基于微米和纳米颗粒的新型磁分离方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大多数情况下,由于分析手段、分析对象及分析仪器等的限制,很难实现直接对原始溶液中待测物的检测与分析,对待测物的预富集和浓缩分离常常成为分析工作中的一个重要环节。因此,对现有分离富集技术的改善以及发展新的分离技术对化学和生物分析的研究与应用都具有非常重要的意义。伴随着二十世纪九十年代纳米技术的发展,基于微颗粒的样品分离富集新方法相继产生。人们通过使用不同内核材料,设计合成了具有不同性质和功能的核壳纳米颗粒和微米颗粒。这类颗粒在分析和生物医学领域具有非常重要的作用。磁性核壳纳米和微米颗粒依据其在磁场中的磁感应特性完成目标的分离与富集,是当前分析与生物医学领域中一种重要的纳米技术。
     本论文基于核壳型磁性纳米和微米颗粒建立和发展了一系列分离富集样品的新技术。这些技术构成了本论文的两大部分。第一部分主要研究以二氧化硅和金为外壳材料的两种磁性纳米颗粒的合成,及其在寡聚核苷酸分离中的应用。第二部分主要研究磁性微球在铜和铍两种金属离子分离中的应用。第一部分包括第二、第三、第四章,第二部分包括第五、第六、第七章。
     第一章:是本论文的导言,主要综述纳米技术及其在分析科学和相关技术中的应用和磁性材料的特性及其在纳米技术特别是在分析领域中的用途,同时对全文各章节内容作了简要介绍。
     第二章:对基于功能化纳米颗粒的生物纳米技术进行综述。介绍溶胶凝胶和反相微乳液方法制备纳米颗粒,重点对溶胶凝胶中二氧化硅网状结构的形成进行讨论,并
In all analysis fields, where the analyte concentration is, for the most part, not suitable for direct analysis of crude solution even using modern instruments, pre-concentration and separation of analyte is a very important stage in all analytical procedures. Improving and enhancing the existing separation methods, and the invention of new methods, is necessary in the areas of chemical and biochemical analysis. Nanotechnology involves applying the science of the ultra-small. It encompasses the research and application of new materials and devices with one or more critical dimensions measuring between 1.0 and approximately 100.0 nanometers. This technology makes use of both past and present knowledge for designing and producing very small and specific particles in molecular sizes. With the development of nanotechnology in the 1990s, new thoughts and opportunities have appeared regarding the pre-concentration and separation of analyte. Prepared core-shell nano- and micro- particles with different core materials possess various properties and functions. They play important roles in a wide range of bio and nanotechnologies, especially in analysis and biomedicine. Recently, magnetic separation, which uses the magnetic core-shell nano and micro particles and their magnetic susceptibility to carry out the separation, have also proved to be of great importance in analysis fields. Using this method, separation is carried out by affecting magnetically susceptible materials containing extraction abilities through a magnetic field.
引文
[1] Fritz J S, Dumont P J, Schmidt L W. Methods and materials for solid-phase extraction. Journal of Chromatogrraphy A, 1995, 691(1-2): 133-140
    
    [2] Berrueta L A, Gallo B, Vicente F. A review of solid phase extraction: basic principle and new development. Chromatographia, 1995,40: 474-483
    
    [3] Odenbach S. Magnetic fluids. Advances in Colloid and Interface Science, 1993, 46: 263-282
    
    [4] Scholten P C. How magnetic can a magnetic fluid be?. Journal of Magnetism and Magnetic Materials, 1983,39(1-2): 99-106
    
    [5] Charles S W. In Magnetic Properties of Fine Particles. Dormann J L, Fiorani D (Eds), North-Holland, Amsterdam 1991
    
    [6] Bashtovoy V G, Berkovsky B M, Vislovich A N. In Introduction to Thermomechanics of Magnetic Fluids. Springer-Verlag, New York 1988
    
    [7] Langer R. Drug delivery and targeting. Nature, 1998,392(6679): 5-10
    
    [8] Dailey J P, Phillips J P,Riffle J R. Synthesis of silicone magnetic fluid for use in eye surgery. Journal of Magnetism and Magnetic Materials, 1999,194(1-3): 140-148
    
    [9] Fertman V E. In Magnetic Fluids Guidebook: Properties and Applications. Hemisphere Publishing Corporation, New York, 1990
    
    [10] Standley K J. In Oxide Magnetic Materials. 2nd Ed., Clarendon Press, London, 1972
    
    [11] Cullity B D. In Introduction to Magnetic Materials. Addison-Wesley Company, Massachusetts, 1972
    
    [12] Halliday D,Resnick R. In Physics. 3rd Ed., John Wiley&Sons, New York, 1978
    
    [13] Jakubovics J P. In Magnetism and Magnetic Materials. 2nd Ed., The Institute of Materials, London, 1994
    
    [14] Craik D J, Tebble R S. In Ferromagnetism and Ferromagnetic Domains. JohnWiley&Sons, New York, 1965
    
    [15] Heuslet K E. In Passivity of Metals. Frankenthal R P, Kruger J (eds.), The Electrochemical Society, Princeton, 1978, p. 771,
    
    [16] Craik D J. In Structure and Properties of Magnetic Materials. Pion Limited, London,1971
    
    [17] Ebner A D, Ritter J A, Ploehn H J. Feasibility and limitations of nanolevel high gradient magnetic separation. Separation and Purification Technology, 1997,11(3): 199-210
    
    [18] Scholten P C. In Thermomechanics of Magnetic Fluids, p.1, B. Berkovsky (Ed.), Hemisphere Publishing Corp., Washington, 1977
    
    [19] Wells S. In Preparation and Properties of Ultrafine Magnetic Particles. Thesis, The University of Wales, 1989
    
    [20] Buchholz B A, Tuazon H E, Kaminski M D, et al, Optimizing the coating process of organic actinide extractants on magnetically assisted chemical separation particles, Sep. Purif. Technol., 1997,11(3): 211-219
    
    [21] Kneuer C, Sameti M, Bakowsky U, et al. A Nonviral DNA Delivery System Based on Surface Modified Silica-Nanoparticles Can Efficiently Transfect Cells in Vitro. Bioconjugate Chem., 2000,11: 926-932
    
    [22] Shaertl S, Meyer-Almes F J, Lopez-Calle E, et al. A Novel and Robust Homogeneous Fluorescence-Based Assay Using Nanoparticles for Pharmaceutical Screening and Diagnostics. Journal of Biomolecular Screening, 2000, 5(4): 227-237
    
    [23] Kubitschko S, Spinke J, Bruckner T, et al. Sensitivity Enhancement of Optical Immunosensors with Nanoparticles. Analytical Biochemistry, 1997,253(1): 112-122
    
    [24] Sershen S R, Westcott S L, Halas N J, et al. Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery. Journal of Biomedical Materials Research, 2000, 51(3): 293-298
    
    [25] Benns J M, Kim S W. Tailoring New Gene Delivery Designs for Specific Targets. Journal of Drug Targeting, 2000, 8: 1-12
    
    [26] Kneuer C, Sameti M, Haltner E G, et a. Silica nanoparticles modified with aminosilanes as carriers for plasmid DNA. International Journal of Pharmaceutics, 2000, 196(2): 257- 261
    
    [27] Rao C N R, Cheetham A K. Science and technology of nanomaterials: current status and future prospects. Journal of Materials Chemistry, 2001, 11(12): 2887-2894.
    
    [28] Santra S, Tapec R, Theodoropoulou N, et al. Synthesis and Characterization of Silica- Coated Iron Oxide Nanoparticles in Microemulsion: The Effect of Nonionic Surfactants. Langmuir, 2001,17(10): 2900-2906
    
    [29] Mehrotra R C. In Structure and Bonding; Chemistry, Spectroscopy and Applications of Sol-Gel Glasses, v.77, Clarke M J, Goodenough J B, Jorgenson C K, et al (Eds.), Springer-Verlag, Berlin, 1992, p. 1-15
    
    [30] Livage J, Coradin T, Roux C. Encapsulation of biomolecules in silica gels. Journal of Physics: Condensed Matter, 2001, 13(33): R673-R691
    
    [31] Erickson D D, Wood T E,Wood W P. In Sol-Gel Synthesis and Processing. 1998, 73-75
    
    [32] Fabes B D, Oliver W C. Mechanical properties of sol-gel coatings. Journal of NonCrystalline Solids, 1990,121(1-3): 348-356
    
    
    [33] Helms C R, Deal B E. In The Physics and Chemistry of SiO_2 and the Si-SiO_2 Interface. Plenum Press, New York, 1988
    
    [34] Schmidt H, Bottner H. In The Colloid Chemistry of Silica. Bergna H E (Ed.), American Chemical Societ, 1994
    
    [35] Braun S, Rappoport S, Zusman R, et al. Biochemically active sol-gel glasses: the trapping of enzymes, Material Letter, 1990,10: 1-5
    
    [36] Santra S, Wang K, Tapec R, Tan W. Development of Novel Dye Doped Silica Nanoparticles for Biomarker Application. Journal of Biomedical Optics, 2001, 6(2): 160-166
    
    [37] Santra S, Zhang P, Wang K, et al. Conjugation of Biomolecules with Luminophore- Doped Silica Nanoparticles for Photostable Biomarkers. Analytical Chemistry, 2001, 73(20): 4988-4993
    
    [38] Chemla Y R, Grossman H L, Poon Y, et al. Ultrasensitive magnetic biosensor for homogeneous immunoassay. Proceedings of the National Academy of Sciences, 2000, 97(26): 14268-14272
    
    [39] Safarik I, Safarikova M. Use of Magnetic Techniques for the Isolation of Cells. Journal of Chromatography B, 1999, 722(1): 33-35
    
    [40] Ramchand C N, Priyadarshini P, Kopcansky P, et al. Application Of Magnetic Fluids in Medicine and Biotechnology, Indian Journal of Pure & Applied Physics, 2001, 39: 683- 686
    
    [41] Safarikova M, Safarik I. The Application of Magnetic Techniques in Biosciences. Magnetic Electronics, 2001,10: 223-252
    
    [42] Cotton R G H. Mutation Detection. Oxford University Press, New York, 1997.
    
    [43] Shipway A N, Katz E, Willner I. Nanoparticle arrays on surfaces for electronic, optical and sensoric applications. Chemistry Physical Chemistry, 2000, 1(1): 18-52
    
    [44] Stober W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range. Journal of Colloid and Interface Science., 1968, 26(1) 62-69
    
    [45] Shibata S, Taniguchi T, Yano T, et al. Formation of water-soluble dye-doped silica particles. Journal of Sol-Gel Science and Technology, 1997, 10 (3): 263-268
    
    [46] Tapec R, Zhao X J, Tan W. Development of Organic Dye-Doped Silica Nanoparticles for Bioanalysis and Biosensors. Journal of Nanoscience and Nanotechnology, 2002, 2(3-4): 405-409
    
    [47] Blaaderen A V, Vrij A, Synthesis and Characterization of Colloidal Dispersions of Fluorescent, Monodisperse Silica Spheres, Langmuir, 1992, 8(12) 2921-2931
    
    [48] Becher P, Encyclopedia of Emulsion Technology, Vol. 1, Dekker New York, 1983
    
    [49] He X X, Wang K, Tan W, et al. Bioconjugated Nanoparticles for DNA Protection from Cleavage, Journal of the American Chemical Society, 2003, 125(24): 7168-7169
    
    [50] He X X, Wang K, Li D, et al. A Novel DNA-Enrichment Technology Based on Amino- Modified Functionalized Silica Nanoparticles. Journal of Dispersion Science and Technology, 2003,24(3-4): 633-640
    
    [51] He X X, Wang K, Tan W H, et al. A novel method for efficient gene delivery using amino modified silica coated magnetic nanoparticles. Reviews in Advanced Material Science, 2003, 5: 375-380
    
    [52] Li C. Inorganic-Organic Sol-Gel Derived Hybrid Materials as Abrasion Resistant Coatings. Ph.D. Dissertation. Virginia Tech. 1999
    
    [53] McGrath J E, Pullockaren J P, Riffle J S, et al. In Ultrastructure Processing of Advanced Ceramics. Mackenzie J D, Ulrich D R (Eds.), A Wiley-Interscience, New York, 1988, p.53-58
    
    [54] Spinu M. Silicon-Based Organic and Inorganic Polymers. Ph.D. Dissertation. Virginia Technology University, 1990
    
    [55] Jones R W. In Fundamental Principles of Sol-Gel Technology. The Institute of Metal, Great Britain, 1989,1-11
    
    [56] Komarneni S, Sakka S, Phule P P,et al(Eds.). In Sol-Gel Synthesis and Processing. The American Chemical Society, 1998
    
    [57] M. Rutnakornpituk. Synthesis of F Silicone Magnetic Fluids for Use in Eye Surgery. Ph.D. Dissertation, Virginia Polytechnic Institute and State University, 2002
    
    [58] Coltrain B K, Kelts L W. In the Colloid Chemistry of Silica. Bergna H E (Ed.), American Chemical Society, 1994
    
    [59] Wei Y, Wang W, Yeh J M, et al. In Hybrid Organic- Inorganic Composites. Mark J E, Lee C Y, Bianconi P A (Eds.), ACS Symposium Series 585, American Chemical Society, Washington DC, 1995
    
    [60] Brinker C J, In The Colloid Chemistry of Silica, Bergna H E (Ed.), American Chemical Society, Washinton DC, 1994
    
    [61] Pohl E R, Osterholtz F D. In Molecular Characterization of Composite Interfaces. Ishida Y, Kumar G (Eds.), Plenum Press, New York, 1985
    
    [62] Li C. In Preparation of Nitrile Containing Siloxane Triblock Copolymers and Their Application As Stabilizers for Siloxane Magnetic Fluids. Master Thesis, Virginia Tech, 1996
    
    [63] Brown P L, Franklin Hyde S, Franklin Hyde J. Polyfunctional Alkoxy Endblocked Polysiloxanes and Their Cured Compositions. U.S. Patent 3,161,614, 1964
    
    [64] Thomas D R. In Siloxane Polymers. Clarson S J, Semlyen J A (Eds.), PTR Prentice Hall, New Jersey, 1993
    
    [65] Van der Weij F W. The Action of Tin Compounds in Condensation-type RTV Silicone Rubbers. Die Makromolekulare Chemie, 1980, 181(12): 2541-2548
    
    [66] Dabbousi B O, Rodriguez-Viejo J, Mikulec F V, et al. (CdSe)ZnS Core-Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites. Journal of Physical Chemistry B, 1997,101(46): 9463-9475
    
    [67] Bruchez M J, Moronne M, Weiss S, et al. Semiconductor nanocrystals as fluorescent biological labels. Science 1998,281(5385): 2013-2016
    
    [68] Alivisatos A P. Perspectives on the Physical Chemistry of Semiconductor Nanocrystals. Journal of Physical Chemistry, 1996,100(31): 13226-13239
    
    [69] Godovsky D Y. Device applications of polymer-nanocomposites. Advances in Polymer Science, 2000, 153: 163-205
    
    [70] Dahan M, Laurence T, Pinaud F, et al. Time-gated biological imaging by use of colloidal quantum dots, Optics Letters 2001,26(11): 825-827
    
    [71] Emory S R, Nie S. Screening and Enrichment of Metal Nanoparticles with Novel Optical Properties. Journal of Physical Chemistry B, 1998, 102(3): 493-497
    
    [72] Chan W C W, Nie S. Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection. Science 1998, 285 (5385): 2016-2018
    
    [73] Wang S, Mamedova N, Kotov N A, et al. Antigen/Antibody Immunocomplex from CdTe Nanoparticle Bioconjugates. Nano letters, 2002, 2 (8): 817-822
    
    [74] Harma H, Soukka T, Lovgren T. Europium Nanoparticles and Time-resolved Fluorescence for Ultrasensitive Detection of Prostate-specific Antigen. Clinical Chemistry, 2001,47(3): 561-568
    
    [75] Tilley R D, Warner J H, Yamamoto K, et al. Micro-emulsion synthesis of monodisperse surface stabilized silicon nanocrystals. Chemical Communications, 2005, 14: 1833- 1835
    
    [76] Qhobosheane M, Santra S, Zhang P, et al. Biochemically functionalized silica nanoparticles. Analyst, 2001, 126(8): 1274-1278
    
    [77] Chen D H, Lioa M H. Preparation and Characterization of YADH-bound magnetic nanoparticles. Journal of Molecular Catalysis B: Enzymatic, 2002, 16(5): 283-291
    
    [78] Gao X, Yu K M K, Tarn K Y, et al. Colloidal stable silica encapsulated nano-magnetic composite as a novel bio-catalyst carrier. Chemical Communications, 2003, 24: 2998- 2999
    
    [79] Monson E, Brasuel M, Philbert M A, et al. PEBBLE nanosensors for in vitro bioanalysis. www.umich.edu/-koplab/research2/CRCReviewtry3pr.pdf, 2005-04-20
    
    [80] Clark H A, Hoyer M, Philbert M A, et al. Optical Nanosensors for Chemical Analysis inside Single Living Cells. 1. Fabrication, Characterization, and Methods for Intracellular Delivery of PEBBLE Sensors. Analytical Chemistry, 1999, 71(21): 4831-4836
    
    [81] Clark H A, Kopelman R, Tjalkens R, et al. Optical Nanosensors for Chemical Analysis inside Single Living Cells. 2. Sensors for pH and Calcium and the Intracellular Application of PEBBLE Sensors. Analytical Chemistry, 1999, 71(21): 4837-4843
    
    [82] Xu H, Aylott J W, Kopelman R, et al. A Real-Time Ratiometric Method for the Determination of Molecular Oxygen Inside Living Cells Using Sol-Gel-Based Spherical Optical Nanosensors with Applications to Rat C6 Glioma. Analytical Chemistry, 2001, 73(17): 4124-4133
    
    [83] Brasuel M, Kopelman R, Miller T J, et al. Fluorescent Nanosensors for Intracellular Chemical Analysis: Decyl Methacrylate Liquid Polymer Matrix and Ion-Exchange- Based Potassium PEBBLE Sensors with Real-Time Application to Viable Rat C6 Glioma Cells. Analytical Chemistry, 2001,73 (10): 2221-2228
    
    [84] Park E J, Brasuel M, Behrend C, et al. Ratiometric Optical PEBBLE Nanosensors for Real-Time Magnesium Ion Concentrations Inside Viable Cells. Analytical Chemistry, 2003, 75(15): 3784-3791
    
    [85] Zhao X, Tapec-Dytioco R, Tan W. Ultrasensitive DNA Detection Using Highly Fluorescent Bioconjugated Nanoparticles. Journal of the American Chemical Society, 2003,125(38): 11474-11475
    
    [86] Fehr M, Lalonde S, Lager I, et al. In Vivo Imaging of the Dynamics of Glucose Uptake in the Cytosol of COS-7 Cells by Fluorescent Nanosensors. Biological Chemistry, 2003, 278(21): 19127-19133
    
    [87] Brasola E, Mancin F, Rampazzo E, et al. A fluorescence nanosensor for Cu~2+ on silica particles. Chemical Communication 2003,24: 3026-3027
    
    [88] He X X, Wang K, Tan W,et al. Photostable Luminescent Nanoparticles as Biological Label for Cell Recognition of System Lupus Erythematosus Patients, Journal of Nanoscience and Nanotechnology, 2002,2(3-4): 317-320
    
    [89] Santra S, Yang H, Dutta D,et al. TAT conjugated, FITC doped silica nanoparticles for bioimaging applications. Chemical Communications, 2004,24: 2810-2811.
    
    [90] He X X, Duan J H, Wang K M, et al. A Novel Fluorescent Lable Based on Organic Dye- Doped Silica Nanoparticles for HepG Liver Cancer Cell Recognition. Journal of Nanoscience and Nanotechnology, 2004,4(6): 585-589
    
    [91] Ye Z, Tan M, Wang G, et al. Novel fluorescent europium chelate-doped silica nanoparticles: preparation, characterization and time-resolved fluorometric application. Journal of Materials Chemistry, 2004, 14(5): 851-856
    
    [92] Sonti S V, Bose A. DNA isolation using avidin-coated magnetic nanoclusters. Colloids Surfaces B: Biointerfaces 1997, 8(4-5): 199-204
    
    [93] Ditioco R T. Synthesis and Characterization of Silica-Based Nanoparticles for Bioanalytical Applications, PhD Thesis, University of Florida. 2002
    
    [94] Zhang Y, Kohler N, Zhang M. Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake, Biomaterials 2002,23(7): 1553-1561
    
    [95] Chouly C, Pouliquen D, Lucet L, et al. Development of superpara-magnetic nanoparticles for MRI: effect of article size, charge and surface nature on biodistribution. Journal of Microencapsulation 1996,13: 245-255
    
    [96] Gupta A K, Curtis A S G. Lactoferrin and ceruloplasmin derivatized superpara-magnetic iron-oxide nanoparticles for targeting cell surface receptors. Biomaterials, 2004, 25(15): 3029-3040
    
    [97] Roy I, Ohulchanskyy T Y, Bharali D J, et al. Optical tracking of organically modified silica nanoparticles as DNA carriers: A nonviral, nanomedicine approach for gene delivery. Proceeding the National Academy of Science USA, 2005, 102(2): 279-284
    
    [98] Wolff P R A, Hull R. A rapid and easy method for DNA recovery from agarose gels using Wizard minicolumns. Trends in Genetics, 1996, 12(9): 339-340
    
    [99] Streptavidin, Promega Product Information, www.promega.com, 2004-10-18
    
    [100] Chaiet L, Wolf F J. The properties of streptavidin, a biotin-binding protein produced by Streptomycetes. Archives of Biochemistry and Biophysics, 1964, 106: 1-5
    
    [101] Pahler A, Hendrickson W A, Kolks M A G, et al. Characterization and crystallization of core streptavidin, Journal of Biological Chemistry, 1987,262(29): 13933-13937
    
    [102] Hendrickson W A, Pahler A, Smith J L, et al. Crystal structure of core streptavidin determined from multiwavelength anomalous diffraction of synchrotron radiation, Proceeding the National Academy of Science USA, 1989, 86(7): 2190-2194
    
    [103] Argaraiia C E, Kuntz I D, Birken S, et al. Molecular cloning and nucleotide sequence of the streptavidin gene, Nucleic Acid Research, 1986,14(4): 1871-1882
    
    [104] Hofmann K, Wood S W, Brinton C C, et al. Iminobiotin affinity columns and their application to retrieval of streptavidin, Proceeding the National Academy of Science USA, 1980, 77(8): 4666-4668
    
    [105] L. Chaiet, T.W. Miller, F. Tausig, F.J. Wolf. Antibiotic MSD-235. II. Separation and purification of synergistic components. Antimicrobial Agents and Chemotherapy, 1963,3:28-32
    
    [106] Gitlin G, Bayer E A, Wilchek M. Studies on the biotin-binding site of avidin. Tryptophan residues involved in the active site, Biochemical Journal, 1988, 250: 291- 294
    
    [107] Green N M. Avidin, In Advances in Protein Chemistry, Academic Press, New York, Anfinsen C B, Edsall J T, Richards FM (Eds.) 1975: 85-133
    
    [108] DuHamel R, Whitehead J. Prevention of nonspecific binding of avidin, Methods in Enzymology, 1990,184: 207-208
    
    [109] Avidin-Biotin Chemistry: A Handbook, Avidin/Streptavidin Contrast and Comparison, pp.10-16
    
    [110] Green N M, Thermodynamics of the binding of biotin and some analogues by avidin, Biochemical Journal, 1966,101: 774-780
    
    [111] Green N M, Avidin: Quenching of fluorescence by dinitrophenyl groups, Biochemical Journal, 1964, 90: 564-568
    
    [112] Sano T, Cantor C R. Cooperative biotin binding by streptavidin. Journal of Biological Chemistry, 1990,265(6): 3369-3373
    
    [113] Avidin-Biotin Chemistry: A Handbook, Coupling Reagents for Avidin/ Streptavidin Conjugates, 175-192
    
    [114] Zanchet D, Micheel C M, Parak W J, et al. Electrophoretic Isolation of Discrete Au Nanocrystal/DNA Conjugates. Nano Letters, 2001,1(1): 32-35
    
    [115] Mucic R C, Storhoof J J, Mirkin CA, et al. DNA-Directed Synthesis of Binary Nanoparticle Network Materials, Journal of the American Chemical Society, 1998, 120(48): 12674-12675
    
    [116] Giersig M, Mulvaney P, Preparation of ordered colloid monolayers by electrophoretic deposition, Langmuir, 1993, 9(12): 3408-3413
    
    [117] Alivisatos A P, Johnsson K P, Peng X G, et al. Organization of nanocristal molecules using DNA, Nature, 1996,382(6592): 609-611
    
    [118] Kobayashi Y, Correa-Duarte M A, Liz-Marzan L M. Sol-Gel Processing of Silica-Coated Gold Nanoparticles, Langmuir, 2001,17 (20) 6375-6379
    
    [119] Ung T, Liz-Marzan L M, Mulvaney P. Controlled Method for Silica Coating of Silver Colloids. Influence of Coating on the Rate of Chemical Reactions, Langmuir, 1998, 14(14): 3740-3748
    
    [120] Gerion D, Pinaud F, Williams S C, et al. Synthesis and Properties of Biocompatible Water-Soluble Silica-Coated CdSe/ZnS Semiconductor Quantum Dots. Journal of Physical Chemistry B, 2001,105(37): 8861-8871
    
    [121] Buining P A, Humbel B M, Philipse A P, et al. Preparation of Functional Silane- Stabilized Gold Colloids in the (Sub)nanometer Size Range. Langmuir, 1997, 13 (15) 3921-3926
    
    [122] Bangs Laboratories Inc., 9025 Technology Drive Fishers, USA, IN 46038-2866,2003
    
    [123] Hilliard L R, Zhao X, Tan W. Immobilization of oligonucleotides onto silica nanoparticles for DNA hybridization studies. Analytica Chimica Acta, 2002, 470(1): 51-56
    
    [124] Rogers Y H, Jiang-Baucom P, Huang Z J, et al. Immobilization of Oligonucleotides onto a Glass Support via Disulfide Bonds: A Method for Preparation of DNA Microarrays. Analytical Biochemistry, 1999, 266(1): 23-30
    
    [125] Zhao X, Tapec-Dytioco R, Wang K, et al. Collection of Trace Amounts of DNA/mRNA Molecules Using Genomagnetic Nanocapturers. Analytical Chemisty, 2003, 75(14): 3476-3483
    
    [126] Zhao X, Hilliard L R, Wang K, et al. Bioconjugated silica nanoparticles for bioanalysis, Enc. Nanosci. Nanotechnol., Nalwa H S (Edited). American Scientific Publishers, Stevenson Ranch, CA, 2004,(1): 255-268
    
    [127] Zhao X, Bagwe R P, Tan W, Synthesis of organic dye doped silica nanoparticles in reverse microemulsion. Advanced Materials, 2004,16(2): 173-176
    
    [128] Jin Y, Wang K, Tan W, et al. Monitoring Molecular Beacon/DNA Interactions Using Atomic Force Microscopy. Analytical Chemistry, 2004, 76(19): 5721-5725
    
    [129] Li J J, Geyer R, Tan W. Using molecular beacons as a sensitive fluorescence assay for enzymatic cleavage of single-stranded DNA, Nucleic Acids Research, 2000,28: e52
    
    [130] Reynolds III R A, Mirkin C A, Letsinger R L. Homogeneous, Nanoparticle-Based Quantitative Colorimetric Detection of Oligonucleotides. Journal of the American Chemical Society, 2000, 122 (15): 3795-3796
    
    [131] Storhoff J J, Elghanian R, Mucic R C, et al. One-Pot Colorimetric Differentiation of Polynucleotides with Single Base Imperfections Using Gold Nanoparticle Probes. Journal of the American Chemical Society, 1998, 120(9): 1959-1964
    
    [132] Wang J, Palecek E, Nielsen P E, et al. Peptide Nucleic Acid Probes for Sequence- Specific DNA Biosensors. Journal of the American Chemical Society, 1996, 118(33): 7667-7670
    
    [133] Tyagi S, Kramer F R. Molecular Beacons: Probes that Fluoresce upon Hybridization. Nature Biotechnology, 1996, 14(3) 303-308
    
    [134] Peterlinz K A, Georgiadis R M, Herne T M, et al. Observation of Hybridization and Dehybridization of Thiol-Tethered DNA Using Two-Color Surface Plasmon Resonance Spectroscopy. Journal of the American Chemical Society, 1997, 119(14): 3401-3402
    
    [135] Stimpson D I, Hoijer J V, Hsieh W, et al. Real-Time Detection of DNA Hybridization and Melting on Oligonucleotide Arrays by Using Optical Wave Guides. Proceeding the National Academy of Science USA, 1995, 92(14): 6379-6383
    
    [136] Hakala H, Heinonen P, Iitia A, et al. Detection of Oligonucleotide Hybridization on a Single Microparticle by Time-Resolved Fluorometry: Hybridization Assays on Polymer Particles Obtained by Direct Solid Phase. Bioconjugate Chemistry, 1997, 8(3): 378-384
    
    [137] Guo Z, Liu Q, Smith L M. Enhanced discrimination of single nucleotide polymerphisms by artificial mismatch hybridization. Nature Biotechnology, 1997,15(4): 331-335
    
    [138] Ferguson J A , Boles T C, Adams C P, et al. A fiber-optic DNA biosensor microarray for the analysis of gene expression. Nature Biotechnology, 1996,14(13): 1681-1684
    
    [139] Chen M, Liu J P, Sun S. One-Step Synthesis of Fe/Pt Nanoparticles with Tunable Size. Journal of the American Chemical Society, 2004,126(27): 8394-8395
    
    [140] Sioss J A, Keating C D. Batch Preparation of Linear Au and Ag Nanoparticle Chains via Wet Chemistry. Nano Letters, 2005, 5(9): 1779-1783
    
    [141] Daniel M C, Astruc D. Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology. Chemical Reviews, 2004,104(1): 293-346
    
    [142] Murphy C J, Sau T K, Gole A M, et al. Anisotropic Metal Nanoparticles: Synthesis, Assembly, and Optical Applications. Journal of Physical Chemistry B, 2005, 109(29): 13857-13870
    
    [143] Ahmadi T S, Wang Z L, Green T C, et al. Shape-Controlled Synthesis of Colloidal Platinum Nanoparticles. Science 1996,272(5270): 1924-1925
    
    [144] Puntes V F, Krishnan K M, Alivisatos A P. Colloidal Nanocrystal Shape and Size Control: The Case of Cobalt. Science 2001,291(5511): 2115-2117
    
    [145] Jin R, Cao Y, Mirkin C A, et al. Photoinduced Conversion of Silver Nanospheres to Nanoprisms, Science 2001. 294(5548): 1901-1903
    
    [146] Hao E, Bailey R C, Schatz G C, et al. Synthesis and Optical Properties of "Branched" Gold Nanocrystals. Nano Letters, 2004,4(2): 327-330
    
    [147] Hao E, Kelly K L, Hupp J T, et al. Synthesis of Silver Nanodisks Using Polystyrene Mesospheres as Templates. Journal of the American Chemical Society, 2002, 124(51): 15182-15183
    
    [148] Cui Y, Bjork M T, Liddle J A, et al. Integration of Colloidal Nanocrystals into Lithographically Patterned Devices. Nano Letters, 2004,4(6): 1093-1098
    
    [149] Yin Y, Lu Y, Gates B, et al. Template-Assisted Self-Assembly: A Practical Route to Complex Aggregates of Monodispersed Colloids with Well-Defined Sizes, Shapes, and Structures. Journal of the American Chemical Society, 2001, 123(36): 8718-8729
    
    [150] Lu Y, Xiong H, Jiang X, et al. Asymmetric Dimers Can Be Formed by Dewetting Half- Shells of Gold Deposited on the Surfaces of Spherical Oxide Colloids. Journal of the American Chemical Society, 2003, 125(42) 12724-12725
    
    [151] Taton T A, Lu G, Mirkin C A. Two-Color Labeling of Oligonucleotide Arrays via Size- Selective Scattering of Nanoparticle Probes. Journal of the American Chemical Society, 2001, 123(21): 5164-5165
    
    [152] Elghanian R, Storhoff J J, Mucic R C, et al. Selective Colorimetric Detection of Polynucleotides Based on the Distance- Dependent Optical Properties of Gold Nanoparticles. Science, 1997,277(5329): 1078-1081
    
    [153] Reynolds III R A, Mirkin C A, Letsinger R L. A gold nanoparticle/latex microspherebased colorimetric oligonucleotide detection method. Pure and Applied Chemistry, 2000, 72(1-2): 229-235
    
    [154] Taton T A, Mirkin C A, Letsinger R L. Scanometric DNA Array Detection with Nanoparticle Probes. Science, 2000,289(5485): 1757-1760
    
    [155] Gao Y W, Jin R, Mirkin C A. DNA-Modified Core-Shell Ag/Au Nanoparticles. Journal of the American Chemical Society, 2001, 123(32): 7961-7962
    
    [156] Storhoff J J, Lazarides A A, Mucic R C, et al. What Controls the Optical Properties of DNA-Linked Gold Nanoparticle Assemblies?. Journal of the American Chemical Society, 2000,122(19): 4640-4650
    
    [157] Park S, Brown K A, H-Schifferli K. Changes in Oligonucleotide Conformation on Nanoparticle Surfaces by Modification with Mercaptohexanol. Nano Letters, 2004, 4(10): 1925-1929
    
    [158] Reichert J, Caski A, Kohler J M, et al. Chip-Based Optical Detection of DNA Hybridization by Means of Nanobead Labeling. Analtical Chemistry, 2000, 72(24): 6025-6029
    
    [159] Li H, Rothberg L. Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proceeding the National Academy of Science USA, 2004,101(39): 14036-14039
    
    [160] Li H, Rothberg L J. DNA Sequence Detection Using Selective Fluorescence Quenching of Tagged Oligonucleotide Probes by Gold Nanoparticles. Analytical Chemistry, 2004, 76(18): 5414-5417
    
    [161] Li H X, Rothberg L J. Label-Free Colorimetric Detection of Specific Sequences in Genomic DNA Amplified by the Polymerase Chain Reaction. Journal of the American Chemical Society, 2004,126(35): 10958-10961
    
    [162] Liz-Marzan L M, Giersig M, Mulvaney P. Synthesis of Nanosized Gold-Silica Core- Shell Particles. Langmuir, 1996, 12(18): 4329-4335
    
    [163] Dubertret B, Calame M, Libchaber A J. Single-mismatch detection using gold- quenched fluorescent oligonucleotides. Nature Biotechnology, 2001, 19(4): 365-370
    
    [164] Maxwell D J, Taylor J R, Nie S. Self-Assembled Nanoparticle Probes for Recognition and Detection of Biomolecules. Journal of the American Chemical Society, 2002, 124(32): 9606-9612
    
    [165] Siiman O, Gordon K, Burshteyn A, et al. Immuno-phenotyping using gold or silver nanoparticle-polystyrene bead conjugates with multiple light scatter. Cytometry, 2000, 41(4): 298-307
    
    [166] Hwanga J S, Wang S W, Ahna D. Electrical conduction measurement of thiol modified DNA molecules, Superlattices and Microstructures 2003,34(1-2): 433-438
    
    [167] Aviram A, Ratner M A. Molecular rectifiers. Chemical Physics Letter, 1974, 29(2): 277-283
    
    [168] Mirkin C A, Letsinger R L, Mucic R C, et al. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 1996, 382(6592): 607- 609
    
    [169] Lyon L A, Pena D J, Natan M J. Surface Plasmon Resonance of Au Colloid-Modified Au Films: Particle Size Dependence. Journal of Physical Chemistry B, 1999, 103(28): 5826-5831
    
    [170] He L, Musick M D, Nicewarner S R, et al. Colloidal Au-Enhanced Surface Plasmon Resonance for Ultrasensitive Detection of DNA Hybridization. Journal of the American Chemical Society, 2000,122(38): 9071-9077
    
    [171] Lyon L A, Musick M D, Natan M J. Colloidal Au-Enhanced Surface Plasmon Resonance Immunosensing. Analytical Chemistry, 1998, 70(24): 5177-5183
    
    [172] Levicky R, Herne T M, Tarlov M J, et al. Using Self-Assembly To Control the Structure of DNA Monolayers on Gold: A Neutron Reflectivity Study. Journal of the American Chemical Society, 1998, 120(38): 9787-9792
    
    [173] Wackerbarth H, Grubb M, Zhang J, et al. Long-Range Order of Organized Oligonucleotide Monolayers on Au (111) Electrodes. Langmuir, 2004, 20(5): 1647- 1655
    
    [174] Storhoff J J, Elghanian R, Mirkin C A, et al. Sequence-Dependent Stability of DNA- Modified Gold Nanoparticles. Langmuir 2002,18(17): 6666-6670
    
    [175] Parak W J, Pellegrino T, Micheel C M, et al. Conformation of Oligonucleotides Attached to Gold Nanocrystals Probed by Gel Electrophoresis. Nano Letters, 2003, 3(1): 33-36
    
    [176] Josephson L, Perez J M, Weissleder. Magnetic Nanosensors for the Detection of Oligonucleotide Sequences. Angewandte Chemie-International Edition, 2001, 40(17): 3204-3206
    
    [177] Westin L, Xu X, Miller C, et al. Anchored multiplex amplification on a microelectronic chip array. Nature Biotechnology, 2000,18(2): 199-204
    
    [178] Park S J, Taton T A, Mirkin C A. Array-Based Electrical Detection of DNA with Nanoparticle Probes. Science, 2002,295(5559): 1503-1506
    
    [179] Nelson B P, Grimsrud T E, Liles M R, et al. Surface Plasmon Resonance Imaging Measurements of DNA and RNA Hybridization Adsorption onto DNA Microarrays. Analytical Chemistry, 2001, 73(1): 1-7
    
    [180] Kelley S O, Barton J K, Jackson N M, et al. Orienting DNA Helices on Gold Using Applied Electric Fields. Langmuir, 1998, 14(24): 6781-6784
    
    [181] Csaki A, Moller R, Straube W, et al. DNA monolayer on gold substrates characterized by nanoparticle labeling and scanning force microscopy. Nucleic Acids Research, 2001,29(16):e81
    
    [182] Herne T M, Tarlov M J. Charaterization of DNA Probes Immobilized on Gold Surfaces. Journal of the American Chemical Society, 1997, 119(38): 8916-8920
    
    [183] Mbindyo J K N, Reiss B D, Martin B R, et al. DNA-Directed Assembly of Gold Nanowires on Complementary Surfaces. Advanced Materials, 2001, 13(4): 249-254
    
    [184] Pathmamnoharan C, Philipse A P. Preparation and Properties of Monodisperse Magnetic Cobalt Colloids Grafted with Polyisobutene. Journal of Colloid and Interface Science, 1998, 205(2): 340-353
    
    [185] Klotz M, Ayral A, Guizard C, et al. Silica Coating on Colloidal Maghemite Particles. Journal of Colloid and Interface Science, 1999,220(2): 357-361
    
    [186] Szabo D V, Vollath D. Nonocomposites from Coated Nanoparticles. Advanced Materials, 1999,11(15): 1313-1316
    
    [187] Carpenter E E, Seip C T, Connor C J O. Magnetism of nanophase metal and metal alloy particles formed in ordered phases. Journal of Applied Physics, 1999, 85(8): 5184- 5186
    
    [188] Lin J, Zhou W, Kumbhar A, et al. Gold-Coated Iron (Fe@Au) Nanoparticles: Synthesis, Characterization, and Magnetic Field-Induced Self-Assembly. Journal of Solid State Chemistry, 2001, 159(1): 26-31
    
    [189] Brust M, Schiffrin D J, Bethell D, et al. Novel gold-dithiol nano- networks with nonmetallic electronic properties. Advanced Materials, 1995, 7(9): 795-797
    
    [190] Gu H, Ho P L, Tsang K W T, et al. Using biofunctional magnetic nanoparticles to capture Gram-negative bacteria at an ultra-low concentration. Chemical Communications, 2003,15: 1966-1967
    
    [191] Gu H, Ho P L, Tsang K W T, et al. Using Biofunctional Magnetic Nanoparticles to Capture Vancomycin-Resistant Enterococci and Other Gram- Positive Bacteria at Ultralow Concentration. Journal of the American Chemical Society, 2003, 125(51): 15702-15703
    
    [192] Xu C, Xu K, Gu H, et al. Nitrilotriacetic Acid-Modified Magnetic Nanoparticles as a General Agent to Bind Histidine-Tagged Proteins. Journal of the American ChemicalSociety, 2004,126(11): 3392-3393
    
    [193] Rant U, Arinaga K, Fujita S, et al. Dynamic Electrical Switching of DNA Layers on a Metal Surface. Nano Letters, 2004,4(12): 2441-2445
    
    [194] Epstein J R, Biran I, Walt D R. Fluorescence-based nucleic acid detection and microarrays. Analytica Chimica Acta, 2002,469(1): 3-36
    
    [195] Drummond T G, Hill M G, Barton J K. Electrochemical DNA sensors. Nature Biotechnology, 2003,21(10): 1192-1199
    
    [196] Rant U, Arinaga K, Fujita S, et al. Structural Properties of Oligonucleotide Monolayers on Gold Surfaces Probed by Fluorescence Investigations. Langmuir 2004, 20(23): 10086-10092
    
    [197] Li H, Rothberg L. Detection of Specific Sequences in RNA Using Differential Adsorption of Single-Stranded Oligonucleotides on Gold Nanoparticles. Analytical Chemistry, 2005,77(19): 6229-6233
    
    [198] Safarik I, Safarikova M. Magnetic nanoparticles and biosciences Monatshefte fur Chemie,2002, 133:737-759
    
    [199] Carter M J, Milton I D. An inexpensive and simple method for DNA purifications on silica particles. Nucleic Acids Research, 1993,21: 1044-1049
    
    
    [200] Boyle J S, Lew A M. An inexpensive alternative to glassmilk for DNA purification. Trends in Genetics, 1995,11(1): page 8
    
    [201] Boom R, Sol C J, Salimans M M, et al. Rapid and simple method for purification of nucleic acids. Journal of Clinical Microbiology, 1990, 28(3): 495-503
    
    [202] Chandler D P, Brockman F J, Bailey T J, et al. Phylogenetic diversity of archaea and bacteria in a deep subsurface paleosol. Microbiology Ecology, 1998,36(1): 37-50
    
    [203] Chandler D P, Stults J R, Anderson K K, et al. Affinity Capture and Recovery of DNA at Femtomolar Concentrations with Peptide Nucleic Acid Probes. Analytical Biochemistry, 2000,283(2): 241-249
    
    [204] Martin C R, Mitchell D T. Nanomaterials in Analytical Chemistry. Analytical Chemistry, 1998, 70(9): 322A-327A
    
    [205] Sonti S V, Bose A. Cell Separation Using Protein-A-Coated Magnetic Nanoclusters. Journal of Colloid and Iinterface Science, 1995,170(2): 575-585
    
    [206] Berton M, Benimetskaya L, Allemann E, et al. Uptake of Oligonucleotide-Loaded Nanoparticles in Prostatic Cancer Cells and Their Intracellular Localization. European Journal of Pharmaceutics and Biopharmaceutics, 1999,47(2): 119-123
    
    [207] Aboubakar M, Couvreur P, Pinto-Alphandary H, et al. Insulin-loaded nanocapsules for oral administration: In vitro and in vivo investigation. Drug Development Research, 2000,49(2): 109-117
    
    [208] He X X, Wang K M, Tan W, et al. Preparation and application of silica-coated magnetic nanoparticles. SPIE Proceedings (International Conference on Sensor Technology), 2001,4414-95,394-397
    
    [209] Cordek J, Wang X, Tan W. Direct Immobilization of Glutamate Dehydrogenase on Optical Fiber Probes for Ultrasensitive Glutamate Detection. Analytical Chemistry, 1999, 71(8): 1529-1533
    
    [210] Henglein A. Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chemical Reviews, 1989, 89(8): 1861- 1873
    
    [211] Schmid G. Large clusters and colloids, Metals in the embryonic state. Chemical Reviews, 1992, 92(8): 1709-1727
    
    [212] Alivisatos A P. Semiconductor Clusters, Nanocrystals, and Quantum Dots. Science, 1996,271(5251): 933-937
    
    [213] Josephson L, Tung C H, Moore A, et al. High-Efficiency Intracellular Magnetic Labeling with Novel Superparamagnetic-Tat Peptide Conjugates, Bioconjugate Chemistry, 1999,10(2): 186-191
    
    [214] Bulte J W M, Brooks R A. Magnetic nanoparticles as contrast agents for MR imaging. In Scientific and clinical applications of magnetic carriers; Hafeli U, Schutt W, Teller J, et al (Eds.) Plenum Press; New York; 1997, 527-543
    
    [215] Tan W, Wang K, Drake T J. Molecular beacons. Current Opinion in Chemical Biology, 2004, 8(5): 547-553
    
    [216] N. Marmier, A. Delisee, F. Fromage, Surface Complexation Modeling of Yb(III), Ni(II) and Cs(I) Sorption on Magnetit. Journal of Colloid and Interface Science, 1999, 211(1): 54-60
    
    [217] Nunez L, Buchholz B A, Vandegrift G F. Waste Remediation Using in-situ Magnetically Assisted Chemical Separation. Separation Science and Technology, 1995,30(7-9): 1455-1471
    
     [218] Buchholz B A, Nunez L, Vandegrift G F. Radiolysis and Hydrolysis of Magnetically Assisted Chemical Separation Particles. Separation Science and Technology, 1996, 31(14): 1933-1952
    
    [219] Kaminski M D, Nunez L. Extractant-coated Magnetic Particles for Cobalt and Nickel Recovery from Acidic Solution. Journal of Magnetism and Magnetic Materials. 1999, 194(1-3): 31-36
    
    
    [220] Safarik I. Removal of Organic Polycyclic Compounds from Water Solutions with a Magnetic Chitosan Based Sorbent Bearing Copper Phthalocyanine Dye. Water Research, 1995,29(1): 101-105
    
    [221] Safarik I, Safarikova M. Copper Phthalocyanine Dye Immobilized on Magnetite Particles: An Efficient Adsorbent for Rapid Removal of Polycyclic Aromatic Compounds from Water, Solutions and Suspensions. Separation Science and Technology, 1997,32(14): 2385-2392
    
    [222] Leun D, Sengupta A K. Preparation and Characterization of Magnetically Active Polymeric Particles (MAPPs) for Complex Environmental Separations. Environmental Science and Technology, 2000, 34(15): 3276-3282
    
    [223] Ebner A D, Ritter J A, Ploehn H J, et al. New Magnetic Field-Enhanced Process for the Treatment of Aqueous Wastes. Separation Science and Technology, 1999, 34(6-7): 1277-1300
    
    [224] Tomioka N, Tanaka K, Uchiyama H, et al. Recovery of Cs-137 by a Bioaccumulation System Using Rhodococcus Erythropolis CS98. Journal of Fermentation and Bioengineering, 1998, 85(6) 604-608
    
    [225] Ernest M V, Bibler J P, Whitley R D, et al. Development of a Carousel Ion-Exchange Process for Removal of Cesium-137 from Alkaline Nuclear Waste. Industrial and Engineering Chemistry Research, 1997, 36(7): 2775-2788
    
    [226] Asfari Z, Bressot C, Vicens J, et al. Doubly Crowned Calix[4]arenes in the 1,3- Alternate Conformation as Cesium-Selective Carriers in Supported Liquid Membranes. Analytical Chemistry, 1995,67(18): 3133-3139
    
    [227] Nunez L, Buchholz B A, Kaminski M, et al. Actinide Separation of High-Level Waste Using Solvent Extractants on Magnetic Microparticles, Separation Science and Technology, 1996,31(10): 1393-1407
    
    [228] Freeman H M. Standard Handbook of Hazardous Waste Treatment and Disposal. McGraw-Hill, New York, 1998, 18-43
    
    [229] Kaminski M D, Nunez L, Visser A E. Evaluation of extractant-Coated Ferromagnetic Micro-particles for the Recovery of Hazardous Metals From waste Solution. Separation Science and Technology, 1999,34(6-7): 1103-1120
    
    [230] Lagrega M D, Buckingham P L, Evans J C. The Environmental Resources Managment Group, Hazardous Waste Management. McGraw- Hill, New York, 1994
    
    [231] Gruttner C, Teller J, Schutt W, et al. Preparation and Characterisation of Magnetic Nanospheres for in vivo Application, in: Scientific and clinical applications of magnetic carriers, Plenum Press, 1997, 53-67
    
    [232] Schmidt C, Saadioui M, Bohmer V, et al. Modification of calix[4]arenes with CMPO- functions at the wide rim. Synthesis, solution behavior, and separation of actinides from lanthanides. Organic and Biomolecular Chemistry, 2003,1(22): 4089-4096
    
    [233] Matthews S E, Parzuchowski P, Bohmer V, et al. Extraction of lanthanides and actinides by a magnetically assisted chemical separation technique based on CMPO- calix[4]arenas. Chemical Communications, 2001, 5: 417-418
    
    [234] Kuznetsova L S, Pribylova G A, Mustafma A R, et al. Extraction of Am(III) and Eu(III) with a Dimethylaminomethylated Derivative of Calix[4]resorcinolarene. Radiochemistry, 2004,46(3): 277-281
    
    [235] Barboso S, Garcia Carrera A, Matthews S E, et al. Calix[4]arenes with CMPO functions at the narrow rim. Synthesis and extraction properties. Journal of the Chemical Society, Perkin Transactions, 1999, 2: 719-723
    
    [236] Svoboda J. A theoretical approach to the magnetic flocculation, of weakly magnetic minerals. International Journal of Mineral Processing, 1981, 8(4): 377-382
    
    [237] Svoboda J. Magnetic flocculation and treatment of fine weakly magnetic minerals, IEEE Transactions on Magnetics, 1982,18(2): 796-801
    
    [238] Tsouris C, Scott T C. Flocculation of Paramagnetic Particles in a Magnetic Field, Journal of Colloid and Interface Science, 1995,171(2): 319-330
    
    [239] Tsouris C, Scott T C, Harris M T. Para and Dia- Magnetic Particle Flocculation in a magnetic Field. Separation Science and Technology, 1995, 30(7-9): 1407-1419
    
    [240] Tsouris C, Yiacoumi S. Particle Flocculation and Filteration by High- Gradient Magnetic Fields. Separation Science and Technology, 1997, 32(1-4): 599-616
    
    [241] Ebner A D, Ritter J A, Ploehn H J. Magnetic Hetero-flocculation of Paramagnetic Colloidal Particles. Journal of Colloid and Interface Science, 2000,225(1): 39-46
    
    [242] Kochen R L, Navratil J D. Removal of Radioactive Materials and Heavy Metals from Water Using Magnetic Resin. United States Patent 5,595,666, 1997
    
    [243] Kochen R L, Navratil J D. Method for Regenerating Magnetic Polyamine- Epichlorohydrine Resin. United States Patent 5,652,190,1997
    
    [244] Navratil J D, Kochen R L, Ritter J A. Magnetic Swing Adsorption Process. Proceedings for Waste Management Symposia 1995, Tucson, AZ, 1995
    
    [245] Navratil J D. Removal of Impurities Using Ferrites and Magnetite. Australian Patent Application PJO198,1988
    
    [246] Perry R H, Green D W, Maloney J O. Perry's Chemical Engineering Handbook. Section 21 McGraw-hill, New York, 1984
    
    [247] Harusuke N. Water Purifier Having a Magnetic Field Generation Device. United States Patent 5,628,900, 1997
    
    [248] Stadmuller A. Magnetic Separators. United States Patent 5,759,391, 1998
    
    [249] Gurevitz D. Method and Apparatus for Processing Waste Water. United States Patent 5,759,407,1998
    
    [250] Ebner A D. Theoretical and Experimental Developments in Nano and Traditional High Gradient Magnetic Separation. PhD Thesis, University of South Carolina, 2000,32-92
    
    [251] Wills B A. Mineral Processing Technology. 4th ed. Oxford: Pergamon Press; 1988, p.855
    
    [252] Iannicelli J. New Developments in Magnetic Separation. IEEE Transactions on Magnetics, 1976,12(5): 436-443
    
    [253] Oder R R. High Gradient Magnetic Separation Theory and Application. IEEE Transactions on Magnetics, 1976, 12(5): 428-435
    
    [254] Watson J H P. Improvements of a Low-Field, High-Intensity Matrix Sparator. IEEE Transactions on Magnetics, 1978,14(5): 392-394
    
    [255] Oberteuffer J A, Magnetic Separation, A Review of Principles. Devices and Application. IEEE Transactions on Magnetics, 1974,10(2): 223-238
    
    [256] Trindade S C, Kolm H H. Magnetic Desulfuration of Coal. IEEE Transactions on Magnetics, 1973, 9(3): 310-313
    
    [257] Troy M. Study of Magnetic Filteration to the Primary and secondary Systems PWR Plants. Report Np-514, TPS-76-665, U.S. EPRI, 1978
    
    [258] Emory B B. Radionuclide Removal from Reactor Wastes by HGMS. IEEE Transactions on Magnetics, 1981,17(6): 3296-3298
    
    [259] Avens L R, Gallegos U F, McFarlan J T. Magnetic Separttion as a Plutonium Residue Enrichment processes. Separation Science and Technology, 1990,25(13): 1967-1979
    
    [260] Schake A, Avens R L, Hill D D, et al. Magnetic Separation for Environmental Remediation, U.S. DOE, Report LANL LA-UR-94-3373,1994
    
    [261] Yiacumi S, Rountree D A, Tsouris C. Mechanism of Particle Flocculation by Magnetic Seeding. Journal of Colloid and Interface Science, 1996,184(2): 477-488
    
    [262] Bahaj A S, James P A B, Moeschler F D. Continuous Cultivation and Recovery of Magnetostatic Bacteria. IEEE Transactions on Magnetics, 1997,33(5): 4263-4265
    
    [263] Dauer R R, Dunlop E H. High Gradient Magnetic Separation of Yeast, Biotechnology & Bioengineering, 1991, 37(11): 1021-1028
    
    [264] Miltenyi S, Muller W, Weichel W, et al. High Gradient Magnetic Cell Separation with MACS. Cytometry 1990, 11(2): 231-238
    
    [265] Uhlen M. Advances in Biomagnetic Separation. Eaton Publishing Co., MA, USA, 1994, 24-53
    
    
    [266] Ghebremeskel A N, Bose A, Magnetic Colloid Mediated Recovery of Cadmium Ions from an Aqueous Solution Using a Flow-Through Hybrid Field-Gradient Device. Separation Science and Technology, 2002, 37(3): 555 -569
    
    [267] Slater S A, Chamberlain D B, Aase S A, et al. Optimization of Magnetite Carrier Precipitation Process for Plutonium Waste Reduction. Separation Science and Technology, 1997, 32(1-4): 127-147
    
    [268] Hafeli U O, Sweeney S M, Beresford B A, et al. Effective Targeting of Magnetic Radioactive ~90Y-microspheres to Tumour Cells by an Externally Applied Magnetic Field. Preliminary in vitro and in vivo Results. Nuclear Medicine and Biology, 1995, 22(2): 147-155
    
    [269] Gu J, Stephenson C G, Iadarola M J. Recombinant Proteins Attached to a Nickel-NTA Column: Use in Affinity Purification of Antibodies. Bio Techniqes, 1994, 17(2): 257- 262
    
    [270] Petkovic D M, Milonjic S K. Adsorption of Cesium from Basic Water Solutions on Natural Magnetite. Bulletin Instrumental Nuclear Science, Boris Kidric, 1969, 20: 17- 23
    
    [271] Milonjic S K, Ruvarac A. Adsorption of Cs~+, Co~2+ and Ce~3+ from Acid Aqueous Solutions on Natural Magnetite, Bulletin Instrumental Nuclear Science. Boris Kidric, 1970,21:21-26
    
    [272] Milonjic S K, Kopecni M M, Ilic Z E. The Point of Zero Charge and Adsorption Properties of Natural Magnetite. J. Radioanal. Chem. 1983, 78: 15-24
    
    [273] Boyd T E, Kochen R L. Ferrite Treatment of Actinide Waste Solutions: A Preliminary Study. RFP-3299, CRD 81-064, Rockwell International, Golden, CO, 1982
    
    [274] Boyd T E, Kochen R L, Chambers M J, et al. Ferrite Treatment of Actinide Waste Solutions: Continuous Processing of Rocky Flats Process Waste. RFP-3476, UC-10 Chemical Separations Processes for Plutonium and Uranium, DOE/TIC-4500 (Rev. 69) Rockwell International, Golden, CO, 1983
    
    [275] Boyd T E, Kochen R L, Riordan G A, et al. Ferrite Treatment of Actinide Waste Solutions: Multi-Stage Continuous Processing. RFP-3582, UC-4 Chemistry, DOE/TIC-4500 (Rev. 72), Rockwell International, Golden, CO, 1984
    
    [276] Boyd T E, Kochen R L, Price M Y. Removal of Radioactive Materials from Waste Solutions Via Magnetic Ferrites. Proceeding of American Nuclear Society Topical Meeting on Treatment and Handling of Radioactive Waste, Richland, WA, 1982
    
    [277] Boyd T E, Price M Y, Kochen R L, et al. Ferrite Treatment of Actinide Waste Solutions: Chemical Interferences in Actinide Removal by Ferrite Treatment. RFP-3601, UC-10 Chemical Separations Processes for Plutonium and Uranium, DOE/TIC-4500 (Rev. 73), Rockwell International, Golden, CO, 1985
    
    [278] Boyd T E, Kochen R L, Price M Y, et al. Ferrite Treatment of Actinide Waste Solutions: Alternative Methods of Ferrite Productions For Use in Waste Treatment. RFP-3692,
    UC-10 Chemical Separations Processes for Plutonium and Uranium, DOE/TIC-4500 (Rev. 73), Rockwell International, Golden, CO, 1985
    
    [279] Dixon D R. Interaction of Alkaline-Earth-Metal Ions with Magnetite. Colloids and Surfaces, 1985, 13: 273-286
    
    [280] Kochen R L, Thomas R L, Morales L M. Actinide Removal From Aqueous Solution with Activated Magnetite, RFP-4100, UC-4 Chemistry, DOE/TIC-4500 (Rev. 73), Rockwell International, Golden, CO, 1987
    
    [281] Ebner A D, Ritter J A, Navratil J D. Adsorption of Cesium, Strontium, and Cobalt Ions on Magnetite and a magnetite-Silica Composite. Industrial and Engineering Chemistry Research, 2001,40(7): 1615-1623
    
    [282] Ghebremeskel A N, Bose A. A Flow-Through, Hybrid Magnetic-Field- Gradient, Rotating Wall Device for Magnetic Colloidal Separations. Separation Science and Technology, 2000,35(12): 1813-1828.
    
    [283] Kim Y K, Lee K J. Synthesis of a Magnetic Composite Resin and Its Cobalt Removal Characteristics in Aqueous Solution, Journal of Nuclear Science and Technology, 2001, 38(9): 785-792
    
    [284] Wakui Y, Ebina T, Matsunaga H, et al. Solvent Extraction of Arsenic(V) with Dispersed Ultrafine Magnetic Particles. Analytical Science, 2002, 18(7): 793-798
    
    [285] Moeser G D, Roach K A, Green W H, et al. Water-Based Magnetic Fluids as Extractants for Synthetic Organic Compounds. Industrial and Engineering Chemistry Research, 2002,41(19): 4739-4749
    
    [286] Safarikova M, Safarik I. Interaction of Tricyclic Drugs with Copper Phthalocyanine Dye Immobilized on Magnetic Carriers. Journal of European Cells and Materials, 2002, 3(2): 188-191
    
    [287] Steikbach J F, Freiser H. Acetylacetone- In the Dual Role of Solvent and Reagent in Extraction of Metal Chelates. Analytical Chemistry, 1953,25(6): 881-884
    
    [288] Robert M B, Mark O. Beryllium and Beryllium Compounds. Concise International Chemical Assessment Document 32, World Health Organization, Geneva, 2001,1-11
    
    [289] Reference library at web site: www.espi-metals.com , 2005-04-07
    
    [290] McAlister D R, Horwitz E P. A method for the separation of beryllium from spectral interfering elements in inductively coupled plasma-atomic emission spectroscopic analysis. Talanta 2005, 67(5): 873-879
    
    [291] Okutani T, Tsuruta Y, Sakuragawa A. Determination of a Trace Amount of Beryllium in Water Samples by Graphite Furnace Atomic Absorption Spectrometry after Preconcentration and Separation as a Beryllium-Acetylacetonate Complex on Activated Carbon. Analytical Chemistry, 1993,65(9) 1273-1276
    
    [292] APHA, Standard Methods for the Examination of Water and Wastewater. 18th ed., Greenberg A E, Clesceri L S, Eaton A D (Eds.). Washington, D.C., 1992,3-53
    
    [293] USEPA, Beryllium and Compounds. Office of Air Quality Planning & Standards, Research Triangle Park, North Carolina, Technology Transfer Network, 107-02-8, 1998
    
    [294] Ohtsuki T, Yuki H, Muto M, et al. Enhanced Electron-Capture Decay Rate of ~7Be Encapsulated in C60 Cages. Physical Review Letters, 2004,93(11): 112501
    
    [295] Standard Methods for Examination of Water and Waste Water. 19th ed., American Public Health Association, American Water Works Association, Water Environment Federation, Washington DC, 1995,17-63
    
    [296] Newman L. Hazardous Materials Toxicology: Clinical Principles of Environmental Health. Sullivan J B, Krieger G R (Eds.),Williams & Wilkins, Baltimore, MD, 1992, 882-890
    
    [297] Williams W J. Occupational Lung Disorders. Parkes W R (Ed.), third ed., Butterworth- Heinemann, Oxford, 1994, 571-592
    
    [298] Sudhalatha K. Coprecipitation of microgram amounts of beryllium and thorium with organic reagents, Talanta, 1963, 10(8): 934-936
    
    [299] Ueda J, Kitadani T. Separation and concentration of beryllium by coprecipitation with hafnium hydroxide prior to determination by graphite furnace atomic absorption spectrometry. Analyst, 1988, 113: 581-583
    
    [300] Hiraide M, Ishikawa K, Chen Z S, et al. Coprecipitation with metal hydroxides for the determination of beryllium in seawater by graphite furnace atomic absorption spectrometry, Mikrochim. Acta, 1994, 117(1-2) 7-13
    
    [301] Merrill J R, Honda M, Arnold J R. Methods for Separation and Determination of Beryllium in Sediments and Natural Waters. Analytical Chemistry, 1960, 32(11): 1420-1426
    
    [302] Nadkarni M N, Varde M S, Athavale V T. The separation of beryllium from iron, aluminium and titanium by ion exchange, and its application to the analysis of beryl. Analytica Chimica Acta, 1957, 16: 421-425
    
    [303] Owens E G, Yoe J H. Colour reactions of some 1,4-dihydroxy- anthraquinones with aluminium and beryllium. Talanta, 1961, 8(7): 505-517
    
    [304] Phalke P N, Sherikar A V, Dhadke P M. Separation of beryllium (II) and aluminium (III) by solvent extraction using Bis-2-cthylhexyl phosphoric acid [HDEHP]. Separations Technology, 1996, 6(9): 247-251
    
    [305] Uesugi K. The spectrophotometric determination of beryllium with eriochrome brilliant violet B. Analytica Chimica Acta, 1970,49(1): 89-95
    
    [306] Athavale V T, Padnabha Iyer C S, Tillu M M, et al. Spectrophotometric study of the beryllium-thorin complex and its application to the determination of beryllium in alloys. Analytica Chimica Acta, 1961,24: 263-269
    
    [307] Sauerer A, Troll G. Spectrophotometric determination of trace amounts of beryllium in silicate materials. Talanta, 1984, 31(4): 249-252
    
    [308] Peng H W, Kuo M S. Determination of Trace Amounts of Beryllium(II) in Drinking Water and of Beryllium Vapor in Air by Graphite-Furnace Atomic Absorption Spectrophotometry Using Acetylacetone as a Chelating Agent. Analytical Sciences, 2000,16:157-161
    
    [309] Scribner W G, Borchers M J, Treat W J. Solvent Extraction of Beryllium with Trifluoroacetylacetone and Hexafluoroacetylacetone. Analytical Chemistry, 1966, 38(12): 1779-1782
    
    [310] Black M S, Sievers R E. Environmental analysis problems created by unexpected volatile beryllium compounds in various samples. Analytical Chemistry, 1973, 45(9): 1773-1775
    
    [311] Measures C I, Edmond J M. Determination of beryllium in natural waters in real time using electron capture detection gas chromatography. Analytical Chemistry, 1986, 58(9): 2065-2069
    
    [312] Kalyanaraman S, Khopkar S M. Diluted tributyl phosphate as an extractant for beryllium as its thiocyanate complex. Analytical Chemistry, 1975,47(12): 2041-2043
    
    [313] Dhond P V, Khopkar S M. Mesityl Oxide as an Extracting Agent for Beryllium. Analytical Chemistry, 1973,45 (11): 1937-1938
    
    [314] Yamini Y, Hassan J, Mohandesi R, et al. Preconcentration of trace amounts of beryllium in water samples on octadecyl silica cartridges modified by quinalizarine nd its determination with atomic absorption spectrometry. Talanta 2002, 56(3): 375- 381
    
    [315] Ross W D, Sievers R E. Rapid ultra-trace determination of beryllium by gas chromatography. Talanta, 1968,15(1): 87-94
    
    [316] Sill C W, Willis C P. Fluorometric Determination of Submicrogram Quantities of Beryllium. Analytical Chemistry, 1959, 31(4): 598-608
    
    [317] Claude W S, Conrad P W, Kenneth F J. Improvements in the Fluorometric Determination of Submicrogram Quantities of Beryllium. Analytical Chemistry, 1961, 33(12): 1671-1684
    
    [318] Klemperer F W, Martin A P. Determination of Traces of Beryllium in Biological Material. Analytical Chemistry, 1950,22(6): 828-831
    
    [319] Underwood A L, Toribara T Y, Neuman W F. Beryllium Complexes with Naphthazarin and Alkannin. Journal of the American Chemical Society, 1950, 72(12): 5597-5602
    
    [320] Callahan J H, Cook K D. Salt effects on the surfactant-sensitized spectrophoto- metric determination of beryllium with Chrome Azurol S. Analytical Chemistry, 1982, 54(1):59-62
    
    [321] Silverman L, Shideler M E. Spectrophotometric Determination of Beryllium and Fluoride Using Chrome Azurol S. Analytical Chemistry, 1959, 31(1): 152-155
    
    [322] Pakalns P. Spectrophotometric determination of beryllium with chrome azurol s. Analytica Chimica Acta, 1964,31: 576-582
    
    [323] Sommer L, Kuban V. Spectrophotometric determination of beryllium with chrome azurol s. Analytica Chimica Acta, 1969,44(2): 333-344
    
    [324] Fleet B, Liberty K V, West T S. A study of some matrix effects in the determination of beryllium by atomic-absorption spectroscopy in the nitrous oxide-acetylene flame. Talanta, 1970, 17(3): 203-210
    
    [325] Cernohorsky T, Kotrly S. Determination of Beryllium in Drinking and Waste Water by Tungsten Furnace AAS. Journal of Analytical Atomic Spectrometery, 1995, 10: 155- 160
    
    [326] Paschal D C, Bailey G G. Determination of beryllium in urine with electrothermal atomic absorption using the L'vov platform and matrix modification. Atomic Spectroscopy, 1986, 7: 1-3
    
    [327] R.U. Ayres, L.W. Ayres, I. Rade. The Life Cycle of Copper, Its Co-Products and By- Poducts. Mining, Minerals and Sustainable Development, 24,2002
    
    [328] Alberta Water Quality Guideline for the Protection of Freshwater Aquatic Life "COPPER". Standards and Guidelines Branch, Environmental Assessment Division, Environmental Regulatory Service, August 1996
    
    [329] Nriagu J O. Copper in the Environment Part I: Ecological Cycling. John Wiley and Sons Inc.: New York, NY, 1979, 37-50
    
    [330] Nriagu J O. Copper in the Environment Part II: Health Effects. John Wiley and Sons Inc.; New York, 1979
    
    [331] Vasconcelos M T S D, Almeida C M R, Lage O M, et al. Influence of Zwitterionic pH Buffers on the Bioavailability and Toxicity of Copper to the Alga Amphidinium Carterae. Environmental Toxicology and Chemistry, 2000, 19(10): 2542-2550
    
    [332] Marr J C A, Lipton J, Cacela D, et al. Bioavailability and acute toxicity of copper to rainbow trout (Oncorhynchus mykiss) in the presence of organic acids simulating natural dissolved organic carbon. Canadian Journal of Fisheries and Aquatic Sciences, 1999,56(8): 1471-1483
    
    [333] Demayo A, Taylor M C. Guidelines for Surface Water Quality. Vol. 1 Inorganic Chemical Substances' Copper'. Water Quality Branch, Inland Waters Directorate, Environment Canada, Ottawa, 1981
    
    [334] Birge W J, Black J A. Effects of Copper on Embryonic and Juvenile Stages of Aquatic Animals. Nriagu J 0 (ed.), Copper in the Environment. Part 11. Health Effects, 1979, 373-399
    
    [335] Scheinberg I H, Morell A G. Inorganic Biochemistry. Eichhorn G L (ed.), Amsterdam, New York, Elsevier Scientific Pub. Co., 1973, 306-343
    
    [336] Morrisson G M. Handbook on Metal-Ligand Interactions in Biological Fluids 1, Berthon G (ed.), Dekker, New York, 1995, Chap. 7
    
    [337] Brewer G J, Yuzbasiyan-Gurkan V. Wilson's disease. Medicine 1992, 71: 139-164
    
    [338] Greenwood N N, Earnshow A. Chemistry of Elements. Pergamon press, New York, Copper Chapter, 1984
    
    [339] Welz B. Atomic Absorption Spectroscopy, FL: VCH, Amsterdam, 1985
    
    [340] D.Z. Marczenko, Separation and Spectrophotometeric Determination of elements, London, 1986
    
    [341] Yoshimura K, Nigo S, Tarutani T. Ion-exchanger colorimetry-VIII Micro determination of copper in natural waters. Talanta, 1982,29(3): 173-176
    
    [342] Hutchinson S, Kearney G A, Horne E, et al. Solid phase extraction of metal ions using immobilised chelating calixarene tetrahydroxamates. Analytica Chimica Acta, 1994, 291(3): 269-275
    
    [343] Lessi P, Dias Filho N L, Moreira J C, et al. Sorption and preconcentration of metal ions on silica gel modified with 2,5-dimercapto-l,3,4-thiadiazole. Analytica Chimica Acta, 1996,327(2): 183-190
    
    [344] Cuculic V, Mlakar M, Branica M. Synergetic adsorption of copper (II) mixed ligand complexes onto the SEP-PAK C_18 column. Analytica Chimica Acta, 1997, 339(1-2): 181-186
    
    [345] Garg B S, Bist J S, Sharma R K, et al. Solid-phase extraction of metal ions and their estimation in vitamins, steel and milk using 3-hydroxy-2-methyl-l,4-naphthoquinoneimmobilized silica gel. Talanta, 1996,43(12): 2093-2099
    
    [346] Porta V, Mentasti E, Sarzanini C, et al. Ion-pair liquid—solid extraction for the preconcentration of trace metal ions Optimization of experimental conditions. Talanta, 1998,35(3): 167-171
    
    [347] Shamsipur M, Ghiasvand A R, Sharghi H, et al. Solid phase extraction of ultra trace copper(II) using octadecyl silica membrane disks modified by a naphthol-derivative Schiff s base. Analytica Chimica Acta, 2000,408(1-2): 271-277
    
    [348] Yamini Y, Tamaddon A. Solid-phase extraction and spectrophotometric of trace amounts of copper in water samples. Talanta, 1999,49(1): 119 -124
    
    [349] Dalman O, Karabocek S, Demirak A, et al. Solid Phase Extraction of Copper(II) by Modifed Octadecyl Silica Membrane Disks with 3-f2-[2-(2-Hydroxyimino-1-methyl- propylideneamino)-ethylamino]-ethyl-iminog-butan-2-one Oxime, Turkish Journal of Chemistry, 2003,27(5): 649-656
    
    [350] Pena Y P, Gallego M, Valcarcel M. Preconcentration of Copper Traces on C60-C70 Fullerenes by Formation of Ion Pairs and Chelates. Analytical Chemistry, 1995, 67(15): 2524-2529
    
    [351] Devi R, Naidu G R K. Enrichment of trace metals in water on activated carbon, Analyst, 1990,115(11): 1469-1472
    
    [352] Yamini Y, Hejazi L, Mohammadi D E. Solid Phase Extraction and Simultaneous Spectrophotometric Determination of Trace amounts of Copper and Iron Using Mixture of Ligands. Microchimica Acta, 2003, 142(1-2): 21-25
    
    [353] Hejazi L, Mohammadi D E, Yamini Y, et al. Solid-phase extraction and simultaneous spectrophotometric determination of trace amounts of Co, Ni and Cu using partial least squares regression. Talanta 2004, 62(1): 183-189
    
    [354] Lingane J J. Electroanalytical Chem, 2nd Ed. New York, Interscience Publishers, 1958, 370-378
    
    [355] Baba Y, Iwakuma M, Nagami H. Extraction Mechanism for Copper(II) with 2- Hydroxy-4-n-octyloxybenzophenone Oxime. Industrial and Engineering Chemistry Research, 2002,41(23): 5835-5841
    
    [356] Yamada H, Naito T, Miwa K, et al. Comparison of 1-Octanol with Benzene in the Extraction of Copper(II) with Various Phenylcarboxylic Acids. Analytical Sciences, 1999, 15(8): 773-780
    
    [357] Ambrose R B. (DRAFT) Partition Coefficients for Metals in Surface Water, Soil, and Waste. U.S. Environmental Protection Agency Office of Solid Waste, Washington, DC 20460,1999,3-18
    
    [358] Dyer F F, Leddicotte G W. The Radiochemistry of Copp(?)r. U.S. Atomic Energy Commission, National Academy of Science, Nuclear Science Series, NAS-NS 3027, 1961,15-23
    
    [359] Xu Y H, Zhao D. Removal of Copper from Contaminated Soil by Use of Poly(amidoamine) Dendrimers. Environmental Science and Technology, 2005, 39(7): 2369-2375

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700