] Hug D. P, Polypropylene structure foam process and products, Advances in the Astronautical Sciences, 1975, p 7-13 , Conference: SPE, Reg Tech Conf, Tech Pap, Mar 11-12 1975
    [41] Houston T.X., Applications Widen for PP Foam Sheet: A balance of strength and light weight makes this a contender for markets ranging from car panels to cups, Modem Plastics International, 1997, 27(9): 112
    [42] 孟翠省,发泡聚丙烯板材专用料的研制报告,塑料科技,1998,2,:33-38
    [43] Rachtanapun P., Selke S.E.M, Matuana L.M., Microcellular foam of polymer blends of HDPE/PP and their composites with wood fiber, Journal of Applied Polymer Science, 2003, 88(12): 2842-2850
    [44] Kenji H, Development of weight reduction technology for door trim using foamed PP, JSAE Review 23 (2002):239-244
    [45] Tatsuda N, Sato N, Fukumori Kenzo, Kako Chika, Nishimura Hideo, Recycling technology for laminates composed of thermoplastic polyolefin elastomer and crosslinked polypropylene foam, Kobunshi Ronbunshu/Japanese Journal of Polymer Science and Technology, 2000, 57(9):561-568
    [46] Bledzki A.K., Zhang W.Y, Faruk O, Microfoaming of flax and wood fibre reinforced polypropylene composites, Holz als Roh-und Werkstoff, 2005, 63(1): 30-37
    [47] Rydin C, Sjoberg L, Polypropylene thermal insulation systems for offshore pipeline applications, Journal of Protective Coatings and Linings, 2002,19(10):42-45+47-49
    [48] Bledzki A.K., Faruk O, Injection moulded microcellular wood fibrepolypropylene composites, Composites part A: applied science and manufacturing, available online October 2005,19[49] Bledzki A.K., Faruk O, Microcellular wood fiber reinforced PP composites: Cell morphology: surface roughness, impact, and odor properties, Journal of Cellular Plastics, 2005,41 (6):539-550
    [50] Bledzki A.K, Faruk O, Effects of the chemical foaming agents, injection parameters, and melt-flow index on the microstructure and mechanical properties of microcellular injection-molded wood-fiber/polypropylene composites, Journal of Applied Polymer Science, 2005, 97(3): 1090-1096
    [51] Djoumaliisky S, Christova D, Touleshkov N, Nedkov E., Morphology and orientation of PP-struetural foam moldings, Journal of Macromolecular Science-Pure and Applied Chemistry, v 1998,A35, (7-8): 1147-1158;
    [52] Djoumaliisky S, Touleshkov N, Kotzev G., Structure of PP structural foam moldings made by the gas-counterpressure porcess, Polymer-Plastics Technology and Engineering, 1997, 36(2): 257-271;
    [53] Touleshkov N, Djoumaliisky S, Kotzev G., Some property changes in injection moulded polypropylene structural foam, Polymer Degradation and Stability, 1989, 24(4):327-333;
    [54] Li B, Cao G.P, Liu T, Liu T, Zhao L, Yuan W.K., Hu G.H., Preliminary study on the characteristics of isotactic polypropylene with nucleating agent swollen by supercritical carbon dioxide, Chinese Journal of Chemical Engineering, 2005, 13(5): 673-677;
    [55] Naguib H.E., Park CB, Reichelt N., Fundamental foaming mechanisms governing the volume expansion of extruded polypropylene foams, Journal of Applied Polymer Science, 2004, 91(4): 2661-2668
    [56] Lee K.H, Pop-Iliev R., Park CB, Processing strategies for rotational molding of integral skin polyethylene foams, Annual Technical Conference-ANTEC, Conference Proceedings, v. 1, ANTEC 2004-Annual Technical Conference proceedings, Volume 1: Processing, 2004: 850-854;
    [57] Pop-Iliev R., Park CB., Rotofoamability of polyolefin resins, Annual Technical Conference-ANTEC, Conference Proceedings, v 1, ANTEC 2004-Annual Technical Conference proceedings, Volume 1: Processing, 2004:855-859
    [58] Sherman L.M., High-melt-strength PP makes softer, lighter foams, Plastics Technology, 2005, 51 (11):43-45
    [59] Liu T, Zhang W. Zhang S.J, Preparation of high-expanded PP foams with chemical blowing process, Hecheng Shuzhi Ji Suliao/China Synthetic Resin and Plastics, 2005, 22(6): 24-27
    [60] Xu Z.J, Xue P, Zhu F.H, He J.M, Effects of formulations and processing parameters on foam morphologies in the direct extrusion foaming of polypropylene using a single-screw extruder, Journal of Cellular Plastics, 2005, 41(2): 169-185
    [61] Dimitris I. Collias D.G., Baird J.M., Borggreve, Impact toughening of polycarbonate by microcellular foaming, Polymer, 35 (18): 3978-3983;
    [62] Dimitris I, Collais D.G., Baird J.M., Tesile toughness of microcellular foams of polystyrene, styrene-acrylonitrile copolymer, and polycarbonate, and the effect of dissolved gas on the tensile toughness of the same polymer matrices and??microcellular foams, Polymer Engineering & Science, 1995, 35 (14) : 1167-1177;
    [63] Laurent M.M, Park CB, John J.B, Processing and cell morphology relationships for microcellular foamed PVC/wood-fiber composites, Polymer Engineering & Science, 1997,37(7): 1137-1147;
    [64] Shimbo M., Baldwin D. F., Suh N.P., The viscoelastic behavior of microcellular plastics with varying cell size, Polymer Engineering & Science, 199535(17): 1387-1393;
    [65] 陈乐怡,发泡聚烯烃技术进展,中国塑料,1990,4(4):9;
    [66] 张玉霞,聚丙烯挤出发泡成本技术,现代塑料加工应用,1997,9(4):54
    [67] Chen X.P, James J.F, Christopher A. B, Plasticization effects on bubble growth during polymer foaming, Polymer Engineering & Science, 2006, 46(1): 97-107
    [68] Mark B.B, Edward M.P, Novel polypropylenes for foaming on conventional equipment, Plastics engineering, 1991,47(3):82-84
    [68] Naguib HE, Park CB, Strategies for achieving ultra low-density polypropylene foams, Polymer Engineering & Science, 42 (7): 1481-1492 JUL 2002
    [70] Ratzsch M, Arnold M, Borsig E, Bucka H, Reichelt N, Radical reactions on polypropylene in the solid state, Progress in Polymer Science, 2002, 27 (7): 1195-1282
    [71] 袁明君,聚丙烯发泡技术的进展,塑料包装,2000,10(1):15-24;
    [72] Pop-Iliev R, Liu FY, Liu GB, Park CB, Rotational foam molding of polypropylene with control of melt strength, Advances in Polymer Technology, 2003, 22 (4): 280-296;
    [73] Pop-Iliev R, Rizvi GM, Park CB, The importance of timely polymer sintering while processing polypropylene foams in rotational molding, Polymer Engineering & Science, 2003,43 (1): 40-54;
    [74] Pop-Iliev R, Park CB., Processing of polypropylene foams in melt Compounding based rotational foam molding, Journal of Reinforced Plastics and Composites, 2002,21 (12):1079-1100;
    [75] Pop-Iliev R, Park CB, Melt compounding based rotational foam molding technology for manufacture of polypropylene foams, Journal of Reinforced Plastics and Composites, 2002, 21 (2): 101-120
    [76] Pop-Iliev R, Xu DL, Park CB., Manufacturability of fine-celled cellular structures in rotational foam molding, Journal of Cellular Plastics, 2004,40(1): 13-25;
    [77] Pop-Iliev R, Park CB., Single-step rotational foam molding of skin-surrounded polyethylene foams, Journal of Cellular Plastics, 2003, 39, (1): 49-58
    [78] Lee Y.D., Wang L.E, Properties of polypropylene structureal foam crosslinked by vinyltrimethoxy silane, Journal of Applied Polymer Science, 1986, 32(4): 4639-4647
    [79] Phillips EM, Mchugh KE, Ogale K, Bradley MB, Polypropylene with high melt stability, Kunstst-German Plastics, 1992,82 (8): 671-676
    [80] 郦华兴,阮诗川 编译,聚丙烯泡沫挤出成型中气泡成核行为的研究,国外塑料,1999,17(1):28-31[81] He CX, Costeux S, Wood-Adams P, Dealy JM, Molecular structure of high melt strength polypropylene and its application to polymer design, Polymer, 2003,44 (23): 7181-7188
    [82] Lau HC, Bhattacharya SN, Field GJ, Influence of rheological properties on the sagging of polypropylene and ABS sheet for thermoforming applications, Polymer Engineering & Science, 40 (7): 1564-1570 JUL 2000;
    [83] Lau HC, Bhattacharya SN, Field GJ, Melt strength of polypropylene: Its relevance to thermoforming, Polymer Engineering & Science, 1998;38 (11): 1915-1923
    [84] Park CB, Cheun LK, A study of cell nucleation in the extrusion of polypropylene foams, Polymer Engineering & Science, 1997, 37(1):1-10,
    [85] Cheung LK, Park CB, Behravesh AH, Effect of branched structure on the cell morphology of extruded polypropylene foams I: Cell nucleation, Annual Technical Conference-ANTEC, Conference Proceedings, v 2, Materials, 1996:1941-1947;
    [86] Naguib H.E., Park CB, Song S.W., Effect of supercritical gas on crystallization of linear and branched polypropylene resins with foaming additives, Industrial and Engineering Chemistry Research, 2005,44(17): 6685-6691;
    [87] Park CB, Daniel F.B., Nam P.S., Effect of the pressure drop rate on cell nucleation in continuous processing of microcellular polymers, Polymer Engineering & Science, 1995,35(5): 432-440;
    [88] Park CB, Nam P.S, Filamentary extrusion of microcellular polymers using a rapid decompressive element, Polymer Engineering & Science, 1996, 36(1): 34-48
    [89] Park CB, Behravesh A.H., Ronald D.V., Low density microcellular foam processing in extrusion using CO_2, Polymer Engineering & Science, 1998,38(11): 1812-1823,
    [90] Graebling D, Synthesis of branched polypropylene by a reactive extrusion process, Macromolecules, 2002, 35 (12): 4602-4610
    [91] Nam G.J., Yoo J.H., Lee J.W., Effect of long-chain branches of polypropylene on rheological properties and foam-extrusion performances, Journal of Applied Polymer Science, 2005, 96(5): 1793-1800
    [92] Gotsis A.D., Zeevenhoven B.L.F., Hogt A.H, The effect of long chain branching on the processability of polypropylene in thermoforming Polymer Engineering and Science, 2004, 44(5):973-982;
    [93] Lagendijk R.P., Hogt A.H., Buijtenhuijs A, Gotsis,A.D, Peroxydicarbonate modification of polypropylene and extensional flow properties, Polymer, 2002, 42:10035-10043;
    [94] Park S.H., Han S.M., Kim S.H., Kim J.S., The development of high melt strength polypropylene using the reactive extrusion process, Annual Technical Conference-ANTEC, Conference Proceedings, 2003,3:3648-3652
    [95] 赵敏,高俊刚,邓奎林,赵兴艺等编著,改性聚丙烯新材料,2002,9月,北京,化学工业出版社:117-128
    [96] Czuprynska J, The effect of high-energy electron beam radiation, on polymer??properties, Polymer, 2002,47 (1): 8-14
    [97] Lugao AB, Hutzler B, Ojeda T, Tokumoto S, Siemens R, Makuuchi K, Villavicencio ALCH, Reaction mechanism and rheological properties of polypropylene irradiated under various atmospheres, Radiation Physics and Chemistry, 2000,57 (3-6): 389-392
    [98] Lugao AB, Noda L, Cardoso ECL, Hustzler B, Tokumoto S, Mendes ANF, Temperature rising elution fractionation, infra red and rheology study on gamma irradiated HMSPP, Radiation Physics and Chemistry, 2002, 63 (3-6): 509-512
    [99] Lugao AB, Cardoso ECL, Lima LFCP, Hustzler B, Tokumoto S, Characterization study of gamma-irradiated, high melt-strength polypropylene, Nuclear Instruments & Methods in Phisics Research Section B-beam, Interactions with Materials and Atoma 2003,208:252-255
    [100] Sugimoto M, Tanaka T, Masubuchi Y, Takimoto J, Koyama K, Effect of chain structure on the melt rheology of modified polypropylene, Journal of Applied Polymer Science, 1999,73 (8): 1493-1500
    [101] Sugimoto M, Masubuchi Y, Takimoto J, Koyama K, Melt strength and extrudate swell of high-melt-strength polypropylene, Nihon Reoroji Gakkaishi, 1999, 27 (1): 67-68
    [102] Hong D, Yoon KJ, Baek WS, Jung HY, Lee JG, Lee KI, Lee JH, Kim TS, Lee KY, Effects of irradiation crosslinking and molecular weight properties on crosslinked PP foaming process, Polymer-Korea, 2002,26 (4): 508-515
    [103] Hong D, Yoon KJ, Lee KY, Structural changes of homopolymer polypropylene foam with molecular weights and rheological properties: (1) In batch process, Polymer-Korea, 2002,26 (1): 61-70
    [104] Hwang DY, Han KD, Hong D, Lee KI, Lee KY, Structural development of polypropylene foam by crosslinking and processing conditions, Polymer-Korea,2000, 24 (4): 529-537
    [105] 魏根栓,王广辉,哈鸿飞,高分子材料辐射改性,原子核物理评论,1996(02):55—57
    [106] Kubo J,Otsuhata K,Ikeda S,Seguchi T,Electron-induced crosslinking of polypropylene with the addition of hydrogen-donating hydrocarbons,J Journal of Applied Polymer Science,1997,64(2):311-319 APR 11;
    [107] Sawasaki T,Nojiri A,Radiation crosslinking of polypropylene.,Radiation Physics and Chemistry,1987,31(4-6):877-886;
    [108] Yoshii F,Makuuchi K,Kikukawa S,Tanaka T,Saitoh J,Koyama K, High-melt-strength polypropylene with electron beam irradiation in the presence of polyfunctional monomers, Journal of Applied Polymer Science, 1996,60(4):617-623 APR 25
    [109] Schulze D,Trinkle S,Mulhaupt R,Friedrich C, Rheological evidence of modifications of polypropylene by beta-irradiation,Rheologica Acta,2003,42 (3):251-258
    [110] Ivanchev SS,Ratzsch M,Mesh AM,Khaikin SY, Bucka H,Hesse A,Reichelt N, Moiseeva ME, Radiation crosslinking of polypropylene in the presence of??monomers incapable of homopolymerization, Polymer Science Series B, 2001,43 (3-4): 85-89
    [111] Gao JM, Lu YJ, Wei GS, Zhang XH, Liu YQ, Qiao JL, Effect of radiation on the crosslinking and branching of polypropylene, Journal of Applied Polymer Science, 2002, 85 (8): 1758-1764
    [112] Han D.H., Jang J.H., Kim H.Y., Kim B.N, Shin B.Y., Manufacturing and foaming of high melt viscosity of polypropylene by using electron beam radiation technology, Polymer Engineering & Sciencs, 2006,46,(4): 431-437
    [113] 沈静姝,刘松林,聚丙烯的交联,高分子通报。1992,3:170-176
    [114] Lazar M, Hrckova L, Borsig E, Marcincin A, Reichelt N, Ratzsch M, Course of degradation and build-up reactions in isotactic polypropylene during peroxide decomposition, Journal of Applied Polymer Science, 2000, 78 (4): 886-893
    [115] Yu Q, Zhu S, Peroxide crosslinking of isotactic and syndiotactic polypropylene, Polymer, 1999, 40 (11): 2961-2968
    [116] Borsig E, Malcherova E, Lazar M, Crosslinking of atactic polypropylene by the system peroxide-pentaerythritol tetraallyl ether, Polymer International, 1993,30 (3):367-370
    [117] Romani F, Corrieri R, Braga V, Ciardelli F, Monitoring the chemical crosslinking of propylene polymers through theology, Polymer, 2002, 43 (4): 1115-1131
    [118] Wang XC,.Tzoganakis C, Rempel GL, Chemical modification of polypropylene with peroxide/pentaerythritol triacrylate by reactive extrusion, Journal of Applied Polymer Science, 1996, 61 (8): 1395-1404
    [119] Busfield W. K., Appleby R, Influence of grafting/crosslinking on the creep properties of polypropyleme type., Royal Australian Chemical Inst, Polymer Div, 1985:179-181
    [120] Djoumaliisky S, Christova D, Petrov I, Touleshkov N, Nedkov E, Flow behaviour of gas-containing LDPE/i-PP melts, Macromolecular Symposia, 2002, 181: 493-497
    [121] Sunol J.J., Saurina J., Berlanga R., Herreros D., Pages P., Carrasco F., Crystallization kinetics of polypropylene-polyethylene-based copolymers, Journal of Thermal Analysis and Calorimetry, 1999, 55 (1): 57-65;
    [122] Dolgopolsky I., Silberman A., Kenig S, Effect of nucleating agents on the crystallization kinetics of polypropylenc, Polymers for Advanced Technologies, 1995, 6(10): 653-661
    [123] Park CP, Foam extrusion of syndiotactic polypropylene-polyethylene blends, Journal of Cellular Plastics, 2002,38 (2): 129-138
    [124] Doroudiani S, Park CB, Kortschot MT, Processing and characterization of microcellular foamed high-density polyethylene/isotactic polypropylene blends, Polymer Engineering and science, 1998,38 (7): 1205-1215
    [125] Doroudiani S, Park C.B., Kortschot M.T., Characterization of microcellular foamed HDPE/PP blends, Annual Technical Conference-ANTEC, Conference Proceedings, 1996, 2, Materials: 1914-1917
    [126] Herrera T.E., Zepeda S.C., Ruben G.N., Denis R, Morphology and mechanical??properties of foamed polyethylene-polypropylene blends, Journal of Cellular Plastics, 2005,41 (5): 417-435
    [127] Sugimoto M, Masubuchi Y, Takimoto J, Koyama K, Melt rheology of polypropylene containing small amounts of high molecular weight chain. I. Shear flow, Journal of Polymer Science Part B-Polymer Physics, 2001,39 (21): 2692-2704
    [128] Sugimoto M, Masubuchi Y, Takimoto J, Koyama K, Melt rheology of polypropylene containing small amounts of high-molecular-weight chain. 2. Uniaxial and biaxial extensional flow, Macromolecules, 34 (17): 6056-6063 AUG14 2001
    
    [129] Liang J.Z., Tang C.Y., Man H.C., Flow and mechanical properties of polypropylene/low density polyethylene blend, Journal of materials processingtechnology 66(1997): 158-164
    [130] Lee PC, Wang J, Park CB., Extruded open-cell foams using two semicrystalline polymers with different crystallization temperatures, Industrial and Engineering Chemistry Research, 2006,45(1): 175-181
    [131] Lai S.M., Chiu EC, Chiu T.Y., Fracture behaviors of PP/mPE thermoplastic vulcanizate via peroxide crosslinking, European Polymer Journal, 2005, 41(12):3031-3041;
    [132] Chiu W.Y., Fang S.J., Mechanical properties and morphology of crosslinked PP/PE blends and PP/PE/propylene-ethylene copolymer blends, Journal of Applied Polymer Science, 1985,30(4):1473-1489
    [133] Braun D., Richter S., Hellmann GP., Ratzsch M., Peroxy-initiated chain degradation, crosslinking, and grafting in PP-Peblends, Journal of Applied Polymer Science, 1998,68:2019-2028.
    [134] Kim BK, Reactive extrusion of polyolefins and their blends, Korea Polymer Journal, 1996,4 (2): 215-226
    [135] Kotzev G, Studies of mechanical properties and melting behaviour of foamed and crosslinked LDPE/PP blends Cellular Polymers, 2002,21(6): 431-443
    [136] Kotzev G, Touleshkov N, Christova D, Foamed crosslinked LDPE/PP blends made by hot mold injection molding, MACROMOLECULAR SYMPOSIA, 2002,181:507-511
    [137] Graebling D, Lambla M, Wautier H, PP/PE blends by reactive extrusion: PP Theological behavior changes, Journal of Applied Polymer Science, 1997,66 (5): 809-819
    [138] Tokuda S, Kemmotsu T, Electron-beam irradiation conditions and foam seat properties in polypropylene-polyethylene blends, Radiation Physics and Chemistry, 1995,46 (4-6): 905-908 Part 1
    [139] Wan C, Patel SH, Xanthos M, Reactive melt modification of polypropylene with a crosslinkable polyester, Polymer Engineering and science, 2003,43 (6): 1276-1288
    [140] Pesneau I, Champagne M, Gendron R, Huneault M, Foam extrusion of PP-EMA reactive blends, Journal of Cellular Plastics.2002,38 (5): 421-440
    [141] Chaudhary B.I., Barry R.P., Tusim Martin H., Foams made from blends ofethylene styrene interpolymers with polyethylene, polypropylene and polystyrene, Journal of Cellular Plastics, 2000,36(5): 397-421
    [142] Jahani Y, Barikani M, heological and mechanical study of polypropylene ternary blends for foam application, Iranian Polymer Journal (English Edition), 2005,14(4): 361-370
    [143] 王锡臣,苏河山,一种用于生产高填充天然无机矿物粉PP微发泡材料的组合物,中国,01138662.2,2001.12.29
    [144] Hani E.N, Effect of talc content on the volume expansion ratio of extruded foam, Joural of Cellular Plastics,2003,39(11)499-511
    [145] Naguib HE, Park CB, Lee PC., Xu D.L, Reichelt N, Effect of Talc Content on the Volume Expansion Behavior of Extruded PP Foams, Annual Technical Conference o ANTEC, Conference Proceedings, 2003, 2:1817-1822
    [146] Cheung LK, Park CB, Effect of talc on the cell-population density of extruded polypropylene foams, American Society of Mechanical Engineers, Materials Division (Publication) MD, Cellular and Microcellular Materials, 1996, 76:81-103
    [147] Park CB, Cheung LK, Song SW, Effect of talc on cell nucleation in extrusion foam processing of polypropylene with CO_2 and isopentane, Cellular Polymers, 1998, 17(4) :221-251
    [148] Matuana L, Li Q.A, Factorial design applied to the extrusion foaming of polypropylene/wood-flour composites, Cellular Polymers, 2001,20(2): 115-130
    [149] Pham H.H., Pralay M, Masami O, Tadao Kotaka, Foam processing and cellular structure of polypropylene/clay nanocomposites, Polymer Engineering and Science, 2002,42(9): 1907-1918
    [150] Ramesh N.S., Lee S.T., Do nanoparticles really assist in nucleation of fine cells in polyolefin foams? Cellular Polymers, 2005, 24(5): 269-277
    [151] Thomas B, Silane crosslinking of polyethylene, Plastics & Rubber Inst, 1982:11-14
    [152] McCormick JA, Royer JR, Hwang CR, Khan SA, Tailored theology of a metallocene polyolefin through silane crafting and subsequent silane crosslinking, Journal of polymer science Part B-Polymer Physics, 2000,38 (18): 2468-2479
    [153] Felipe W.F, Fernanda C.S, Raduel S.M., Sonia M.B. Nachtigal, Free radical modification of LDPE with vinyltriethoxysiane, European Polymer Journal. 2004,1-8;
    [154] Sem AK, Mukherjee B, Bhattacharyya AS, De PP, Bhowmick AK, Kinetics of silane grafting and moisture cross-linking of polyethylene and ethylene propylene rubber, Journal of applied polymer science, 1992,44(7): 1153-1164;
    [155] Munteanu D, Moisture cross-linkable silane-modified polyolefins, In: AlMalaika S, editor. Reactive modifiers for polymers, London: Chall; 1997:197-265
    [156] Shieh YT, Hsiao KI, Thermal properties of silans-grafted water-crosslinked polyethylene, Journal of applied polymer science, 1998, 70(6): 1075-10822.
    [157] Shieh YT, Hsiao KI, Silane grafting reactions of low-density polythlene, Journal??of applied polymer science, 1998,69:255-261;
    [158] Heggs R.P, Schwarz E.G, Effect of silane crosslinking on the processing and properties of polythlene, Annual Technical Conference-Society of Plastics Engineers, 1985:956-959
    [159] Stoehrer B., Kurrer H., Stengler R., Weis G, On-line quality control during silane crosslinking of PE, Kunststoffe-German Plastics, 1989,79(11),:39-41
    [160] Wong W.K., Varrall D.C., Role of molecular structure on the silane crosslinking of polyethylene: the importance of resin molecular structure change during silane grafting, Polymer, 1994, 35(25): 5447-5452
    [161] Shieh Y.T., Chuang H.C., Liu C.M., Water crosslinking reactions of silanegrafted polyolefin blends, Journal of Applied Polymer Science, 2001, 81(7):799-1807
    [162] Shieh Y.T., Liau J.S., Chert T.K., An investigation of water crosslinking reactions of silane-grafted LDPE, Journal of Applied Polymer Science, 2001, 81(1):186-196
    [163] Ultsch S, Fritz HG, Crosslinking of PE-LLD and PE-VLD using graftpolymerized vinyltrimethoxysilane, Kunststoffe-German Plastics, 1989, 79(10):110-113
    [164] Bullen D.J., Silane crosslinking behaviour of low density polyethylene cable compounds, Conference: Polymers in Cables, Knutsford, Engl Sponsor: Plastics &-Rubber Inst, Manchester Section, Manchester, Engl, Publication date: 1983, 21p;
    [165] Anon, Crosslinkability. Use of silane crosslinking on medium-voltage cable, Wireworld, 1990,32(5): 12-14;
    [166] 韩双水,苑会林,硅烷交联聚乙烯的新工艺,化工进展,999(3):64-66
    [167] 王秀丽,聚乙烯的硅烷交联技术及应用,塑料科技,2001,144(4):30-33
    [168] Huang H, Lu HH, Liu NC, Influence of grafting formulations and extrusion conditions on properties of silane-grafted polypropylenes, J Journal of applied polymer science, 2000,78 (6): 1233-1238
    [169] Bolz U, Fritz HG, Production of partially silane-crosslinked PP-copolymer foams, Kautschuk Gummi Kunststoffe, 1998,51 (9): 5578-585
    [170] Liu NC, Yao GP; Huang, H, Influences of grafting formulations and processing conditions on properties of silane grafted moisture crosslinked polypropylenes, Polymer, 2000,41 (12): 4537-4542
    [171] Sengupta S.S., Parent J.S., Mclean J.K., Radical-mediated modification of polypropylene: Selective grafting via polyallyl coagents, Journal of Polymer Science, Part A: Polymer Chemistry, 2005, 43(20): 4882-4893
    [172] Beltran M, Mijangos C, Silane grafting and moisture crosslinking of polypropylene, Polymer Engineering and Science, 2000,40 (7): 1534-1541
    [173] 沈静姝,刘松林,钱人元,聚丙烯两步法交联的研究Ⅰ交联聚丙烯的制备,石油化工,1991,20(9):593-596
    [174] 沈静姝,刘松林,钱人元,聚丙烯两步法交联的研究Ⅱ交联聚丙烯的表征,石油化工,1992,21(7):450-454
    [175] Deguchi J, Inoue T, Crosslinked polypropylene by new method., Annual??Technical Conference-Society of Plastics Engineers, 1987:786-790
    [176] Wang Z.Z, Wu X.S., Gui Z, Hu Y, Fan W.C, Thermal and crystallization behavior of silane-crosslinked polypropylene, Polymer International, 2005, 54(2): 442-447
    [177] Hu M,Wang Z.Z, Qu B.J, Hu K.L, Vapour phase grafting of vinyltrimethoxysilane and water crosslinking of polypropylene, Reactive and Functional Polymers, 2006, 66(2): 287-296
    [178] G.皮特埃尔斯,M.S.奥谢,G.莫阿德,提高聚丙烯熔体强度的方法,中国,CN 1291213A,2001年4月11日
    [179] 高建明,张晓红,刘轶群,吕玉杰,黄帆,宋志海,乔会梁,魏根栓,高熔体强度PP的制备研究,合成树脂及塑料,2002,19(5):30-34
    [180] Huang H, Liu NC, Nondegradative melt functionalization of polypropylene with glycidyl methacrylate, Journal of applied polymer science , 1998,67 (12): 1957-1963
    [181] Huang H, Zhou C.Y., Liu N.C., Melt grafting of a long-chain unsaturated carboxylic acid onto polypropylene, Reactive and Functional Polymers, 2001,50:49-55
    [182] 左演声,陈文者,梁伟,材料现代分析方法,北京工业大学出版社,北京,2002,12.214-221
    [183] Xu Z.J, Xue P, Zhu F.H, He J.M, Effects of formulations and processing parameters on foam morphologies in the direct extrusion foaming of polypropylene using a single-screw extruder, Journal of Cellular Plastics, 2005,41 (2): 169-185

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700