基于并行计算的金属塑性成形仿真分析中关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
薄板成形是利用模具使板料发生塑性变形而形成零件的制造技术。为了缩短模具的开发周期,很多公司都推出了非常适合于模具设计工程师使用的板料成形数值模拟软件。但是随着板料成形的几何模型日趋复杂,有限元模型的日趋庞大,计算时间也随之大量增加。为了提高计算效率,本文采用并行策略对大规模薄板成形问题进行仿真求解,针对有限元模型的特点,建立了相关初始化分区系统。对于金属体积成形工艺,采用有限元法求解金属塑性体积成形仿真问题时,当工件变形到一定程度,将产生严重的网格畸变,此时,就有必要对有限元模型进行网格重构。然而,网格重构必须依赖于某种控制准则,不同的控制准则将产生不同的计算结果,目前没有统一的准则可用。另外,力学量在新旧网格之间的转换也会带来新的计算误差。因此,重构网格会造成精度下降和质量损失。对于较复杂的三维成形件,快速可靠的网格重划分至今仍是世界一大难题。无网格法可以解决金属体积成形仿真中单元畸变的问题,并且具有较高的计算精度,但由于无网格法中的形函数由离散点通过高次插值构造,因此计算效率较低。为此,本文建立了以RKPM无网格方法为理论基础的金属体积成形并行仿真系统。
     综上所述,本文的创新点总结如下:
     (1) 根据显式算法和并行计算环境的特点,建立了基于消息传递机制的粗粒度并行构架。显式有限元法和无网格数值计算方法具有良好的计算局部特性,即在不考虑接触过程的情况下,除了节点内力的传递过程,所有的计算均是在单元内部进行的。而IBM pSeries 690是一款先进的高端IBM UNIX服务器。针对数据中心所需的容量、性能和可靠性,pSeries 690上的POWER4+处理器采用了SMP-on-a-chip设计结构,而强大的逻辑分区功能使更多资源的处理过程可以从其它使用不那么频繁的处理过程中借入其他资源。基于以上原因,我们选择了基于消息传递模式的粗粒度并行构架。为了验证显式数值并行算法的优势,分别编制了相应的基于MPI和OPENMP并行测试程序,对雅克比迭代问题分别进行了求解。通过对二者加速比的比较,验证了粗粒度并行构架的可行性和高效性。
     (2) 提出了基于多层次分区策略的修正多层次谱二分分区法和修正多层次几何二分分区法及其高效的存储结构。多层次算法分为粗化,分区和还原三个阶段,其中在粗化阶段,本文提出了基于顶点平衡策略(VBS)的混合边权重匹配粗化方法(MEM);在分区阶段,针对谱二分分区法和几何二分分区法,构造了高效合理的存储结构;在还原阶段,本文采用了Kernighan-Lin局部优化算法,在并对其缺陷进行了修正的基础上提出了平衡KL(BKL)局部优化分区方法。根据以上分区优化理论,本文建立了基于修正多层次谱二分分区法(MMRSB)和修正多层次几何二
Sheet metal forming is an important process with utilizing the plasticity of metal to transform a sheet metal blank into a part with shell configuration by dies. In order to shorten the development cycle, some numerical computational software fitting for sheet forming simulation process were developed. With the complexity of geometry models of blank forming and reduction of the size of iterative step, the blank model needs meshing more fine finite element grids. For improving the computation efficiency, the simulation process will cost much more computational time. In order to solve large scale sheet forming problems, we introduce parallel strategy with simulation process and develop sheet forming explicit dynamics simulation system based on the Mindlin-Reissner theory and the Belytschko-Tsay shell element. We build the initial partition system according to the characters of finite element grids and programmed the interface program connecting the FEM parallel and partition system .Commonly bulk forming problems simulations adopt finite element method. The mesh distortions maybe occur while large deformation problems are solved by FEM. The underlying structure of these methods which originates from their reliance on a mesh is not well fit for the treatment of discontinuities which do not coincide with the original mesh grids. Thus, the most viable strategy for dealing with moving discontinuities in method with moving discontinuities in methods based on meshes is to remesh in each step of the evolution so that mesh grids remain coincident with the discontinuities throughout the evolution of the problem. This can, of course, introduce numerous difficulties such as the need to project between meshes in successive stages of problem, which leads to degradation of accuracy and complexity in the computer program, not to mention the burden associated with a large number of meshes. Currently, the adaptive mesh grids method is limited for tetrahedron element, so the rapid and credibility remesh method is the hard mission in computational mechanics fields. Meshless methods do not require costly mesh generation remeshing. Furthermore, meshless methods implement a functional basis and allow arbitrary placement of points, therefore the solution and its derivatives may be obtained directly where they are needed and with better accuracy than with finite element method where interpolation is required. Limitation of meshless method is the low computational efficiency due to high order interpolation. With the increasing size and complexity of the numerical structural models to solve, the analysis tends to be a very
引文
[1]. T Belytschko, Y Krongauz, D Organ, M Fleming, and P Krysl, Meshless Methods: An Overview and Recent Developments, Computer Methods in Applied Mechanics and Engineering, special issue on Meshless Methods, 1996, 139:3-47.
    [2].G R Liu, Mesh Free Methods: Moving beyond the finite element method, Boca Raton, Fla: CRC Press, July 29, 2002.
    
    [3]. Shaofan Li, W K Liu, Meshfree Particle Methods, 2004. SPRINGER, BERLIN.
    [4]. L B Lucy. Astron, Astrophys, 1977(82):1013.
    [5].R A Gingold and J J Monaghan, Monthly Notices Royal Astron. Soc. 1977(181):375.
    [6]. J J Monaghan and R. A. Gingold, Shock simulation by the particle method SPH. J. Comput. Phys.1983 (52):374.
    [7]. J J Monaghan., Simulating free surface flows with SPH, Journal of Computational Physics, 1994,110(2):399-406,
    [8]. J J Monaghan, A. Kocharyan., SPH simulation of multiphase flow. Comput. Phys. Commun 1995(87): 225.
    [9].J J Monaghan., Smoothed particle hydrodynamics, Annu. Rev. Astron. Astrophys. 1992 (30): 543.
    [10]. Liu W K, Jun S, Zhang Y F., Reproducing Kernel particle methods. Int. J Numer. Method Engrg, 1995(20):1081-1106.
    [11]. Liu W K, Chen Y, Jun S, et al., Overview and applications of the reproducing kernel particle methods, Archives in Computational Methods in Engineering, 1996, (3):3-80.
    [12]. Lu YY, Belytschko T, Tabbara M., Element-free Galerkin methods for wave propagation and. dynamic fracture, Comput. Methods Appl. Mech., 1995(126):131~153.
    
    [13]. T Belytschko, Y Y Lu and L Gu, Element-Free Galerkin Methods, International Journal for Numerical Methods in Engineering, 1994(37): 229-256
    
    [14]. Mukherjee S., Boundary Element Methods in Creep and Fracture, London: Applied Science Publishers, 1982.
    [15]. T Belytschko and M.O. Neal, Contact-Impact by the Pinball Algorithm with Penalty and Lagrangian Methods, International Journal for Numerical Methods in Engineering, 1991(31): 547-572.
    [16]. Atluri SN, Zhu T., A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics, Comput. Mech., (1998) 22: 117-127.
    [17]. Atluri SN, Shen SP., The mesh local Petrov-Galerkin (MLPG) method: a simple & less-costly alternative to the finite element and boundary element methods, CMES: Computer Modeling in Engineering and Sciences, 2003(3): 11-51.
    [18]. Atluri SN, Shen SP., The meshless local Petrov-Galerkin (MLPG) method, Tech. Science Press, 2002.
    [19]. G. Ventura., An augmented Lagrangian approach to essential boundary conditions in meshless methods, International Journal for Numerical Methods in Engineering, 2002(53):825~842.
    [20]. Xiaodong Wang , Wing Kam Liu, Extended immersed boundary method using FEM and RKPM, Computer Methods in Applied Mechanics and Engineering, 2004(193), 12-14: 1305-1321.
    [21]. W K Liu, W Han, H. Lu and S Li, Reproducing Kernel Element Method, Part I Theoretical Formulation, Computer Methods in Applied Mechanics and Engineering, 2004(193): 933-951.
    [22]. S Li, H Lu, W Han and W K Liu, Reproducing Kernel Element Method, Part II Globally Conforming Cn(n >1) Triangular Hierarchy. Computer Methods in Applied Mechanics and Engineering, 2004(193): 953-987.
    [23]. H. Lu, S Li, D C Simkins, W K Liu, and J Cao, Reproducing Kernel Element Method Part III. Generalized Enrichment and Applications, Computer Methods in Applied Mechanics and Engineering, 2004(193): 989-1011.
    [24]. B. Nayroles, G. Touzot, P. Villon, Generalizing the finite element method: Diffuse approximation and diffuse elements, Comp. Mech. 1992(10):307-318.
    [25]. Belytschko, T., Y.Y. Lu, and L. GU, Element-free Galerkin Methods, Intl J Num Meth Engg. 1994(37): 229-256.
    [26]. Dolbow J, Belytschko T., Numerical integration of the Galerkin weak form in meshfree methods, Comput. Mech., 1999(23): 219-230.
    [27]. Belytschko T , Krongauz Y, Organ D, et al., Smoothing and accelerated computations in the element free Galerkin method, J Comput. Appl. Math, 1996(74): 111-126.
    [28]. Krongauz Y, Belytschko T., EFG approximation with discontinuous derivatives, Int J Numer. Methods Engrg. , 1998(41): 1215-1233.
    [29]. Xu Y, Saigal S., Element free galerkin study of steady quasi-static crackgrowth in p lane strain tension inelastic-plastic materials, Comput. Mech., 1998(22): 255-265.
    [30]. P. Krysl, T. Belytschko, Analysis of Thin Plates by the Element-Free Galerkin Method. Computational Mechanics, 1996(17), 26-3.
    [31]. Liu WK, Chen Y, Jun S, Chen JS, Belytschko T., Uras RA, and Chang. Overview and applications of the reproducing kernel particle methods, Arch. Comput. Mech. Eng.: State of Rev. 1996(3): 3-80.
    [32]. Belytschko T, Organ D, Krongauz Y., A coupled finite element and element free Galerkin method, Comput. Mech., 1995(17): 186-195.
    [33]. Hegen D., Element-free Galerkin methods in combination with finite element approaches, Comput Methods Appl. Mech. Engrg., 1996(135): 143-166.
    [34]. Belytschko T, Krysl P, Krongnauz Y, A three-dimensional explicit element-free galerkin method, Int J Numer. Meth. Fluids, 1997(24): 1232-1270.
    [35]. Ponthot J P, Belytschko T., Arbitrary Lagrangian-Eulerian formulation for element-free Galerkin method, Comput. Methods Appl. Mech. Engrg., 1998(152): 19-46.
    [36]. Du C, An element-free Galerkin method for simulation of stationary two dimensional shallow water flow s in rivers, Comput. Methods Appl. Mech. Engrg. ,2000(82): 89-107.
    [37]. Cordes L W, Mo ran B., Treatment of material discontinuity in the element free Galerkin method, Comput Methods Appl. Mech. Engrg, 1996(139):75-89.
    [38]. Durate. C. A, Oden. J. T., A Meshless Method to Solve Boundary-Value Problems Technical Report 95-05, TICAM - Texas Institute for Computational and Applied Mathematics. University of Texas at Austin. 1995.
    [39]. C. A. M. Duarte, J. T. Oden, An hp Adaptive Method Using Clouds, Computer Methods in Applied Mechanics and Engineering, 1996(139): 237-262.
    [40]. T. J. Liszka, C. A. M. Duarte and W. W. Tworzydlo, Hp-Meshless Cloud Method, Computer Methods in Applied Mechanics and Engineering, 1996(139): 263-288.
    [41]. M. Duarte, J. T. Oden., Hp Clouds-an hp Meshless Method, Numerical Methods for Partial Differential Equations, 1996(12): 673-705.
    
    [42]. de T. R. Mendonca, P.,de Barcellos, C. S., Duarte, A. Investigations on the hp-Cloud Method by solving Timoshenko beam problems, Computational Mechanics. 2000(25):286-295.
    [43]. Garcia, O., Fancello, E. A., Barcellos, C. S. and Duarte. C. A., Hp-Clouds inMindlin's Thick Plate Model. International Journal for Numerical Methods in Engineering. 2000(47):1381-1400.
    [44]. Oden, J. T., Duarte, C. A. and Zienkiewicz, O. C, A New Cloud-Based hp Finite Element Method, Computer Methods in Applied Mechanics and Engineering, v153, 117-126, 1998.
    [45]. Babuska, J. M. Melenk, The partition of unity method. Internat, J. Numer. Methods Engrg.l997(40):727-758.
    [46]. Zhu T., Zhang, Atluri S.N., A local boundary integral equation (LBIE) method in computational mechanics, and a meshless discretization approach, Comput. Mech., 1998(21):223-235.
    [47]. Atluri S.N., Sladek J., et al., The Loacl boundary integral equation (LBIE) and it's meshless implementation for linear elasticity, Comput. Mech., 2000(25):180-198.
    [48]. Atluri S.N, Zhu T., A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics, Comput. Mech., 1998(2):7-127.
    [49]. Atluri S.N., Zhu T., The meshless local Petrov-Galerkin (MLPG) approach for solving problems in elasto-statics, Comput. Mech., 2000(25): 169-179.
    [50]. Atluri S.N., Kim H.G., et al., A critical assessment of the truly Meshless Local Petrov-Galerkin (MLPG), and Local Boundary Integral Equation (LBIE) methods. Comput. Mech. 1999, 24(3)48-372.
    [51]. Zhu T., Atluri S.N., Modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin method, Comput. Mech. 1998(21): 211-222
    [52]. J.S. Chen, C. Pan, C.T. Wu, W.K. Liu., Reproducing Kernel Particle Methods for Large Deformation Analysis of Nonlinear Structures, Comput. Meth. Appl. Mech. Eng. 1996(139): 195-227.
    [53]. J.S. Chen, C. Pan, C.T. Wu, Large Deformation Analysis of Rubber based on Reproducing Kernel Particle Method, Comput. Mech. 1997(19): 211-227.
    [54]. J.S. Chen, C. Pan, C.T. Wu, Application of Reproducing Kernel Particle Methods to Large Deformations and Contact Analysis of Elastomers, Rubber Chem. Technol. 1998.
    [55]. Hardee E, Chang K H, Grindeanu I, et al., A structure nonlinear analysis workspace (snaw) based on meshless method, Advance in Engineering, 1999(30):153-175.
    [56]. Li S and Liu W K., Synchronized reproducing kernel interpolant via multiplewavelet expansion, Computational Mech.1998 (28): 28-47.
    [57]. Li S, Hao W, and Liu WK., Numerical simulations of large deformation of thin shell structures using meshfree methods, Computational Mech.2000 (25): 102-116.
    [58].钟志华,李光耀,薄板成形过程的计算机仿真原理及其应用,北京:北京理工大学出版社,1994.
    [59]. Farhat, C., A Simple and Efficient Automatic FEM Domain Decomposer, Computers and Structures, 1988, 28(5): 579~602.
    [60]. Hsieh, S. H., Parallel Processing For Nonlinear Dynamics Simulations of Structures Including Rotating Bladed-Disk Assemblies, Ph.D. New York.: Cornell University, Ithaca, 1993.
    [61]. Barnard, S. T., Pothen, A., and Simon, H. D., A Spectral Algorithm for Envelope Reduction of Sparse Matrices, Numerical Linear Algebra with Applications, 1995, 70(2): 317~334.
    [62]. Bui, T. and Jones, A Heuristic for Reducing Fill in Sparse Matrix Factorization, In: Proceedings of the 6th SIAM Conference on Parallel Processing for Scientific Computing, 1993, 445~452.
    [63]. Ilendrickson, B. and Leland, R. A., Multilevel Algorithm for Partitioning Graphs, California: Sandia National Laboratories, 1993.
    [64]. Karypis, G., and Kumar, V. A., Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs. Minneapolis: Department of Computer Science, University of Minnesota, and Minneapolis, MN.
    [65]. B. Kernighan, S. Lin., An Efficient Heuristic Procedure for Partitioning Graphs, The Bell System Tech.1970, 49(2) 291~307.
    [66]. Kent T. Danielson, Su Hao, Wing Kam Liu, R. Aziz Uras and Shoafan Li., Parallel computation of meshless methods for explicit dynamic analysis, Int. J. Numer. Meth. Engng. 2000(47): 1323~1341.
    [67]. Frank Gunter, Wing Kam Liu, Darin Diachin., Mark A. Christon. Multi-scale meshfree parallel computations for viscous, compressible flows. Comput. Methods Appl. Mech. Engrg. 2000(190): 279~303.
    [68]. L.T. Zhang, G.J. Wagner, and W.K. Liu. A parallelized meshfree method with boundary enrichment for large-scale cfd. Journal of Computational Physics, 2000.
    [69].王琥,李光耀,钟志华,有限元并行计算自动化分区方法.计算机辅助设计与图形学学报,第17卷第8期,2005.
    [70].王琥,李光耀,钟志华,有限元并行计算中网格自动化分区的优化,工程力学,??第22卷2005.
    [71]. http://www.openmp.org/.
    [72]. OpenMP Application Program Interface Version 2.5, May, 2005
    [73]. G.A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, V. Sunderam., PVM: Parallel Virtual Machine, A Users' Guide and Tutorial for Networked Parallel Computing, MIT Press, Cambridge, MA, 1994.
    [74]. Message Passing Interface Forum, MPI: A Message Passing Interface Standard, University of Tennessee, 1995.
    [75]. IBM Parallel Environment for AIX, MPI Programming Guide, Handbook, 2003.
    [76]. Ted. G. Lewis, Hesham. El-Rewini., Introduction to Parallel Computing, Prentice-Hall, Inc. 1992.
    [77]. J.L. Gustafson, Performance Analysis: The 'Tar Baby' Of Computing, ORSA Journal on Computing, 1993(5): 1.
    [78]. J. Gustafson, S. Aluru, A Massively Parallel Optimizer for Algorithms, Proceedings of the 7th ACM International Conference on Supercomputing, Tokyo, Japan, July 1993.
    [79]. J. L. Gustafson, S. Aluru., Massively Parallel Searching For Better Algorithms or How To Do A Cross Product In Five Multiplications, Journal of Scientific Programming, March 1996, 5 (3): 203-217.
    [80]. J. Gustafson, The Consequences of Fixed-Time Performance Measurement, Proceedings of the 25th Hawaii International Conference on System Sciences, 1990.
    [81]. J. Gustafson et al., The Design of a Scalable, Fixed-Time Computer Benchmark, Journal of Parallel and Distributed Computing, 1991 (12): 388-401.
    [82]. J. Gustafson et al., SLALOM: Is Your Computer On Our List?, Supercomputing Review, July 1991.
    [83]. http://www-03.ibm.com/servers/eserver/pseries/hardware/highend/p690.html.
    [84].李光耀,钟志华,显式有限元方法求解二维壳体塑性大变形接触问题,工程力学,1997,14(3):78-87.
    [85].李光耀,钟志华,固体力学问题数值解的一种验证方法,工程力学,2004,21(3),185-189
    [86].钟志华,李光耀,冲压成形CAE技术中接触摩擦计算的新方法.机械工程学报,2001,37(2):33-37.
    [87]. Zhang Xiong, Song Kangzu, Lu Mingwan., Research progress and application??of meshless method, Guang Zhou: Colloquium of the 2001 Convention of Computational Mechanics, 2001: 112~121. (In Chinese).
    [88].徐次达,固体力学加权残值法,同济大学出版社,1987.
    [89].邱吉宝,加权残值法的理论及应用,宇航出版社,1991
    [90].夏永旭,孙忠第,任艺宏,板壳力学中的加权残值法,西北工业大学出版社.1994年11月第1版.
    [91].徐次达,陈学潮,郑瑞芬,新计算力学加权残值法—原理、方法及应用,同济大学出版社,1997.
    [92].朱宝安,力学问题优化计算—现代数学规划加权残值法,天津:天津科学技术出版社,1992.
    [93]. Malvern, Lawrence E., Introduction to the Mechanics of a Continuous Medium, Prentice-Hall, Inc. 1969, LCCCN: 69-13712
    [94]. T. Belytschko, W. K. Liu, B. Moran., Nonlinear Finite Elements for Continua and Structures, Wiley.2000.
    [95]. Li S, Hao W, and Liu WK., Numerical simulations of large deformation of thin shell structures using meshfree methods, Computational Mech.2000 (25): 102-116.
    [96]. P.F. Pal, A.N. Palazotto., Nonlinear displacement-based finite element analyses of composite shell—a new total Lagrangian formulation, Int. J. Solids Struct. 1995, 32(20): 3047-3073.
    [97]. P.F. Pai, A.N. Palazotto., Polar decomposition theory in nonlinear analyses of solid and structure, J. Engng. Mech. 1995121 (4): 568.
    [98]. Hueink, J., On the simulation of thermo-mechanical forming processes, Dissertation, University of Twente, 1986, The Netherlands.
    [99]. Chen, Y. Multiresolution, Multiple Field and Generalized Reproducing Kernel Particle Method, Ph.D. Dissertation, Northwestern University. 1995
    [100]. S. W. Attaway, M. W. Heinstein, J. W. Swegle, Coupling of smooth particle hydrodynamics with the finite element method. Nuclear Eng. Design, 1994(150): 199-205.
    [101]. J.O. Hallquist, User's manual for DYNA2D-An explicit two-dimensional hydrodynamic finite element code with interactive rezoning, Lawrence Livermore Laboratory, 1984.
    [102]. Lee, E., Elasto-plastic deformation at finite strains. J. Appl. Mech., 1969(36): 1-6.
    [103]. F. Barlat, J.C. Brem, J.W. Yoon, K. Chung, R.E. Dicke, D.J. Lege, F.??Pourboghrat, S.-H. Choi, E. Chu. Plane stress yield function for aluminum alloy sheets—part 1: theory. International Journal of Plasticity 2003(19):1297~1319.
    [104]. Weber G, Anand L., Finite deformation constitutive equations and a time integration procedure for isotropic, hyperelastic-viscoplastic solids, Computer Methods in Applied Mechanics and Engineering, 1990(79):173 -202.
    [105]. J.A. Weiss, B.N. Maker, S. Govindjee, Finite element implementation of incompressible, transversely isotropic hyperelasticity, Comput. Methods Appl. Mech. Engrg. 1996(135):107-128.
    [106]. Ponthot S P. Mechanics of continuous solids under large strains, and unified treatment by the finite element method, Technical Report, TF-38. Liege: University of Liege, 1990.
    [107]. J.-L. Chenot et. al., Numerical Methods in Industrial Forming Processes, 293-300, Rotterdam: Balkema, 1992.
    [108]. S.I.Oh, W.T.Wu, K.Arimoto, Recent developments in process simulation for bulk forming processes, Journal of Materials Processing Technology 2001(111):2~9.
    [109]. H.T. Yeo, Y. Choi, K.D., Hur. Analysis and design of the prestressed cold extrusion die, Int. J. Adv. Manuf. Technol.2001 (18) 54-61.
    [110]. Y.H. Kim, J.H. Park, Y.E. Jin, An analysis of plastic deformation processes for twist-assisted upset forging of cylindrical billets, in: Proceedings of the International Conference on Advances in Materials and Processing Technologies (AMPT'99) and 16th Annual Conference of the Irish Manufacturing Committee (IMC16), 1999(1): 79-86.
    [111]. Jiun-Shyan Chen, Cristina Maria Oliveira Lima Roque, Chunhui Pan, Se'rgio Tonini Button.Analysis of metal forming process based on meshless method, Journal of Materials Processing Technology 1998(80-81): 642-646.
    [112]. M.N. Ravindranath, R. Krishna Kumar, Simulation of cold forging using contact and practical adaptive meshing algorithms. Journal of Materials Processing Technology 2000(104): 110-126.
    [113]. Robinson M., An evaluation of the errors in the yield surface for a rotationally symmetric thin shell due to neglecting transverse normal stresses and shell curvature. International Journal of Mechanical Sciences 2000(42):1087-1095.
    [114]. Hill R., The Mathematical Theory of Plasticity, Oxford University Press: Oxford, 1950.
    [115]. Belytschko T, Lin JI, Tsay CS., Explicit algorithms for the nonlineardynamics of shells, Computer Methods in Applied Mechanics and Engineering 1984(42):225-251.
    [116]. Chung WJ, Kim CS, Lee DW, Cho JW., A development of simulator for multi-stage sheet metal forming, Proceedings of the 4th NUMISHEET, France, 1999:189-194.
    [117]. Hibbitt, Karlsson and Sorensen Inc. ABAQUS/Standard User's Manual, Chapter 14, Version 5.7, 1997.
    [118]. Simo JC, Taylor RL., A return mapping algorithm for plane stress elastoplasticity, International Journal for Numerical Methods in Engineering 1986(22):649-670.
    [119]. de Borst R, Feenstra PH., Studies in anisotropic plasticity with reference to the hill criterion, International Journal for Numerical Methods in Engineering 1990(29):315-336.
    [120]. Jean-Marc Adamo, Multi-threaded object-oriented MPI-based message passing interface: the ARCH library, Boston: Kluwer Academic, 1998.
    [121]. Nicholas Carriero, David Gelernter, How to write parallel programs: a first course, Cambridge, Mass. MIT Press, 1990.
    
    [122].都志辉,MPI并行程序设计,北京:清华大学出版社,2001.
    
    [123].杨桂通,弹塑性力学引论,北京:清华大学出版社,2004.
    
    [124]. Plaskacz EJ, Belytschko T, Chiang HY., Contact-impact simulations on massively parallel SIMD supercomputers, Comput Syst Eng. 1992,3(1—4):347—55
    [125]. Hallquist JO, Benson DJ, Goudreau GL., Implementation of a modified Hughes-Liu shell into a fully Vectorized explicit finite element code. Lawrence Livermore National Laboratory, Report UCRL-92830, 1985.
    [126]. Hwang K., Advanced Computer Architecture: Parallelism, Scalability, Programmability. McGraw-Hill, New York, 1993.
    [127]. T. Belytschko, E.J. Plaskacz, J.M. Kennedy and D.L. Greenwell, Finite element analysis on the Connection Machine, Comput Meth Appl Mech Eng, 1990, 81:229-254.
    [128]. Belytschko T, Chiapetta RL, Bartel H., Efficient large nonlinear transient analysis by finite elements. Int J Numer Meth Eng, 1976, 10:579-596.
    [129]. Gilbertsen ND, Belytschko T., Explicit time integration of finite element models on a vectorized, concurrent computer with shared memory. Finite Elements in Anal Des, 1990(7):193-215.
    [130]. Malone JG., Parallel nonlinear dynamic finite element analysis ofthree-dimensional shell structures, Comput Struct, 1990, 35(5):523—539.
    [131]. Chun, B.K., Jinn, J.T., Lee, J.K., Modeling the Bauschinger effect for sheet metals, part I: Theory. Int. J. Plast. 2002a (18):571-595.
    [132]. Chun, B.K., Kim, H.Y., Lee, J.K., Modeling the Bauschinger effect for sheet metals, part II: Applications. Int. J. Plast, 2002b (18) 597-616.
    [133]. Roelandt JM, Batoz JL., Shell finite element for deep drawing problems: computational aspects and results, In: Besdo D, Stein E, editors. Finite inelastic deformations theory and applications, IUTAM Symposium. Berlin: Springer. 1992: 8.
    [134]. D. J. Kuck, et al., Measurements of Parallelism in Ordinary Fort ran Program s, Computer, 1974(1):37~ 46.
    [135]. M. Kumar., Parallelism in Computation- Intensive Applications, IEEE Trans. on Computers, 1988(37):9.
    [136]. D. Pauda, P. Peterson, Evaluation of Parallelizing Compilers, Parallel Compliers and Transputer Applications, Spain, 1992, 29(9): 1505- 1514.
    [137].徐士良,FORTRAN常用算法程序集(第2版).北京:清华大学出版社,1995
    [138]. O.O.Storaasli, et al., the finite element machine: an experiment in parallel processing, NASA TM-84514, 1982(7).
    [139]. Charbel Farhat.Implementation Aspects of concurrent finite element computationsin Parallel Computations and their Impact on computational mechanics, ASME NewYork1 987
    [140]. Charbel Farhat, Solution of finite element systems on concurent processing computes, Engin .With Contmputers, 1987(2): 157-165.
    [141]. Charbel Farhat, Edward Wilison, A new finite element concurent computer program architecture, J. for Nummer.Meth.in Engng, 1987(24): 1771-1792.
    [142]. Charbel Farhat, A Simple an Efficient Automatic FEM Domain Decomposer, Comp. & Struct., 1988,28(5):5 79-602.
    [143]. .Hughs T J R, Levit J., Implicit unconditionally stable element-by-element algorithms for heat Conduction analysis, Journal of the Engineering Mechanics,1983(109):57 6-58.
    [144]. Petr Krysl, Zden Bittnac, Parallel explicit Finite element solid dynamics with domain decomposition and message passing: dual partitioning scalability, Computers and Structures 2001(79):345-360.
    [145]. Due T, Nguyen, Siroj Tungkahotara, Parallel finite element domain decomposition for structural/acoustic analysis, Journal of Computational andApplied Mechanics 2003, 4, (2): 89-201.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700