有关静电纺丝的若干实验
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人类发展面临着重大的挑战,纳米材料对解决人类面临的一些挑战具有重要的作用,电纺丝作为一种制备纳米材料的简单方法,受到了广泛的关注。但是电纺丝工业化过程中受到了产率低,产物单一,实际应用较少等阻碍了其工业化的发展。本论文中基于电纺丝做了以下工作。
     (1)提出了一种新型的静电纺丝装置,此装置是用一个旋转的金属锥作为喷头,纺丝过程中溶液旋涂在锥体表面。在旋转过程中液体受到外力会形变,后在静电作用力下转化为纳米纤维。产率达到了10g/min,较传统的电纺丝产率提高了近1000倍。详细的研究了纳米纤维的形成机制,研究了不同因素对纳米纤维的影响。这为电纺丝工业化生产提供了的新的方法与可能。
     (2)提出了一种新的高产率低成本的制备纳米材料的方法。此种方法能够直接制备活细胞掺杂的纳米纤维。此种方法是通过高气压将液体通过微米孔压入空气中形成具有极高速率的微米液滴,液滴在温度场中高速运动过程中形变拉伸,从而形成了纳米纤维或者纳米管。实验中单个喷嘴的速率达到了10g/s。更重要的是,此种方法可以极大的提高活细胞在纤维中的成活率,可以广泛的应用于生物工程等。
     (3)通过调节W/O静电纺丝过程中收集板的温度制备了碳纳米管和纳米带。纳米管的内径为25-50纳米,外径为50-100纳米,壁厚为10-50纳米。同时制备了纳米带其长度为微米级,厚度为1-5纳米,宽度为100-300纳米。详细讨论碳纳米管和纳米带的形成机制。形成纳米管的这种技术可能被应用于制备多壁,甚至单壁的碳纳米管,形成纳米带的这种技术可能应用于制备石墨烯。
     (4)用自组装的方法合成了一种具有厚度小于10nm的新型碳材料——碳纳米节,该纳米节生长在非晶碳纤维上。实验中发现,在空气中,220℃预氧化,和在1×10-4pa,750℃高温真空退火过程中碳纳米节可以通过自组装得到。并对碳纳米节的生长机理给予了研究,提出了可能的生长机理。根据生长机理,设计了实验,让纳米节可控的生长,也从侧面验证了我们的生长理论。这种新的制备方法,为碳纳米材料的应用提供了新的方式。
     (5)制备了一种具有多孔结构的二氧化钛纳米管。多孔二氧化钛纳米管的直径为200nm左右,其上孔洞分布均匀,孔洞的直径分布在10nm左右,XRD与TEM等证明其为混合相的混晶结构。并将其应用于光催化上,发现多孔二氧化钛纳米管具有良好的光催化性能,详细研究了其结构和形貌等对光催化性能的影响。为大规模的工业化应用提供了可靠的保证。
     用传统的电纺丝制备氧化锌空心纳米球,详细的研究了其可能的生长机制。后对其形貌和结构进行了表征。发现空心氧化锌纳米球是由颗粒状组成的颗粒球。并将其应用与光催化上,发现空心氧化锌纳米球具有良好的光催化性能,详细研究了其结构和形貌等对光催化性能的影响。
     (6)采用氧化还原方法制备了石墨烯,然后采用静电纺丝方法,制备了石墨烯掺杂的壳聚糖-聚乙烯醇纳米纤维。并将该纳米纤维薄膜应用于伤口愈合。实验证明,含有石墨烯的壳聚糖-聚乙烯醇纳米纤维有利于伤口的愈合。也提出了石墨烯有利于伤口愈合的可能机制。这种含有石墨烯的壳聚糖-聚乙烯醇纳米纤维可以直接应用于工业化生产,为市民的健康提供一定的帮助。
Human development facing some challenges, nano-materials plays an important role to solve the challenges. Electrospinning has received extensive attention as a simple way of nanomaterials. Electrospinning process of industrialization by the low throughput, the practical application of less hindered the development of its industrialization. In this thesis, based on electrospinning, we do the following things:
     (1) A needle less electrospinning setup using an electriferous rotating cone as the spinneret. The production throughput of this approach was about10g/min, which was several thousand times higher than that by traditional electrospinning technique. Additionally, the effects of electrospinning speed and the voltage between the cone and the collector of this electrospinning system on the properties of the fibers are discussed. The improvement of this method might open new doors to many potential industrial applications of electrospinning technique.
     (2) A novel method is reported of producing nanofibers/nanotubes (measuring from tens of nanometres to several hundreds of nanometres) containing living cells, mechanically and with ultrahigh speed and at low cost. We has demonstrated that the throughput of this spinning method to fabricate nanofibers/nanotubes from an individual setup could be as high as10g/s. A possible mechanism for this extrusion method was proposed based on flow mechanics and the experimental results. Additionally, it was demonstrated that the living cells with high survival rate can be used in bioengineering.
     (3) Carbon nanotubes and carbon nanobelts were obtained via electrospinning on a basis of W/O emulsion technique, respectively.The carbon nanotubes has the inner diameter of25-50nm and the outer diameter of50-100nm and the wall thickness of10-50nm, and the width and thickness of the nanobelts range from100to300nm, and1to5nm, respectively. A slight difference of bonding configuration of the carbon nanofibers, carbon nanotubes and carbon nanobelts is attributed partly to their different topological structures. The novel method is versatile and could be extended to the fabrication of various types of nanotubes and nanobelts.
     (4) A novel structure of carbon nanonodules containing fewer than10layers graphene has grown on amorphous carbon nanofibers by carbonization-induced self-assembly. It is found that a successive processes containing pre-oxidation in air at220℃and carbonization in a high vacuum1×10-4pa and at750℃are necessary for the fabrication of the carbon nanonodules. It is also found that the temperature of the collector during electrospinning of the fiber and the pressure of carbonization are critical factors for growth of the nanonodules. With these mechanisms, carbon nanonodules can be selectively grown on the prepared amorphous carbon nanofibers using pre-oxidation and carbonization of an electrospun glycerol-polyacrylonitrile fiber.
     (5) Highly porous TiO2nanotubes were prepared by emulsion electrospinning. The mixed crystalline material comprised anatase and rutile TiO2particles, whose diameters were about11nm and21nm, respectively. The highly porous TiO2nanotube were shown to have excellent catalytic activities. The new method for producing highly porous TiO2nanotubes is versatile and could be extended to the fabrication of various types of highly porous nanotubes.
     Using a classical electrospinning and subsequent thermal treatment technique to successfully fabricate hollow ZnO nano-spheres. The hollow ZnO nano-spheres were then used to study the degradation of Rhodamine B (RhB) dye and were proven to have excellent photocatalytic activity. The mechanism of formation of hollow ZnO nano-spheres and the reason for the high photocatalytic activity were also investigated.
     (6) Using electrospinning preparation of chitiosan-PVA nanofibers contains graphene. The nanofibers can be directly used in wound healing, and find graphene as an antibacterial material can beneficial to wound healing. The possible mechanism for graphene as an antibacterial material beneficial to wound healing is presented.
引文
[1]Bognitzki M, Czado W, Frese T, Schaper A, Hellwig M, Steinhart M, et al. Nanostructured Fibers via Electrospinning. Adv Mater.2001;13(1):70-2.
    [2]Li D, Wang Y, Xia Y. Electrospinning Nanofibers as Uniaxially Aligned Arrays and Layer-by-Layer Stacked Films. Adv Mater.2004;16(4):361-6.
    [3]Li D, Xia Y. Electrospinning of Nanofibers:Reinventing the Wheel? Adv Mater. 2004;16(14):1151-70.
    [4]Li D, Wang Y, Xia Y. Electrospinning of Polymeric and Ceramic Nanofibers as Uniaxially Aligned Arrays. Nano Lett.2003;3:1167-71.
    [5]Li D, Xia Y. Fabrication of Titania Nanofibers by Electrospinning. Nano Lett.2003;3:555-60.
    [6]Li D, Xia Y. Direct Fabrication of Composite and Ceramic Hollow Nanofibers by Electrospinning. Nano Lett.2004;4:933-8.
    [7]Liu Z, Sun DD, Peng Guo, Leckie JO. An Efficient Bicomponent TiO2/SnO2 Nanofiber Photocatalyst Fabricated by Electrospinning with a Side-by-Side Dual Spinneret Method. Nano Lett.2007;7:1081-5.
    [8]Li D, McCann Jesse T, Xia Y. Use of Electrospinning to Directly Fabricate Hollow Nanofibers with Functionalized Inner and Outer Surfaces. Small.2005;1(1):83-6.
    [9]Dzenis Y. Spinning Continuous Fibers for Nanotechnology. Science.2004;304:1917-9.
    [10]Stevens MM, George JH. Exploring and Engineering the Cell Surface Interface. Science. 2005;310:1135-8.
    [II]Tuteja A, Choi W, Ma M, Mabry JM, Mazzella SA, Rutledge GC, et al. Designing Superoleophobic Surfaces. Science.2007;318:1618-22.
    [1]Geim AK, Novoselov KS. The rise of graphene. Nat Mater.2007;6(3):183-91.
    [2]Yuan J, Liu X, Akbulut O, Hu J, L.Suib S, Kong J, et al. Superwetting nanowire membranes for selective absorption, nat nano 2008; 3:332-6.
    [3]Shin C. A New Recycling Method for Expanded Polystyrene. Packaging Technology and science.2005; 18:331-5.
    [4]Li Q, Xu J, Wu Z, Feng D, Yang J, Wei J, et al. Facile synthesis of highly stable and well-dispersed mesoporous ZrO2/carbon composites with high performance in oxidative dehydrogenation of ethylbenzene Phys Chem Chem Phys.2010.
    [5]Tan P, Hu C, Dong J, Shen W, Zhang B. Polarization properties, high-order Raman spectra, and frequency asymmetry between Stokes and anti-Stokes scattering of Raman modes in a graphite whisker. Phys Rev B.2001;64
    [6]Theron SA, Yarin AL, Zussman E, Kroll E. Multiple jets in electrospinning:experiment and modeling. Polymer 2005;46:2889-99.
    [7]Cui Y, Wei Q, Park H, Lieber CM. Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species. Science.2001;293:1289-92.
    [8]G.McKee M, Layman JM, Cashion MP, Long TE. Phospholipid Nonwoven Electrospun Membranes. Science.2006;311.
    [9]Stevens MM, George JH. Exploring and Engineering the Cell Surface Interface. Science. 2005;310:1135-8.
    [10]Tuteja A, Choi W, Ma M, Mabry JM, Mazzella SA, Rutledge GC, et al. Designing Superoleophobic Surfaces. Science.2007;318:1618-22.
    [11]Lee H, Rajagopalan R, Robinson J, Pantano CG. Processing and Characterization of Ultrathin Carbon Coatings on Glass. ACS Appl Mater Inter.2009; 1:927-33.
    [12]Turchanin A, Beyer A, Nottbohm CT, Zhang X, Stosch R, Sologubenko A, et al. One Nanometer Thin Carbon Nanosheets with Tunable Conductivity and Stiffness. Adv Mater, 2009;21:1233-7.
    [13]Ko H, Zhang Z, Chueh Y-L, Ho JC, Lee J, Fearing RS, et al. Wet and Dry Adhesion Properties of Self-Selective Nanowire Connectors. Adv Funct Mater.2009;19:3098-102.
    [14]Xi G, Zhang M, Ma D, Zhu Y, Zhang H, Qian Y. Controlled synthesis of carbon nanocables and branched-nanobelts. Carbon.2006;44(4):734-41.
    [15]Friedrichs S, Falke U, Green MLH. Phase Separation of LaI3 inside Single-Walled Carbon Nanotubes. Chem Phys Chem.2005;6:300-5.
    [16]Shin C, Chase GG, Reneker DH. Recycled expanded polystyrene nanofibers applied in filter media. Colloids and Surfaces A.2005;262:211-5.
    [17]Bhuvana T, Kumar A, Sood A, Gerzeski RH, Hu J, Bhadram VS, et al. Contiguous Petal-like Carbon Nanosheet Outgrowths from Graphite Fibers by Plasma CVD. ACS Appl Mater Inter. 2010;2:644-8.
    [18]Bognitzki M, Czado W, Frese T, Schaper A, Hellwig M, Steinhart M, et al. Nanostructured Fibers via Electrospinning. Adv Mater.2001;13(1):70-2.
    [19]Lu B, Zhu C, Zhang Z, Lan W, Xie E. Preparation of highly porous TiO2 nanotubes and their catalytic applications. J Mater Chem.2012.
    [20]Zhang C, Kang Z, Shen E, Wang E, Gao L, Luo F, et al. Synthesis and Evolution of PbS Nanocrystals through a Surfactant-Assisted Solvothermal Route. J Phys Chem B. 2005;110(1):184-9.
    [21]Liu C, Hu Z, Wu Q, Wang X, Chen Y, Sang H, et al. Vapor-Solid Growth and Characterization of Aluminum Nitride Nanocones. J Am Chem Soc.2005; 127(4):1318-22.
    [22]McCann JT, Marquez M, Xia Y. Highly Porous Fibers by Electrospinning into a Cryogenic Liquid. J Am Chem Soc.2006 2011/12/16;128(5):1436-7.
    [23]Wu Y, Yang P. Direct Observation of Vapor-Liquid-Solid Nanowire Growth. J Am Chem Soc.2001;123(13):3165-6.
    [24]Li XH, L.Shao C, Liu YC. A Simple Method for Controllable Preparation of Polymer Nanotubes via a Single Capillary Electrospinning. Langmuir.2007;23:10920-3.
    [25]Dick KA, Deppert K, Martensson T, Mandl B, Samuelson L, Seifert W. Failure of the Vapor-Liquid-Solid Mechanism in Au-Assisted MOVPE Growth of InAs Nanowires. Nano Lett. 2005;5(4):761-4.
    [26]Fan Z, Kapadia R, Leu PW, Zhang X, Chueh Y-L, Takei K, et al. Ordered Arrays of Dual-Diameter Nanopillars for Maximized Optical Absorption. Nano Lett.2010
    [27]Kameoka J, Verbridge SS, Liu H, Czaplewski DA, Craighead HG. Fabrication of Suspended Silica Glass Nanofibers from Polymeric Materials Using a Scanned Electrospinning Source. Nano Lett.2004;4:2105-8.
    [28]Katta P, Alessandro M, Ramsier RD, Chase GG. Continuous Electrospinning of Aligned Polymer Nanofibers onto a Wire DrumCollector. Nano Lett.2004;4:2215-8.
    [29]Li D, Wang Y, Xia Y. Electrospinning of Polymeric and Ceramic Nanofibers as Uniaxially Aligned Arrays. Nano Lett.2003;3:1167-71.
    [30]Li D, Xia Y. Fabrication of Titan ia Nanofibers by Electrospinning. Nano Lett.2003;3:555-60.
    [31]Li D, Xia Y. Direct Fabrication of Composite and Ceramic Hollow Nanofibers by Electrospinning. Nano Lett.2004;4:933-8.
    [32]Liu Z, Sun DD, Peng Guo, Leckie JO. An Efficient Bicomponent TiO2/SnO2 Nanofiber Photocatalyst Fabricated by Electrospinning with a Side-by-Side Dual Spinneret Method. Nano Lett.2007;7:1081-5.
    [33]McCann JT, Lim B, Ostermann R, Rycenga M, Marquez M, Xia Y. Carbon Nanotubes by Electrospinning with a Polyelectrolyte and Vapor Deposition Polymerization. Nano Lett.2007;7.
    [34]McCann JT, Marquez M, Xia Y. Melt Coaxial Electrospinning:A Versatile Method for the Encapsulation of Solid Materials and Fabrication of Phase Change Nanofibers. Nano Lett. 2006;6:2868-72.
    [35]Ostermann R, Li D, Yin Y, McCann JT, Xia Y. V2O5 Nanorods on TiO2 Nanofibers:A New Class of Hierarchical Nanostructures Enabled by Electrospinning and Calcination. Nano Lett. 2006 2011/12/16;6(6):1297-302.
    [36]P V, Secasanu, Christopher, Giardina K, Wang Y. A Novel Electrospinning Target to Improve the Yield of Uniaxially Aligne fibers. Biotech Prog 2009;25:1169-75.
    [37]Park WI, Zheng G, Jiang X, Tian B, Lieber CM. Controlled Synthesis of Millimeter-Long Silicon Nanowires with Uniform Electronic Properties. Nano Lett.2008;8:3004-9.
    [38]Peng Q, Sun X-Y, Spagnola JC, Hyde GK, Spontak RJ, Parsons GN. Atomic Layer Deposition on Electrospun Polymer Fibers as a Direct Route to Al2O3 Microtubes with Precise Wall Thickness Control. Nano Lett.2007;7:719-22.
    [39]Shui J, Li JCM. Platinum Nanowires Produced by Electrospinning. Nano Lett.2009;9.
    [40]Zhou J-Y, Chen Z-Y, Zhou M, Gao X-P, Xi E-Q. SiC Nanorods Grown on Electrospun Nanofibers Using Tb as Catalyst:Fabrication, Characterization, and Photoluminescence Properties. Nano Res Lett 2009;4:814-9.
    [41]Huang C, Chen S, Lai C, Reneker DH, Qiu H, YingYe, et al. Electrospun polymer nanofibres with small diameters. Nanotechnology.2006;17:1558-63.
    [42]OODosunmu, GGChase, WKataphinan, Reneker DH. Electrospinning of polymer nanofibres from multiple jets on a porous tubular surface. Nanotechnology.2006; 11:1123-7.
    [43]Shin MK, Kim S-K, HaiwonLee, Kim SI, Kim SJ. The fabrication of polymeric nanochannels by electrospinning. Nanotechnology.2008;19:195304-7.
    [44]Su Y, Lu B, Xie Y, Ma Z, Liu L, Zhao H, et al. Temperature effect on electrospinning of nanobelts:the case of hafnium oxide. Nanotechnology.2011;22(28):285609.
    [45]Teo WE, Ramakrishna S. A reviewonelectrospinning design and nanofibre assemblies. Nanotechnology.2006; 17:89-106.
    [46]Viswanathamurthi P, Bhattarai N, Kim HY, Lee DR. The photoluminescence properties of zinc oxide nanofibres prepared by electrospinning. Nanotechnology.2004; 15:320-3.
    [47]Zhang Q, Chang Z, MeifangZhu, Mo X, Chen D. Electrospun carbon nanotube composite nanofibres with uniaxially aligned arrays. Nanotechnology.2007; 18 115611-6.
    [48]Dzenis Y. Spinning Continuous Fibers for Nanotechnology. Science.2004;304:1917-9.
    [49]Dror Y, Salalha W, Avrahami R, Zussman E, Yarin AL, Dersch R, et al. One-Step Production of Polymeric Microtubes by Co-electrospinning. Small.2007;3(6):1064-73.
    [50]Kalra V, Lee J, Lee JH, Lee SG, Marquez M, Wiesner U, et al. Controlling Nanoparticle Location via Confined Assembly in Electrospun Block Copolymer Nanofibers. Small. 2008;4(11):2067-73.
    [51]Li D, McCann Jesse T, Xia Y. Use of Electrospinning to Directly Fabricate Hollow Nanofibers with Functionalized Inner and Outer Surfaces. Small.2005;1(1):83-6.
    [52]Lu X, Wang C, Wei Y. One-Dimensional Composite Nanomaterials:Synthesis by Electrospinning and Their Applications. Small.2009;5:2349-70.
    [53]Mieszawska Aneta J, Jalilian R, Sumanasekera Gamini U, Zamborini Francis P. The Synthesis and Fabrication of One-Dimensional Nanoscale Heterojunctions. Small. 2007;3(5):722-56.
    [54]Nguyen-Vu TDB, Chen H, Cassell Alan M, Andrews R, Meyyappan M, Li J. Vertically Aligned Carbon Nanofiber Arrays:An Advance toward Electrical-Neural Interfaces. Small. 2006;2(1):89-94.
    [55]Saquing CD, Manasco JL, Khan SA. Electrospun Nanoparticle-Nanofiber Composites via a One-Step Synthesis. Small.2009;5(8):944-51.
    [56]Bognitzki M, Hou H, Ishaque M, Frese T, Hellwig M, Schwarte C, et al. Polymer, Metal, and Hybrid Nano-and Mesotubes by Coating Degradable Polymer Template Fibers (TUFT Process). Adv Mater.2000;12(9):637-40.
    [57]Coleman JN, Dalton AB, Curran S, Rubio A, Davey AP, Drury A, et al. Phase Separation of Carbon Nanotubes and Turbostratic Graphite Using a Functional Organic Polymer. Adv Mater. 2000;12(3):213-6.
    [58]Hou H, Reneker DH. Carbon Nanotubes on Carbon Nanofibers:A Novel Structure Based on Electrospun Polymer Nanofibers. Adv Mater.2004;16(1):69-73.
    [59]Kotov NA, Winter JO, Clements IP, Jan E, Timko BP, Campidelli Sp, et al. Nanomaterials for Neural Interfaces. Adv Mater.2009;21:3970-4004.
    [60]Li D, Wang Y, Xia Y. Electrospinning Nanofibers as Uniaxially Aligned Arrays and Layer-by-Layer Stacked Films. Adv Mater.2004;16(4):361-6.
    [61]Li D, Xia Y. Electrospinning of Nanofibers:Reinventing the Wheel? Adv Mater. 2004;16(14):1151-70.
    [62]Yejun Qiu, Yu J, Rafique J, Yin J, Bai X, Wang E. Large-Scale Production of Aligned Long Boron Nitride Nanofibers by Multijet/Multicollector Electrospinning. J Phys Chem C. 2009; 113:11228-34.
    [63]Yarin AL, E. Z. Upward needleless electrospinning of multiple nanofibers. Polymer. 2004;45:2977-80.
    [64]Weitz RT, Harnau L, Rauschenbach S, Burghard M, Kern K. Polymer Nanofibers via Nozzle-Free Centrifugal Spinning. Nano Lett.2008;8:1187-91.
    [65]Wang X, Niu H, Lin T, Wang X. Needleless Electrospinning of Nanofibers With a Conical Wire Coil. Poly Eng Sci.2009;49:1582-6.
    [1]Barron JA, Young HD, Dlott DD, Darfler MM, Krizman DB, Ringeisen BR. Printing of protein microarrays via a capillary-free fluid jetting mechanism. Proteomics.2005;5(16):4138-44.
    [2]Bognitzki M, Czado W, Frese T, Schaper A, Hellwig M, Steinhart M, et al. Nanostructured Fibers via Electrospinning. Adv Mater.2001;13(1):70-2.
    [3]Chang Y, Lye ML, Zeng HC. Large-Scale Synthesis of High-Quality Ultralong Copper Nanowires. Langmuir.2005;21(9):3746-8.
    [4]Cui Y, Wei Q, Park H, Lieber CM. Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species. Science.2001;293(5533):1289-92.
    [5]Duan H, Berggren KK. Directed Self-Assembly at the 10 nm Scale by Using Capillary Force-Induced Nanocohesion. Nano Lett.2010;10(9):3710-6.
    [6]Stevens MM, George JH. Exploring and Engineering the Cell Surface Interface. Science. 2005 November 18,2005;310(5751):1135-8.
    [7]Sun Z-P, et al. Rapid synthesis of ZnO nano-rods by one-step, room-temperature, solid-state reaction and their gas-sensing properties. Nanotechnology.2006;17(9):2266.
    [8]Tai-Shung Chunga SA. Mathematical Modeling of Air-Drag Spinning for Nonwoven Fabrics. Poly-Plast Tech Eng.1985;24(2):117-27.
    [9]Teo WE, Ramakrishna S. A review on electrospinning design and nanofibre assemblies. Nanotechnology.2006;17(14):R89.
    [10]Tuteja A, Choi W, Ma M, Mabry JM, Mazzella SA, Rutledge GC, et al. Designing Superoleophobic Surfaces. Science.2007 December 7,2007;318(5856):1618-22.
    [11]Waclaw Tomaszewski, Szadkowski M. Investigation of Electrospinning with the Use of a Multi-jet Electrospinning Head. Fibr Text East Eur.2005;13(4):22-6.
    [12]Wang J-Z, Huang X-B, Xiao J, Li N, Yu W-T, Wang W, et al. Spray-spinning:a novel method for making alginate/chitosan fibrous scaffold. J Mater Sci Mater Medi.2010;21(2):497-506.
    [13]Wang W, Zhou J, Zhang S, Song J, Duan H, Zhou M, et al. A novel method to fabricate silica nanotubes based on phase separation effect. J Mater Chem.2010;20(41):9068-72.
    [14]Wang X, Niu H, Lin T, Wang X. Needleless electrospinning of nanofibers with a conical wire coil. Poly Eng Sci.2009;49(8):1582-6.
    [15]Wu Y, Yang P. Direct Observation of Vapor-Liquid-Solid Nanowire Growth. J Am Chem Soc.2001;123(13):3165-6.
    [16]Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, et al. One-Dimensional Nanostructures: Synthesis, Characterization, and Applications. Adv Mater.2003;15(5):353-89.
    [17]Xu CX, Sun XW, Chen BJ. Field emission from gallium-doped zinc oxide nanofiber array. Appl Phys Lett.2004;84(9):1540-2.
    [18]Yang X, Shao C, Guan H, Li X, Gong J. Preparation and characterization of ZnO nanofibers by using electrospun PVA/zinc acetate composite fiber as precursor. Inorganic Chem Comm. 2004;7(2):176-8.
    [19]Ying Y, et al. Electrospun uniform fibres with a special regular hexagon distributed multi-needles system. J Phys Conf Ser. 2008;142(1):012027.
    [20]Yuan J, Liu X, Akbulut O, Hu J, Suib SL, Kong J, et al. Superwetting nanowire membranes for selective absorption. Nat Nano.2008;3(6):332-6.
    [21]Zhang C, Kang Z, Shen E, Wang E, Gao L, Luo F, et al. Synthesis and Evolution of PbS Nanocrystals through a Surfactant-Assisted Solvothermal Route. J Phys Chem B. 2005;110(1):184-9.
    [22]Zhang M, Bando Y, Wada K, Kurashima K. Synthesis of nanotubes and nanowires of silicon oxide. J Mater Sci Lett.1999,18(23):1911-3.
    [23]Li D, Xia Y. Direct Fabrication of Composite andCeramic Hollow Nanofibers byElectrospinning. Nano Lett.2004;4:933-8.
    [24]Li Y-L, Kinloch IA, Windle AH. Direct Spinning of Carbon Nanotube Fibers from Chemical Vapor Deposition Synthesis. Science.2004 April 9,2004;304(5668):276-8.
    [25]Liu C, Hu Z, Wu Q, Wang X, Chen Y, Sang H, et al. Vapor-Solid Growth and Characterization of Aluminum Nitride Nanocones. J Am Chem Soc.2005; 127(4):1318-22.
    [26]Dick KA, Deppert K, Martensson T, Mandl B, Samuelson L, Seifert W. Failure of the Vapor-Liquid-Solid Mechanism in Au-Assisted MOVPE Growth of InAs Nanowires. Nano Lett. 2005;5(4):761-4.
    [27]Huang Z-M, Zhang YZ, Kotaki M, Ramakrishna S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Comp Sci Tech.2003;63(15):2223-53.
    [28]Che G, Lakshmi BB, Martin CR, Fisher ER, Ruoff RS. Chemical Vapor Deposition Based Synthesis of Carbon Nanotubes and Nanofibers Using a Template Method. Chem Mater. 1998;10(1):260-7.
    [29]Hammel E, Tang X, Trampert M, Schmitt T, Mauthner K, Eder A, et al. Carbon nanofibers for composite applications. Carbon.2004;42(5-6):1153-8.
    [30]Fan Z, Kapadia R, Leu PW, Zhang X, Chueh Y-L, Takei K, et al. Ordered Arrays of Dual-Diameter Nanopillars for Maximized Optical Absorption. Nano Lett.2010.
    [31]Fan Z, Razavi H, Do J-w, Moriwaki A, Ergen O, Chueh Y-L, et al. Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates. Nat Mater.2009;8(8):648-53.
    [32]Fenn J, Mann M, Meng C, Wong S, Whitehouse C. Electrospray ionization for mass spectrometry of large biomolecules. Science.1989 October 6,1989;246(4926):64-71.
    [33]Loscertales IG, Barrero A, Guerrero I, Cortijo R, Marquez M, Gafian-Calvo AM. Micro/Nano Encapsulation via Electrified Coaxial Liquid Jets. Science.2002 March 1, 2002;295(5560):1695-8.
    [34]Matsui, Michikage. Air Drag on a Continuous Filament in Melt Spinning. J Rheology. 1976;20(3):465-73.
    [35]Matsui S. Three-Dimensional Nanostructure Fabrication by Focused Ion Beam Chemical Vapor Deposition. In:Bhushan B, ed. Springer Handbook of Nanotechnology:Springer Berlin Heidelberg 2010:211-29.
    [36]Miloh T, Spivak B, Yarin AL. Needleless electrospinning:Electrically driven instability and multiple jetting from the free surface of a spherical liquid layer. J Appl Phys. 2009; 106(11):114910--8.
    [37]Perkins TT, Smith DE, Chu S. Single Polymer Dynamics in an Elongational Flow. Science. 1997 June 27,1997;276(5321):2016-21.
    [38]Ren ZF, Huang ZP, Xu JW, Wang JH, Bush P, Siegal MP, et al. Synthesis of Large Arrays of Well-Aligned Carbon Nanotubes on Glass. Science.1998 November 6,1998;282(5391):1105-7.
    [39]Bingan Lu YW, Yanxia Liu, Huigao Duan, Jinyuan Zhou,, Zhenxing Zhang YW, Xiaodong Li, Wei Wang, Wei Lan, and Erqing Xie. Superhigh-Throughput Needleless Electrospinning Using a Rotary Cone as Spinneret. Small.2010;6(15):1612-6.
    [40]Zhou F-L, Gong R-H, Porat I. Mass production of nanofibre assemblies by electrostatic spinning. Poly Inter.2009;58(4):331-42.
    [41]Zhou F-L, Gong R-H, Porat I. Needle and needleless electrospinning for nanofibers. Journal of Applied Polymer Science.2010; 115(5):2591-8.
    [42]Darrell HR, Iksoo C. Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology.1996;7(3):216.
    [43]Ko H, Zhang Z, Chueh Y-L, Ho JC, Lee J, Fearing RS, et al. Wet and Dry Adhesion Properties of Self-Selective Nanowire Connectors. Adv Func Mater.2009; 19:3098-102.
    [44]Kotov NA, Winter JO, Clements IP, Jan E, Timko BP, Campidelli S, et al. Nanomaterials for Neural Interfaces. Adv Mater.2009;21(40):3970-4004.
    [45]Kovtyukhova NI, Mallouk TE, Mayer TS. Templated Surface Sol-Gel Synthesis of SiO2 Nanotubes and SiO2-Insulated Metal Nanowires. Adv Mater.2003;15(10):780-5.
    [46]Kuhnle A, Linderoth TR, Hammer B, Besenbacher F. Chiral recognition in dimerization of adsorbed cysteine observed by scanning tunnelling microscopy. Nature.2002;415(6874):891-3.
    [47]La Mantia FP, Cangialosi F, Pedretti U, Roggero A. Extrusion, spinning and injection moulding of blends of poly(ethylene terephthalate) with liquid crystalline polymers. Eur Poly J. 1993;29(5):671-7.
    [48]Li D, Xia Y. Electrospinning of Nanofibers:Reinventing the Wheel? Adv Mater. 2004;16(14):1151-70.
    [49]Denn MM. Continuous Drawing of Liquids to Form Fibers. Ann Rev Fluid Mech. 1980;12(1):365-87.
    [50]Chung T-S, Abdalla S. Mathematical Modeling of Air-Drag Spinning for Nonwoven Fabrics. Poly-Plast Tech Eng.1985;24(2):117-27.
    [51]Dong H, Carr WW, Morris JF. An experimental study of drop-on-demand drop formation. Phys Flud.2006;18(7):072102.
    [52]Hull PJ, Hutchison JL, Salata OV, Dobson PJ. Synthesis of nanometer-scale silver crystallites via a room-temperature electrostatic spraying process. Adv Mater.1997;9(5):413-7.
    [53]Jang D, Kim D, Moon J. Influence of Fluid Physical Properties on Ink-Jet Printabiliry. Langmuir.2009;25(5):2629-35.
    [54]Jayasinghe SN, Suter N. Pressure driven spinning:A multifaceted approach for preparing nanoscaled functionalized fibers, scaffolds, and membranes with advanced materials. Biomicrofluidics.2010;4(l):014106.
    [55]Kase S, Matsuo T. Studies on melt spinning. Ⅰ. Fundamental equations on the dynamics of melt spinning. J Poly Sci Part A 1965;3(7):2541-54.
    [56]Kase S, Matsuo T. Studies on melt spinning. Ⅱ. Steady-state and transient solutions of fundamental equations compared with experimental results. J Appl Poly Sci.1967; 11(2):251-87.
    [57]Schoch RB, Han J, Renaud P. Transport phenomena in nanofluidics. Rev Mod Phys. 2008;80(3):839.
    [58]Sparreboom W, van den Berg A, Eijkel JCT. Principles and applications of nanofluidic transport. Nat Nano.2009;4(11):713-20.
    [59]Squires TM, Quake SR. Microfluidics:Fluid physics at the nanoliter scale. Rev Mod Phys. 2005;77(3):977.
    [60]Srivastava Y, Marquez M, Thorsen T. Multijet electrospinning of conducting nanofibers from microfluidic manifolds. J Appl Poly Sci.2007; 106(5):3171-8.
    [61]Fisher RJ, Denn MM. A theory of isothermal melt spinning and draw resonance. Aiche J. 1976;22(2):236-46.
    [62]Dosunmu OO, et al. Electrospinning of polymer nanofibres from multiple jets on a porous tubular surface. Nanotechnology.2006; 17(4):1123.
    [63]Doufas AK, McHugh AJ. Simulation of melt spinning including flow-induced crystallization. Part Ⅲ. Quantitative comparisons with PET spinline data. J Rheology.2001;45(2):403-20.
    [64]Doufas AK, McHugh AJ, Miller C. Simulation of melt spinning including flow-induced crystallization: Part I. Model development and predictions. J Non-Newt Fluid Mech. 2000;92(l):27-66.
    [65]Eijkel JCT, Berg Avd. Nanofluidics: what is it and what can we expect from it? Micro Nano 2005;l(3):249-67.
    [1]Havel M, Behler K, Korneva G, Gogotsi Y. Transparent Thin Films of Multiwalled Carbon Nanotubes Self-Assembled on Polyamide 11 Nanofibers. Adv Funct Mater.2008;18(16):2322-7.
    [2]Hou H, Reneker DH. Carbon Nanotubes on Carbon Nanofibers:A Novel Structure Based on Electrospun Polymer Nanofibers. Adv Mater.2004;16(1):69-73.
    [3]Iijima S. Helical microtubules of graphitic carbon. Nature.1991;354(6348):56-8.
    [4]Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter. Nature. 1993;363(6430):603-5.
    [5]Ji L, Zhang X. Electrospun carbon nanofibers containing silicon particles as an energy-storage medium. Carbon.2009;47:3219-26.
    [6]Kim C, Jeong YI, Ngoc BTN, Yang KS, Kojima M, Kim YA, et al. Synthesis and Characterization of Porous Carbon Nanofibers with Hollow Cores Through the Thermal Treatment of Electrospun Copolymeric Nanofiber Webs. Small.2006;1:91-5.
    [7]Fan S, Chapline MG, Franklin NR, Tombler TW, Cassell AM, Dai H. Self-Oriented Regular Arrays of Carbon Nanotubes and Their Field Emission Properties. Science.1999;283.
    [8]Feng W, Wu Z, Li Y, Feng Y, Yuan X. The fabrication and electrochemical properties of electrospun nanofibers of a multiwalled carbon nanotube grafted by chitosan. Nanotechnology. 2008;19:105707-13.
    [9]Pantano A, Buongiorno Nardelli M. Simulation of the Electromechanical Behavior of Multiwall Carbon Nanotubes. ACS Nano.2009;3(10):3266-72.
    [10]Qi YX, Li MS, Bai YJ. Carbon nanobelts synthesized via chemical metathesis route. Mater Lett.2007;61(4-5):1122-4.
    [11]Gupta P, Wilkes GL. Some investigations on the Fiber formation by utilizing a side-by-side bicomponent electrospinning approach. Polymer.2003;44(20):6353-9.
    [12]Li D, McCann Jesse T, Xia Y. Use of Electrospinning to Directly Fabricate Hollow Nanofibers with Functionalized Inner and Outer Surfaces13. Small.2005;1(1):83-6.
    [13]Li D, Wang Y, Xia Y. Electrospinning Nanofibers as Uniaxially Aligned Arrays and Layer-by-Layer Stacked Films. Adv Mater.2004;16(4):361-6.
    [14]Li D, Xia Y. Fabrication of Titania Nanofibers by Electrospinning, Nano Lett.2003;3:555-60.
    [15]Li D, Xia Y. Electrospinning of Nanofibers:Reinventing the Wheel? Adv Mater. 2004;16(14):1151-70.
    [16]Li D, Xia Y. Direct Fabrication of Composite and Ceramic Hollow Nanofibers by Electrospinning. Nano Lett.2004;4:933-8.
    [17]Li M, Zhang J, Zhang H, Liu Y, Wang C, Xu X, et al. Electrospinning:A Facile Method to Disperse Fluorescent Quantum Dots in Nanofibers without Forster Resonance Energy Transfer. Adv Funct Mater.2007;17(17):3650-6.
    [18]Li XH, Shao CL, Liu YC. A Simple Method for Controllable Preparation of Polymer Nanotubes via a Single Capillary Electrospinning. Langmuir.2007;23:10920-3.
    [19]Zussman E, Chen X, Ding W, Calabri L, Dikin DA, Quintana JP, et al. Mechanical and structural characterization of electrospun PAN-derived carbon nanofibers. Carbon. 2005;43(10):2175-85.
    [20]Lu B, Wang Y, Liu Y, Duan H, Zhou J, Zhang Z, et al. Superhigh-Throughput Needleless Electrospinning Using a Rotary Cone as Spinneret. Small.2010;9999(9999):NA.
    [21]Lu X, Wang C, Wei Y. One-Dimensional Composite Nanomaterials:Synthesis by Electrospinning and Their Applications. Small.2009;5:2349-70.
    [22]McCann JT, Lim B, Ostermann R, Rycenga M, Marquez M, Xia Y. Carbon Nanotubes by Electrospinning with a Polyelectrolyte and Vapor Deposition Polymerization. Nano Lett. 2007;7(8):2470-4.
    [23]Miller AJ, Hatton RA, Chen GY, Silva SRP. Carbon nanotubes grown on In[sub 2]O[sub 3]:Sn glass as large area electrodes for organic photovoltaics. Appl Phys Lett. 2007;90(2):023105-3.
    [24]Ko F, Gogotsi Y, Ali A, Naguib N, Ye H, Yang GL, et al. Electrospinning of Continuous Carbon Nanotube-Filled Nanofiber Yarns. Adv Mater.2003;15(14):1161-5.
    [25]Kozinsky B, Marzari N. Static Dielectric Properties of Carbon Nanotubes from First Principles. Phys Rev Lett.2006;96(16):166801-4.
    [26]Coleman JN, Dalton AB, Curran S, Rubio A, Davey AP, Drury A, et al. Phase Separation of Carbon Nanotubes and Turbostratic Graphite Using a Functional Organic Polymer. Adv Mater. 2000;12(3):213-6.
    [27]Dayal P, Kyu T. Porous fiber formation in polymer solvent system undergoing solvent evaporation. J Appl Phys.2006;100.
    [28]Ebbesen TW, Ajayan PM, Hiura H, Tanigaki K. Purification of nanotubes. Nature. 1994;367(6463):519-20.
    [29]Ramakrishna S, Fujihara K, Teo W-E, Yong T, Ma Z, Ramaseshan R. Electrospun nanofibers: solving global issues. Mater Today.2006;9(3):40-50.
    [30]Pan ZW, Dai ZR, Wang ZL. Nanobelts of Semiconducting Oxides. Science.2001 March 9, 2001;291(5510):1947-9.
    [31]Tan P, Hu C, Dong J, Shen W, Zhang B. Polarization properties, high-order Raman spectra, and frequency asymmetry between Stokes and anti-Stokes scattering of Raman modes in a graphite whisker. Phys Rev B.2001;64.
    [32]Xi G, Zhang M, Ma D, Zhu Y, Zhang H, Qian Y. Controlled synthesis of carbon nanocables and branched-nanobelts. Carbon.2006;44(4):734-41.
    [33]Zhang J, Lee J-K, Wu Y, Murray RW. Photo luminescence and Electronic Interaction of Anthracene Derivatives Adsorbed on Sidewalls of Single-Walled Carbon Nanotubes. Nano Lett. 2003;3:403-7.
    [34]Zhang J-X, Zheng Y-P, Lan L, Mo S, Yu P-Y, Shi W, et al. Direct Synthesis of Solvent-Free Multiwall Carbon Nanotubes/Silica Nonionic Nanofluid Hybrid Material. ACS Nano. 2009;3(8):2185-90.
    [35]Zhou M, Zhou J, Li R, Xie E. Preparation of Aligned Ultra-long and Diameter-controlled Silicon Oxide Nanotubes by Plasma Enhanced Chemical Vapor Deposition Using Electrospun PVP Nanofiber Template. Nano Res Lett.2010;5:279-85.
    [36]Zhou W, Bai X, Wang E, Xie S. Synthesis, Structure, and Properties of Single-Walled Carbon Nanotubes. Adv Mater.2009;21:4565-83.
    [37]Zhou W, Huang Y, Liu B, Hwang KC, Zuo JM, Buehler MJ, et al. Self-folding of single- and multiwall carbon nanotubes. Appl Phys Lett.2007;90(7):073107-3.
    [38]Okazaki T, Tatsu Y, Morigaki K. Phase Separation of Lipid Microdomains Controlled by Polymerized Lipid Bilayer Matrices. Langmuir.2009.
    [39]Pamula E, Rouxhet PG. Bulk and surface chemical functionalities of type III PAN-based carbon fibre. Carbon.2003;41:1905-15.
    [40]Chieu TC, Dresselhaus MS, Endo M. Raman studies of benzene-derived graphite fibers. Phys Rev B.1982;26(Copyright (C) 2010 The American Physical Society):5867.
    [41]Kim C, Park S-H, Cho J-I, Lee D-Y, Park T-J, Lee W-J, et al. Raman spectroscopic evaluation of polyacrylonitrile-based carbon nanofibers prepared by electrospinning. J Raman Spectr. 2004;35(11):928-33.
    [1]P V, Secasanu, Christopher, Giardina K, Wang Y. A Novel Electrospinning Target to Improve the Yield of Uniaxially Aligne fibers. biotechnology progress 2009;25:1169-75.
    [2]Lu B, Zhu C, Zhang Z, Lan W, Xie E. Preparation of highly porous TiO2 nanotubes and their catalytic applications. J Mater Chem.2012.
    [3]Katta P, Alessandro M, Ramsier RD, Chase GG. Continuous Electrospinning of Aligned Polymer Nanofibers onto a Wire DrumCollector. Nano Lett.2004;4:2215-8.
    [4]Ostermann R, Li D, Yin Y, McCann JT, Xia Y. V2O5 Nanorods on TiO2 Nanofibers:A New Class of Hierarchical Nanostructures Enabled by Electrospinning and Calcination. Nano Lett. 2006 2011/12/16;6(6):1297-302.
    [5]OODosunmu, GGChase, WKataphinan, Reneker DH. Electrospinning of polymer nanofibres from multiple jets on a porous tubular surface. Nanotechnology.2006; 11:1123-7.
    [6]Wang X, Niu H, Lin T, Wang X. Needleless Electrospinning of Nanofibers With a Conical Wire Coil. Polyr engineering and scince.2009;49:1582-6.
    [7]Dror Y, Salalha W, Avrahami R, Zussman E, Yarin AL, Dersch R, et al. One-Step Production of Polymeric Microtubes by Co-electrospinning. Small.2007;3(6):1064-73.
    [8]Li D, McCann Jesse T, Xia Y. Use of Electrospinning to Directly Fabricate Hollow Nanofibers with Functionalized Inner and Outer Surfaces. Small.2005;1(1):83-6.
    [9]Lu B, Wang Y, Liu Y, Duan H, Zhou J, Zhang Z, et al. Superhigh-Throughput Needleless Electrospinning Using a Rotary Cone as Spinneret. Small.2010;6(15):1612-6.
    [10]Saquing CD, Manasco JL, Khan SA. Electrospun Nanoparticle-Nanofiber Composites via a One-Step Synthesis. Small.2009;5(8):944-51.
    [11]Zhou J, Zhou M, Chen Z, Zhang Z, Chen C, Li R, et al. SiC nanotubes arrays fabricated by sputtering using electrospun PVP nanofiber as templates. Surf Coat Tech.2009;203:3219-23.
    [12]Friedrichs S, Falke U, Green MLH. Phase Separation of LaI3 inside Single-Walled Carbon Nanotubes. Chem Phys Chem.2005;6:300-5.
    [13]Liu Z, Sun DD, Peng Guo, Leckie JO. An Efficient Bicomponent TiO2/SnO2 Nanofiber Photocatalyst Fabricated by Electrospinning with a Side-by-Side Dual Spinneret Method. Nano Lett.2007;7:1081-5.
    [14]Shui J, Li JCM. Platinum Nanowires Produced by Electrospinning. Nano Lett.2009;9.
    [15]Weitz RT, Harnau L, Rauschenbach S, Burghard M, Kern K. Polymer Nanofibers via Nozzle-Free Centrifugal Spinning. Nano Lett.2008;8:1187-91.
    [16]Lu X, Wang C, Wei Y. One-Dimensional Composite Nanomaterials:Synthesis by Electrospinning and Their Applications.Small.2009;5:2349-70.
    [17]Chieu TC, Dresselhaus MS, Endo M. Raman studies of benzene-derived graphite fibers. Phys Rev B.1982;26(Copyright (C) 2010 The American Physical Society):5867.
    [18]Iijima S. Helical microtubules of graphitic carbon. Nature.1991;354(6348):56-8.
    [19]Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter. Nature. 1993;363(6430):603-5.
    [20]McCann JT, Lim B, Ostermann R, Rycenga M, Marquez M, Xia Y. Carbon Nanotubes by Electrospinning with a Polyelectrolyte and Vapor Deposition Polymerization. Nano Lett. 2007;7(8):2470-4.
    [21]Pantano A, Buongiorno Nardelli M. Simulation of the Electromechanical Behavior of Multiwall Carbon Nanotubes. ACS Nano.2009;3(10):3266-72.
    [22]Yang A, Tao X, Wang R, Lee S, Surya C. Room temperature gas sensing properties of SnO[sub 2]/multiwall-carbon-nanotube composite nanofibers. Appl Phys Lett. 2007;91(13):133110-3.
    [23]Zhou W, Huang Y, Liu B, Hwang KC, Zuo JM, Buehler MJ, et al. Self-folding of single- and multiwall carbon nanotubes. Appl Phys Lett.2007;90(7):073107-3.
    [24]Duan H, Xie E, Han L, Xu Z. Turning PMMA Nanofibers into Graphene Nanoribbons by In Situ Electron Beam Irradiation. Adv Maters.2008;20(17):3284-8.
    [25]Gogotsi Y. Designing Carbon Crystals for Nanotechnology Applications. Crys Grow Design. 2001; 1 179-81.
    [26]Helveg S, Lopez-Cartes C, Sehested J, Hansen PL, Clausen BS, Rostrup-Nielsen JR, et al. Atomic-scale imaging of carbon nanofibre growth. Nature.2004;427(6973):426-9.
    [27]Hou H, Ge JJ, Zeng J, Li Q, Reneker DH, Greiner A, et al. Electrospun Polyacrylonitrile Nanofibers Containing a High Concentration of Well-Aligned Multiwall Carbon Nanotubes. Chem Mater.2005; 17(5):967-73.
    [28]Howard GJ, McConnell P. Adsorption of polymers at the solution-solid interface. II. Polyethers on carbon. J Phys Chem.1967;71(9):2981-90.
    [29]Ko F, Gogotsi Y, Ali A, Naguib N, Ye H, Yang GL, et al. Electrospinning of Continuous Carbon Nanotube-Filled Nanofiber Yarns. Adv Mater.2003;15(14):1161-5.
    [30]Kuang Q, Xie S-Y, Jiang Z-Y, Zhang X-H, Xie Z-X, Huang R-B, et al. Low temperature solvothermal synthesis of crumpled carbon nanosheets. Carbon.2004;42(8-9):1737-41.
    [31]Sato Y, Minami T, Chiku Y, Takasawa Y, Nishitani-Gamo M, Oda H, et al. A Novel Nano-Carbon Rapid Growth Method in Liquid Alcohol Using Radiofrequency Induction Heating. Crys Grow Design.2006;6:2627-9.
    [32]Yoon S-H, Lim S, Hong S-h, Mochida I, An B, Yokogawa K. Carbon nano-rod as a structural unit of carbon nanofibers. Carbon.2004;42(15):3087-95.
    [33]Zhang Y, Ichihashi T, Landree E, Nihey F, Iijima S. Heterostructures of Single-Walled Carbon Nanotubes and Carbide Nanorods. Science.1999 September 10,1999;285(5434):1719-22.
    [34]Sun LT, Gong JL, Zhu DZ, Zhu ZY, He SX. Diamond Nanorods from Carbon Nanotubes. Adv Mater.2004; 16(20):1849-53.
    [35]Liu P, G HC, Yang W. Synthesis of Body-Centered Cubic Carbon Nanocrystals. Crys Grow& Design.2008;8:581-6.
    [36]Liu Q, Liu W, Cui Z-M, Song W-G, Wan L-J. Synthesis and characterization of 3D double branched K junction carbon nanotubes and nanorods. Carbon.2007;45(2):268-73.
    [37]Wang Y, Serrano S, Santiago-Aviles JJ. Raman characterization of carbon nanofibers prepared using electrospinning. Synth Metal.2003;138(3):423-7.
    [38]Sundaram RS, Go'mez-Navarro C, Balasubramanian K, Burghard M, Kern K. Electrochemical Modification of Graphene. Adv Mater.2008;20:3050-3.
    [39]Ramanthan T et al. Functionalized graphene sheets for polymer nanocomposites. Nature Nano.2008:3:327-31.
    [40]Onofrio R, Raman C, Vogels JM, Abo-Shaeer JR, Chikkatur AP, Ketterle W. Observation of Superfluid Flow in a Bose-Einstein Condensed Gas. Phys Rev Lett..2000;85(11):2228.
    [41]Ni ZH, Yu T, Luo ZQ, Wang YY, Liu L, Wong CP, et al. Probing Charged Impurities in Suspended Graphene Using Raman Spectroscopy. Acs Nano.2009;3:569-74.
    [42]Wang Yy, Ni Zh, Yu T, Shen ZX, Wang Hm, Wu Yh, et al. Raman Studies of Monolayer Graphene:The Substrate Effect. J Phys Chem.2008; 112:10637-40.
    [43]Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, et al. RamanSpectrumofGrapheneandGraphene Layers. Phys Rev Lett.2006:187401(4).
    [44]Ni ZH, Yu T, Lu YH, Wang YY, Feng YP, Shen ZX. UniaxialStrainonGraphene:Raman SpectroscopyStudyandBand-Gap Opening. Acs Nano.2008;2:2301-5.
    [45]Chen H, Muller MB, Gilmore KJ, Wallace GG, Li D. Mechanically Strong, Electrically Conductive, and Biocompatible Graphene Paper. Adv Mater.2008;20(18):3557-61.
    [46]Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, et al. Raman Spectrum of Graphene and Graphene Layers. Phys Rev Lett.2006;97(18):187401.
    [47]Katsnelson MI. Graphene:carbon in two dimensions. Mater Today.10(1-2):20-7.
    [48]Morozov SV, Novoselov KS, Katsnelson MI, Schedin F, Ponomarenko LA, Jiang D, et al. Strong Suppression of Weak Localization in Graphene. Phys Rev Lett.2006;97(1):016801.
    [49]Sundaram RS, Gomez-Navarro C, Balasubramanian K, Burghard M, Kern K. Electrochemical Modification of Graphene. Adv Mater.2008;20(16):3050-3.
    [50]Thomsen C, Reich S. Double Resonant Raman Scattering in Graphite. Phys Rev Lett. 2000;85(24):5214.
    [51]Raidongia K, Nag A, Hembram KPSS, Waghmare UV, Datta R, Rao CNR. BCN:A Graphene Analogue with Remarkable Adsorptive Properties. Chem Eur J.2010; 16:149-57.
    [52]OuYang F, Huang B, Li Z, Xiao J, Wang H, Xu H. Chemical Functionalization of Graphene Nanoribbons by Carboxyl Groups on Stone-Wales Defects. J Phys Chem C.2008; 112:12003-7.
    [53]Park S, Ruoff RS. Chemical methods for the production of graphenes. Nat Nano. 2009;4(4):217-24.
    [54]Elena Bekyarova MEI, Palanisamy Ramesh, Claire, Berger MS, Walt A. de Heer, and Robert C. Haddon. Chemical Modification of Epitaxial Graphene:Spontaneous Grafting of Aryl Groups. J Am Chem Soc.2009; 131:1336-7.
    [55]Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, et al. Electric Field Effect in Atomically Thin Carbon Films. Science.2004 October 22,2004;306(5696):666-9.
    [56]Smith BW, Monthioux M, Luzzi DE. Encapsulated C60 in carbon nanotubes. Nature. 1998;396:323-4.
    [57]Joshua A. Robinson, III ML, Trumbull KA, Weng X, Cavelero R, Daniels T, et al. EpitaxialGrapheneMaterialsIntegratio:EffectsofDielectric Overlayerson Structural and Electronic Properties. Acs Nano.2010.
    [58]Girit CO, Meyer JC, Erni R, Rossell MD, Kisielowski C, Yang L, et al. Graphene at the Edge:Stability and Dynamics. Science.2009;323:1705-8.
    [59]Paredes JI, Villar-Rodil S, Marti#nez-Alonso A, Tasco#n JMD. Graphene Oxide Dispersions in Organic Solvents. Langmuir.2008;24:10560-4.
    [60]Rao CNR, Sood AK, Subrahmanyam KS, Govindaraj A. Graphene:The New Two-Dimensional Nanomaterial. Angew Chem Int Ed.2009;48:7752-77.
    [61]Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, et al. Graphene-based composite materials. Nature.2006;442:282-6.
    [62]Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, et al. Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition. Nano Lett.2009;9:30-5.
    [63]Li X, Cai W, An J, Kim S, Nah J, Yang D, et al. Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science.2009;324:1312-4.
    [64]Kudin KN, Ozbas B, Schniepp HC, Prud'homme RK, Aksay IA, Car R. Raman Spectra of Graphite Oxide and Functionalized Graphene Sheets. Nano Lett.2008;8:36-41.
    [65]Ni Z, Wang Y, Yu T, Shen Z. Raman Spectroscopy and Imaging of Graphene. Nano Res. 2008:273-91.
    [66]Casiraghi C, Hartschuh A, Qian H, Piscanec S, Georgi C, Fasoli A, et al. Raman Spectroscopy of Graphene Edges. Nano Lett.2009.
    [67]Wu Z-S, Ren W, Gao L, Zhao J, Chen Z, Liu B, et al. Synthesis of Graphene Sheets with High Electrical Conductivity and Good Thermal Stability by Hydrogen Arc Discharge Exfoliation. Acs Nano.2009;3:411-7.
    [1]Raidongia K, Nag A, Hembram KPSS, Waghmare UV, Datta R, Rao CNR. BCN:A Graphene Analogue with Remarkable Adsorptive Properties. Chem Eur J.2010;16:149-57.
    [2]Simonepisana, I, et al. Breakdownoftheadiabatic Born-Oppenheimer approximation in graphene. Nat Mater.2007;6:198-201.
    [3]Yoon S-H, Lim S, Hong S-h, Mochida I, An B, Yokogawa K. Carbon nano-rod as a structural unit of carbon nanofibers. Carbon.2004;42(15):3087-95.
    [4]Ou Yang F, Huang B, Li Z, Xiao J, Wang H, Xu H. Chemical Functionalization of Graphene Nanoribbons by Carboxyl Groups on Stone-Wales Defects. J Phys Chem C.2008;112:12003-7.
    [5]Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, et al. Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition. Nano Lett.2009;9:30-5.
    [6]Wu Z-S, Ren W, Gao L, Zhao J, Chen Z, Liu B, et al. Synthesis of Graphene Sheets with High Electrical Conductivity and Good Thermal Stability by Hydrogen Arc Discharge Exfoliation. Acs Nano.2009;3:411-7.
    [7]Luo Z, Yu T, Kim K-j, Ni Z, You Y, Lim S, et al. Thickness-DependentReversible HydrogenationofGrapheneLayers. Acs Nano.2009;3:1781-8.
    [8]Bhuvana T, Kumar A, Sood A, Gerzeski RH, Hu J, Bhadram VS, et al. Contiguous Petal-like Carbon Nanosheet Outgrowths from Graphite Fibers by Plasma CVD. ACS Appl Mater Inter. 2010;2:644-8.
    [9]Lee H, Rajagopalan R, Robinson J, Pantano CG. Processing and Characterization of Ultrathin Carbon Coatings on Glass. ACS Appl Mater Inter.2009; 1:927-33.
    [10]Turchanin A, Beyer A, Nottbohm CT, Zhang X, Stosch R, Sologubenko A, et al. One Nanometer Thin Carbon Nanosheets with Tunable Conductivity and Stiffness. Adv Mater. 2009;21:1233-7.
    [11]Ko H, Zhang Z, Chueh Y-L, Ho JC, Lee J, Fearing RS, et al. Wet and Dry Adhesion Properties of Self-Selective Nanowire Connectors. Adv Funct Mater.2009;19:3098-102.
    [12]Bognitzki M, Czado W, Frese T, Schaper A, Hellwig M, Steinhart M, et al. Nanostructured Fibers via Electrospinning. Adv Mater.2001;13(l):70-2.
    [13]Bognitzki M, Hou H, Ishaque M, Frese T, Hellwig M, Schwarte C, et al. Polymer, Metal, and Hybrid Nano-and Mesotubes by Coating Degradable Polymer Template Fibers (TUFT Process). Adv Mater.2000;12(9):637-40.
    [14]Coleman JN, Dalton AB, Curran S, Rubio A, Davey AP, Drury A, et al. Phase Separation of Carbon Nanotubes and Turbostratic Graphite Using a Functional Organic Polymer. Adv Mater. 2000;12(3):213-6.
    [15]Hou H, Reneker DH. Carbon Nanotubes on Carbon Nanofibers:A Novel Structure Based on Electrospun Polymer Nanofibers. Adv Mater.2004;16(l):69-73.
    [16]Kotov NA, Winter JO, Clements IP, Jan E, Timko BP, Campidelli Sp, et al. Nanomaterials for Neural Interfaces. Adv Mater.2009;21:3970-4004.
    [17]Li D, Wang Y, Xia Y. Electrospinning Nanofibers as Uniaxially Aligned Arrays and Layer-by-Layer Stacked Films. Adv Mater.2004;16(4):361-6.
    [18]Li D, Xia Y. Electrospinning of Nanofibers:Reinventing the Wheel? Adv Mater. 2004;16(14):1151-70.
    [19]P V, Secasanu, Christopher, Giardina K, Wang Y. A Novel Electrospinning Target to Improve the Yield of Uniaxially Aligne fibers. Biotech Prog 2009;25:1169-75.
    [20]Xi G, Zhang M, Ma D, Zhu Y, Zhang H, Qian Y. Controlled synthesis of carbon nanocables and branched-nanobelts. Carbon.2006;44(4):734-41.
    [21]Friedrichs S, Falke U, Green MLH. Phase Separation of LaI3 inside Single-Walled Carbon Nanotubes. Chem Phys Chem.2005;6:300-5.
    [22]Shin C, Chase GG, Reneker DH. Recycled expanded polystyrene nanofibers applied in filter media. Coll Surf A.2005;262:211-5.
    [23]Yejun Qiu, Yu J, Rafique J, Yin J, Bai X, Wang E. Large-Scale Production of Aligned Long Boron Nitride Nanofibers by Multijet/Multicollector Electrospinning. J Phys Chem C. 2009; 113:11228-34.
    [24]Niu H, Lin T, Wang X. Needleless Electrospinning. I. A Comparison of Cylinder and Disk Nozzles. J Appl Poly Sci.2009; 114.
    [25]Zhang C, Kang Z, Shen E, Wang E, Gao L, Luo F, et al. Synthesis and Evolution of PbS Nanocrystals through a Surfactant-Assisted Solvothermal Route. J Phys Chem B. 2005;110(1):184-9.
    [26]Kim C, Park S-H, Cho J-I, Lee D-Y, Park T-J, Lee W-J, et al. Raman spectroscopic evaluation of polyacrylonitrile-based carbon nanofibers prepared by electrospinning. J Raman Spectro. 2004;35(11):928-33.
    [27]Liu C, Hu Z, Wu Q, Wang X, Chen Y, Sang H, et al. Vapor-Solid Growth and Characterization of Aluminum Nitride Nanocones. J Am Chem Soc.2005; 127(4):1318-22.
    [28]McCann JT, Marquez M, Xia Y. Highly Porous Fibers by Electrospinning into a Cryogenic Liquid. J Am Chem Soc.2006 2011/12/16; 128(5):1436-7.
    [29]Huang C, Chen S, Lai C, Reneker DH, Qiu H, YingYe, et al. Electrospun polymer nanofibres with small diameters. Nanotechnology.2006;17:1558-63.
    [30]OODosunmu, GGChase, WKataphinan, Reneker DH. Electrospinning of polymer nanofibres from multiple jets on a porous tubular surface. Nanotechnology.2006; 11:1123-7.
    [31]Teo WE, Ramakrishna S. A reviewonelectrospinning design and nanofibre assemblies. Nanotechnology.2006; 17:89-106.
    [32]Li RS, Liu B, Zhou M, Zhang ZX, Wang T, Lu BA, et al. Effect of deposition voltage on the field emission properties of electrodeposited diamond-like carbon films. Appl Surf Sci. 2009;255(9):4754-7.
    [33]Li RS, Xie EQ, Zhou M, Zhang ZX, Wang T, Lu BA. Field emission properties of nitrogen incorporated DLC films prepared by electrodeposition. Appl Surf Sci.2008;255(5, Part 2):2787-90.
    [34]Li D, Wang Y, Xia Y. Electrospinning of Polymeric and Ceramic Nanofibers as Uniaxially Aligned Arrays. Nano Lett.2003;3:1167-71.
    [35]Li Y, Sun S, Ma M, Ouyang Y, Yan W. Kinetic study and model of the photocatalytic degradation of rhodamine B (RhB) by a TiO2-coated activated carbon catalyst:Effects of initial RhB content, light intensity and TiO2 content in the catalyst. Chem Eng J.2008; 142(2):147-55.
    [36]Liu Z, Sun DD, Peng Guo, Leckie JO. An Efficient Bicomponent TiO2/SnO2 Nanofiber Photocatalyst Fabricated by Electrospinning with a Side-by-Side Dual Spinneret Method. Nano Lett.2007;7:1081-5.
    [37]Loscertales IG, Barrero A, Guerrero I, Cortijo R, Marquez M, Micro/Nano Encapsulation via Electrified Coaxial Liquid Jets. Science.2002 March 1,2002;295(5560):1695-8.
    [38]McCann JT, Li D, Xia Y. Electrospinning of nanofibers with core-sheath, hollow, or porous structures. J Mater Chem.2005;15(7):735-8.
    [39]Ramakrishna S, Fujihara K, Teo W-E, Yong T, Ma Z, Ramaseshan R. Electrospun nanofibers: solving global issues. Mater Today.2006;9(3):40-50.
    [40]Zhang J, Xu Q, Feng Z, Li M, Li C. Importance of the Relationship between Surface Phases and Photocatalytic Activity of TiO2. Angew Chem Inter Ed.2008;47(9):1766-9.
    [41]Zhang M, Bando Y, Wada K. Sol-gel template preparation of TiO2 nanotubes and nanorods. J Mater Sci Lett.2001;20(2):167-70.
    [42]Zhang Q, Gao L, Guo J. Effects of calcination on the photocatalytic properties of nanosized TiO2 powders prepared by TiC14 hydrolysis. Appl Cataly B:Env.2000;26(3):207-15.
    [43]Albu SP, Ghicov A, Aldabergenova S, Drechsel P, LeClere D, Thompson GE, et al. Formation of Double-Walled TiO2 Nanotubes and Robust Anatase Membranes. Adv Mater. 2008;20(21):4135-9.
    [44]Bacsa RR, Kiwi J. Effect of rutile phase on the photocatalytic properties of nanocrystalline titania during the degradation of p-coumaric acid. Appl Cata B:Env.1998; 16(1):19-29.
    [45]Bakardjieva S, Subrt J, Stengl V, Dianez MJ, Sayagues MJ. Photoactivity of anatase-rutile TiO2 nanocrystalline mixtures obtained by heat treatment of homogeneously precipitated anatase. Appl Cata B:Env.2005;58(3-4):193-202.
    [46]Balaur E, Macak JM, Tsuchiya H, Schmuki P. Wetting behaviour of layers of TiO2 nanotubes with different diameters. J Mater Chem.2005;15(42):4488-91.
    [47]Bavykin DV, Parmon VN, Lapkin AA, Walsh FC. The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes. J Mater Chem.2004;14(22):3370-7.
    [48]Bazilevsky AV, Yarin AL, Megaridis CM. Co-electrospinning of Core-shell Fibers Using a Single-Nozzle Technique. Langmuir.2007;23(5):2311-4.
    [49]Bickley RI, Gonzalez-Carreno T, Lees JS, Palmisano L, Tilley RJD. A structural investigation of titanium dioxide photocatalysts. J Solid State Chem.1991;92(1):178-90.
    [50]Formo E, Lee E, Campbell D, Xia Y. Functionalization of Electrospun TiO2 Nanofibers with Pt Nanoparticles and Nanowires for Catalytic Applications. Nano Lett.2008;8(2):668-72.
    [51]Greiner A, Wendorff JH. Electrospinning:A Fascinating Method for the Preparation of Ultrathin Fibers. Angew Chem Inter Ed.2007;46(30):5670-703.
    [52]Kumar A, Jose R, Fujihara K, Wang J, Ramakrishna S. Structural and Optical Properties of Electrospun TiO2 Nanofibers. Chem Mater.2007;19(26):6536-42.
    [53]Li D, McCann Jesse T, Xia Y. Use of Electrospinning to Directly Fabricate Hollow Nanofibers with Functionalized Inner and Outer Surfaces. Small.2005;1(1):83-6.
    [54]Li D, Xia Y. Fabrication of Titania Nanofibers by Electrospinning. Nano Lett. 2003;3(4):555-60.
    [55]Xu X, Fang X, Zhai T, Zeng H, Liu B, Hu X, et al. Nanotubes:Tube-in-Tube TiO2 Nanotubes with Porous Walls:Fabrication, Formation Mechanism, and Photocatalytic Properties (Small 4/2011). Small.2010;7(4):444-.
    [56]Sun Z-P, Liu L, Zhang L, Jia D-Z. Rapid synthesis of ZnO nano-rods by one-step, room-temperature, solid-state reaction and their gas-sensing properties. Nanotechnology.2006; 17 2266-70.
    [1]Duan H, Xie E, Han L, Xu Z. Turning PMMA Nanofibers into Graphene Nanoribbons by In Situ Electron Beam Irradiation. Adv Maters.2008;20(17):3284-8.
    [2]Gogotsi Y. Designing Carbon Crystals for Nanotechnology Applications. Crys Grow Des. 2001; 1179-81.
    [3]Schlittler RR, Seo JW, Gimzewski JK, Durkan C, Saifullah MSM, Welland ME. Single Crystals of Single-Walled Carbon Nanotubes Formed by Self-Assembly. Science.2001 May 11, 2001;292(5519):1136-9.
    [4]Sun LT, Gong JL, Zhu DZ, Zhu ZY, He SX. Diamond Nanorods from Carbon Nanotubes. Adv Mater.2004; 16(20):1849-53.
    [5]Zhang Y, Ichihashi T, Landree E, Nihey F, Iijima S. Heterostructures of Single-Walled Carbon Nanotubes and Carbide Nanorods. Science.1999 September 10,1999;285(5434):1719-22.
    [6]Raidongia K, Nag A, Hembram KPSS, Waghmare UV, Datta R, Rao CNR. BCN:A Graphene Analogue with Remarkable Adsorptive Properties. Chem Eur J.2010;16:149-57.
    [7]OuYang F, Huang B, Li Z, Xiao J, Wang H, Xu H. Chemical Functionalization of Graphene Nanoribbons by Carboxyl Groups on Stone-Wales Defects. J Phys Chem C.2008; 112:12003-7.
    [8]Park S, Ruoff RS. Chemical methods for the production of graphenes. Nat Nano. 2009;4(4):217-24.
    [9]Ismach A, Druzgalski C, Penwell S, Zheng M, Javey A, Bokor J, et al. Direct Chemical Vapor Deposition of Graphene on Dielectric Surfaces. Nano Lett.2009; 10:1542-8
    [10]Xu Y, Bai H, Lu G, Li C, Shi G. Flexible Graphene Films via the Filtration of Water-Soluble Noncovalent Functionalized Graphene Sheets. J Am Chem Soc.2008; 130:5856-7.
    [11]Girit CO, Meyer JC, Erni R, Rossell MD, Kisielowski C, Yang L, et al. Graphene at the Edge: Stability and Dynamics. Science.2009;323:1705-8.
    [12]Paredes JI, Villar-Rodil S, Marti#nez-Alonso A, Tasco#n JMD. Graphene Oxide Dispersions in Organic Solvents. Langmuir.2008;24:10560-4.
    [13]Geim AK. Graphene:Status and Prospects. Science.2009;324:1530-4.
    [14]Rao CNR, Sood AK, Subrahmanyam KS, Govindaraj A. Graphene:The New Two-Dimensional Nanomaterial. Angew Chem Int Ed.2009;48:7752-77.
    [15]Standley B, Bao W, Zhang H, Bruck J, Lau CN, Bockrath M. Graphene-Based Atomic-Scale Switches. Nano Lett.2008.
    [16]Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, et al. Graphene-based composite materials. Nature.2006;442:282-6.
    [17]Xiang H, Kan E, Wei S-H, Whangbo M-H, Yang J. "Narrow" Graphene Nanoribbons Made Easier by Partial Hydrogenation. Nano Lett.2009;9:4025-30.
    [18]Ni Z, Wang Y, Yu T, Shen Z. Raman Spectroscopy and Imaging of Graphene. Nano Res. 2008:273-91.
    [19]Panchakarla LS, Subrahmanyam KS, Saha SK, Govindaraj A, Krishnamurthy HR, Waghmare UV, et al. Synthesis, Structure, and Properties of Boron-and Nitrogen-Doped Graphene. Adv Mater.2009;21:4726-30.
    [20]Hu W, Peng C, Luo W, Lv M, Li X, Li D, et al. Graphene-Based Antibacterial Paper. Acs Nano.2010;4(7):4317-23.
    [21]Ko H, Zhang Z, Chueh Y-L, Ho JC, Lee J, Fearing RS, et al. Wet and Dry Adhesion Properties of Self-Selective Nanowire Connectors. Adv Funct Mater.2009; 19:3098-102.
    [22]Li D, Wang Y, Xia Y. Electrospinning Nanofibers as Uniaxially Aligned Arrays and Layer-by-Layer Stacked Films. Adv Mater.2004; 16(4):361-6.
    [23]Li D, Xia Y. Electrospinning of Nanofibers:Reinventing the Wheel? Adv Mater. 2004;16(14):1151-70.
    [24]P V, Secasanu, Christopher, Giardina K, Wang Y. A Novel Electrospinning Target to Improve the Yield of Uniaxially Aligne fibers. Biotech Prog 2009;25:1169-75.
    [25]Liu Z, Sun DD, Peng Guo, Leckie JO. An Efficient Bicomponent TiO2/SnO2 Nanofiber Photocatalyst Fabricated by Electrospinning with a Side-by-Side Dual Spinneret Method. Nano Lett.2007;7:1081-5.
    [26]Huang C, Chen S, Lai C, Reneker DH, Qiu H, YingYe, et al. Electrospun polymer nanofibres with small diameters. Nanotechnology.2006;17:1558-63.
    [27]Teo WE, Ramakrishna S. A reviewonelectrospinning design and nanofibre assemblies. Nanotechnology.2006;17:89-106.
    [28]Wang X, Niu H, Lin T, Wang X. Needleless Electrospinning of Nanofibers With a Conical Wire Coil. Polymer engineering and scince.2009;49:1582-6.
    [29]Li D, McCann Jesse T, Xia Y. Use of Electrospinning to Directly Fabricate Hollow Nanofibers with Functionalized Inner and Outer Surfaces. Small.2005;1(1):83-6.
    [30]Bhattarai N, Edmondson D, Veiseh O, Matsen FA, Zhang M. Electrospun chitosan-based nanofibers and their cellular compatibility. Biomaterials.2005;26(31):6176-84.
    [31]Chen Z, Mo X, He C, Wang H. Intermolecular interactions in electrospun collagen-chitosan complex nanofibers. Carbo Polym.2008;72(3):410-8.
    [32]De Vrieze S, Westbroek P, Van Camp T, Van Langenhove L. Electrospinning of chitosan nanofibrous structures:feasibility study. J Mater Sci.2007;42(19):8029-34.
    [33]Desai K, Kit K, Li J, Michael Davidson P, Zivanovic S, Meyer H. Nanofibrous chitosan non-wovens for filtration applications. Polymer.2009;50(15):3661-9.
    [34]Ignatova M, Manolova N, Rashkov I. Novel antibacterial fibers of quaternized chitosan and poly(vinyl pyrrolidone) prepared by electrospinning. Eur Poly J.2007;43(4):1112-22.
    [35]Ignatova M, Starbova K, Markova N, Manolova N, Rashkov I. Electrospun nano-fibre mats with antibacterial properties from quaternised chitosan and poly(vinyl alcohol). Carbo Res. 2006;341(12):2098-107.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700