基于碳纳米管和铂纳米粒子的葡萄糖电化学生物传感器
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电化学传感器是检测葡萄糖水平的有效手段,开发新的电极表面修饰材料以提高电极灵敏度和延长使用寿命成为研究者关注的一个重要方面。纳米材料以其独特的电学性质被用以提高电极灵敏度,其中,碳纳米管和以铂、金、银为主的贵金属纳米材尤为应用广泛。在此背景下,本文开展了如下工作:
     1.提出了一种快速、简便从而能够在传感器上批量修饰纳米材料的原位化学还原法,并将此方法成功应用于在玻璃片上修饰铂纳米颗粒。首先利用直径为10nm左右的金纳米微粒作为种子喷洒在玻璃片上,再将玻璃片浸泡到氯铂酸溶液中制备铂纳米颗粒层,最后葡萄糖氧化酶被电沉积到最外层。由这种方法制备的电极表现出优越的生物传感性能。
     2.提出了一种在玻碳电极上利用种子法制备纳米颗粒的方法。先将直径约3.5nm的金颗粒与碳纳米管吸附到电极表面,再将电极浸泡到氯铂酸溶液中还原制得铂纳米颗粒层。葡萄糖氧化酶被电沉积到电极最外层表面从而制得葡萄糖电化学传感器。以该方法制得酶电极表现优越的性能,包括高灵敏度(4.49μA·mM-1),快速的反应时间(2s),低检测限(0.5μM)和宽线性范围(1μM-4mM)。可用于制备各类生物酶电极,具有广泛的应用前景。
     3.报道了一种新型的电流型葡萄糖传感器,通过二茂铁修饰的碳纳米管组装而成。先将碳纳米管氨基化,再利用1-乙基-3-(3-二甲基氨丙基)-碳化二亚胺(EDC)和N-羟基琥珀酰亚胺(NHS)将羧基二茂铁上的羧基与碳纳米管上的氨基交连,再用牛血清蛋白(BSA)交连法固定葡萄糖氧化酶,制成葡萄糖传感器。分别用伏安法和计时电流法表征了制得电极的电活性,其对过氧化氢的响应电流分别高于由碳纳米管和二茂铁单独修饰的电极。
Electrochemical biosensors are effective tools for detecting glucose level, to develop new materials for electrode surface modification and to enhance electrodes’sensitivity and lifetime became an important study area. Nanomaterials are used to enhance electrodes’sensitivity due to their special electrical properties; Carbon nanotubes and novel metal nanoparticles, including platinum, gold, silver, are well-used among all kinds of nanomateirals. Therefore, this research focuses on the details as follow:
     (1) A fast, simple in situ chemical reductive method is reported which can mass-produce nanomaterials onto electrodes’surfaces, and this method was successfully applied to modify platinum nanoparticles onto glass slides. Gold nanoparticles with diameter around 10nm were sputtered onto a glass slide as seeds, and then the glass slide was immersed into H2PtCl4 solution to produce Pt nanoparticle layer, and finally glucose oxidase was electrodeposited onto the outmost layer. The biosensor fabricated by this method illustrated outstanding features.
     (2) A seed-mediated method was reported to grow nanoparticles onto glass carbon electrode. 3.5nm gold nanoparticles and carbon nanotubes were deposited onto electrode’s surface, and then the electrode was immersed into H2PtCl4 solution to produce Pt nanoparticles layer by reduction. Glucose oxidase was electrodeposited onto electrode’s surface to fabricate the glucose oxidase-based electrochemical biosensor. The sensor produced by this method showed excellent properties, including high sensitivity (4.49μA mM-1), fast response time (2s), low detection limit (0.5μM) and wide linear range (1μM– 4mM). This method can be used to fabricate many oxidase-based electrodes, and has wide application potential.
     (3) A novel amperometric glucose sensor is reported, using ferrocene -functionalized carbon nanotubes to modify the electrodes. First amidation the carbon nanotubes, and then use 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and N-hydroxysuccinimide (NHS) to covalent bind the carboxyl group of ferrocene to the amino group of carbon nanotubes, and finally use bovine serum albumin (BSA) covalent binding method to immobilize the glucose oxidase onto the electrode to fabricate the sensor. Cyclic voltammograms and current-time methods were carried out to characterize the electroactivity of the proposed electrode. The results show that the response of proposed electrode toward peroxide hydrogen is higher than those of electrodes modified by simply carbon nanotubes and ferrocene respectively.
引文
[1] Bakker E, Telting Diaz M. Electrochemical Sensors. Analytical Chemistry, 2002, 74(12): 2781-2800
    [2] Bakker E. Electrochemical Sensors. Analytical Chemistry, 2004, 76(12): 3285-3298
    [3] Bakker E, Qin Y. Electrchemical Sensors. Analytical Chemistry, 2006, 78(12): 3965 - 3984
    [4] Kotzian P, Brazdilova P, Rezkova S, et al. Amperometric glucose bionseosr based on rhodium dioxide-modified carbon ink. Electroanalysis, 2006, 18(15): 1499-1504
    [5] Michael C, Ouerd A, Battaglia-Brunet F, et al. Cr(VI) quantification using an amperometric enzyme-based sensor: Interface and physical and chemical factors controlling the biosensor response in ground waters. Bionsensors & Bioelectronics, 2006, 22(2): 285-290
    [6] Perez J P H, Lopez M S P, Lopez-Cabarcos E, et al. Amperometric tyrosinase biosensor based on polyacrylamide microgels. Biosensors & Bioelectronics, 2006, 22(3): 429-439
    [7] Tatsumi H, Katano H, Ikeda T. Kinetic analysis of enzymatic hydrolysis of crystalline cellulose by cellobiohydrolase using an amperometric biosensor. Analytical Biochemistry, 2006, 357(2): 257-261
    [8] Guilbaul G G, Montalvo J G. An enzyme electrode for substrate urea. The Journal of the American Chemical Society, 1970, 92(8): 2533-2534
    [9] Wang J, Lu J, Larson D D, Olsen K. Voltammetric sensor for uranium based on the propyl gallate-modified carbon paste electrode. Electroanalysis, 2005, 7(3): 247-250
    [10] Zhou Y, Yu B, Levon K. Potentiometric sensor for dipicolinic acid. Biosensors & Bioelectronics, 2005, 20(9): 1851-1855
    [11] Nikolelis D P, Krull U J. Establishment and control of artificial ion-conductive zones for lipid-membrane biosensor development. Analytica Chimica Acta, 1992, 257(2): 239-245
    [12] Zhylyak G A, Dzyadevich S V, Korpan Y I, et al. Application of urease conductometric biosensor for heavy-metal ion determination. Sensors &Actuators B-Chemical, 1995, 24(1-3): 145-148
    [13] Wang J. Analytical Electrochemistry-Second Edition. New York: Wiley -VCH, 2000: 171-176
    [14]董永贵.传感技术与系统.北京:清华大学出版社,2006:317-321
    [15] Makos M A, Kim Y C, Han K A, et al. In Vivo Electrochemical Measurements of Exogenously Applied Dopamine in Drosophila Melanogaster. Analytical Chemistry, 2009, 81(5): 1848-1854
    [16] Dong Y, Heien M L, Maxson M M, et al. Amperometric measurements of catecholamine release from single vesicles in MN9D cells. The Journal of Neurochemistry, 2008, 107(6): 1589-1595
    [17] Adams K L, Puchades M, Ewing A G. In-vitro Electrochemistry of Biological Systems. Annual Review of Analytical Chemistry, 2008, 1(1): 329-355
    [18] Cui G, Kim S J, Choi S H, et al. A disposable amperometric sensor screen printed on a nitrocellulose strip: a glucose biosensor employing lead oxide as an interference-removing agent. Analytical Chemistry, 2000, 72(8): 1925-1929
    [19] Zhang Z N, Liu H Y, Deng J Q. A glucose biosensor based on immobilization of glucose in electropolymerized o-aminophenol film on platinized glassy carbon electrode. Analytical Chemistry, 1996, 68(9): 1632-1638
    [20] Ricci F, Palleschi G. Sensor and biosensor preparation, optimization and applications of prussian blue modified electrodes. Biosensors & Bioelectronics, 2005, 21(3): 389-407
    [21] Zhu L D, Zhai J L, Guo Y N, et al. Amperometric glucose biosensors based on integration of glucose oxidase onto Prussian blue/carbon nanotubes nanocomposite electrode. Electroanalysis, 2006, 18(18): 1842-1846
    [22] Ganesan N, Grade A P, Paranjape M, et al. Gold layer-based dual crosslinking procedure of glucose oxidase with ferrocene monocarboxylic acid provides a stable biosensor. Analytical Biochemistry, 2005, 343(1): 188-191
    [23] Muguruma H, Kase Y, Uehara H. Nanothin ferrocene film plasma polymerized over physisorbed glucose oxidase: high-throughput fabrication of bioelectronic devices without chemical modification. Analytical Chemistry, 2005, 77(20): 6557-6562
    [24] Wang J, Park D S, Pamidi P V. Tailoring the macroporosity and performance of sol-gel derived carbon composite glucose sensors. The Journal of Electroanalytical Chemistry, 1997, 434(1-2): 185-189
    [25] Kandimalla V B, Tripathi V S, Ju H X. A conductive ormosil encapsulated with ferrocene conjugate and multiwall carbon nanotubes for biosensing application. Biomaterials, 2006, 27(7): 1167-1174
    [26] Yu X, Sotzing G A, Papadimitrakopoulos F, et al. Wiring of enzymes to electrodes by ultrathin conductive polyion underlayers: enhanced catalytic response to hydrogen peroxide. Analytical Chemistry, 2003, 75(17): 4565-4571
    [27] Zhou H, Gan X, Wang J, et al. Hemoglobin-based hydrogen peroxide biosensor tuned by the photovoltaic effect of nano titanium dioxide. Analytical Chemistry, 2005, 77(18): 6102-6104
    [28] Zhao S, Zhang K, Sun Y Y, et al. Hemoglobin/colloidal silver nanoparticles immobilized in titania sol-gel film on glassy carbon electrode: Direct electrochemistry and electrocatalysis. Bioelectrochemistry, 2006, 69(1): 10-15
    [29] Zheng L X, O’Connell M J, Doorn S K, et al. Ultralong Single-Wall Carbon Nanotubes. Nature Materials, 2004, 3(10): 673-673
    [30] Wang J. Carbon-Nanotube Based Electrochemical Biosensor: A Review. Electroanalysis, 2005, 17(1): 7-14
    [31] Rao C N, Satishkumar B C, Govindaraj A, et al. Nanotubes. ChemPhysChem, 2001, 2(2): 78-105
    [32] Davis J J, Coleman K, Azamian B, et al. Chemical and biochemical sensing with modified single walled carbon nanotubes. Chemistry - A European Journal, 2003, 9(16): 3732-3739
    [33] Baughman R H, Zakhidov A, Heer W A. Carbon nanotubes - the route toward applications. Science, 2002, 297(5582): 787-792
    [34] Zhao Q, Gan Z, Zhuang Q. Electrochemical sensors based on carbon nanotubes. Electroanalysis, 2002, 14(23): 1609-1613
    [35] Lijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354(6348): 56-58
    [36] Philip C G, Avouris P. Nanotubes for Electronics. Scientific American, 2000, 238(6): 67-69
    [37] Ebbesen, T W, Ajayan P M. Large-scale synthesis of carbon nanotubes. Nature, 1992, 358(6383): 220-222
    [38] Lu C, Liu J. Controlling the Diameter of Carbon Nanotubes in Chemical Vapor Deposition Method by Carbon Feeding. The Journal of Physical Chemistry B, 2006, 110(41): 20254-20257
    [39] Huang S, Woodson M, Smalley R, et al. Growth Mechanism of Oriented LongSingle Walled Carbon Nanotubes Using“Fast-Heating”Chemical Vapor Deposition Process. Nano Letters, 2004, 4(6): 1025-1028
    [40] Hofmann M, Nezich D, Reina A, et al. In-Situ Sample Rotation as a Tool to Understand Chemical Vapor Deposition Growth of Long Aligned Carbon Nanotubes. Nano Letters, 2008, 8(12): 4122-4127
    [41] Ting G. Self-Assembly of Tubular Fullerenes. The Journal of Physical Chemistry, 1995, 99(27): 10694-10697
    [42] Ting G. Catalytic growth of single-walled nanotubes by laser vaporization. Chemical Physics Letter, 1995, 243(1-2): 49-54
    [43] Musameh M, Wang J, Merkoci A, et al. Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes. Electrochemistry Communication, 2002, 4(10): 743-746
    [44] Gooding J J, Wibowo R, Liu J Q, et al. Protein electrochemistry using aligned carbon nanotube arrays. The Journal of American Chemical Society, 2003, 125(30): 9006-9007
    [45] Yu X, Chattopadhyay D, Galeska I. Peroxidase activity of enzymes bound to the ends of single-wall carbon nanotubes forest electrodes. Electrochemistry Communication, 2003, 5(5): 408-411
    [46] Wang J, Musameh M, Lin Y. Solubilization of carbon nanotubes by nation toward the preparation of amperometric biosensors. The Journal of American Chemical Society, 2003, 125(9): 2408-2409
    [47] Luong J H, Hrapovic S, Wang D, et al. Solubilization of multiwall carbon nanotubes by 3-aminopropyltriethoxysilane towards the fabrication of electrochemical biosensors with promoted electron transfer. Electroanalysis, 2004, 16(1-2): 132-139
    [48] Wang J, Musameh M. Carbon nanotube/Teflon composite electrochemical sensors and biosensors. Analytical Chemistry, 2003, 75(9): 2075-2079
    [49] Rubianes M D, Rivas G A. Carbon nanotubes paste electrode. Electrochemistry Communication, 2003, 5(8): 689-694
    [50] Hrapovic S, Liu Y, Male K, et al. Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes. Analytical Chemistry, 2004, 76(4): 1083-1088
    [51] Lin Y, Lu F, Tu Y, et al. Glucose biosensors based on carbon nanotube nanoelectrode ensembles. Nano Letters, 2004, 4(2): 191-195
    [52] Koehne J, Chen H, Li J, et al. Ultrasensitive label-free DNA analysis using anelectronic chip based on carbon nanotubes nanoeletrode arrays. Nanotechnology, 2003, 14(12): 1239-1245
    [53] Valentini F, Amine A, Orlanducci S. Carbon nanotube purification: preparation and characterization of carbon nanotube paste electrodes. Analytical Chemistry, 2003, 75(20): 5413-5421
    [54] Gorton L. Carbon paste electrodes modified with enzymes, tissues, and cells. Electroanalysis, 1995, 7(1): 23-45
    [55] Wang J, Musameh M. Enzyme-dispersed carbon-nanotube electrodes: a needle microsensor for monitoring glucose. Analyst, 2003, 128(11): 1382-1385
    [56] Guiseppi-Elie A, Lei C, Baughman R. Direct electron transfer of glucose oxidase on carbon nanotubes. Nanotechnology, 2002, 13(5): 559-564
    [57] Kumar C. Nanomaterials for Biosensors. New York: Willey-VCH, 2007: 279-285
    [58] Katz E, Willner I, Wang J. Electroanalytical and bioelectroanalytical systems based on metal and semiconductor nanoparticles. Electroanalysis, 2004, 16(1-2): 19-44
    [59] Sedeno P Y, Pingarron J M. Gold nanoparticle-based electrochemical biosensors. Analytical and Bioanalytical Chemistry, 2005, 382(5): 1618-2642
    [60] Guo C, Boullanger P, Jiang L, Liu T. Highly sensitive gold nanoparticles biosensor chips modified with a self-assembled bilayer for detection of Con A. Biosensors & Bioelectronics, 2007, 22(8): 1830-1834
    [61] Ren X, Meng X, Chen D, et al. Using silver nanoparticle to enhance current response of biosensor. Biosensors & Bioelectronics, 2005, 21(3): 433-437
    [62] Zuo S, Teng Y, Yuan H, et al. Development of a Novel Silver Nanoparticles-Enhanced Screen-Printed Amperometric Glucose Biosensor. Analytical Letter, 2008, 41(7): 1158-1172
    [63] Mubeen S, Zhang T, Yoo B, et al. Palladium Nanoparticles Decorated Single-Walled Carbon Nanotube Hydrogen Sensor. The Journal of Physical Chemistry C, 2007, 111(17): 6321-6327
    [64] Zhou Z L, Kang T F, Zhang Y, et al. Electrochemical sensor for formaldehyde based on Pt-Pd nanoparticles and a Nafion-modified glassy carbon electrode. Microchimica Acta, 2009, 164(1-2): 133-138
    [65] Chou C H, Chang J L, Zen J M. Homogeneous platinum-deposited screen-printed edge band ultramicroelectrodes for amperometric sensing of carbon monoxide. Electroanalysis, 2008, 21(2): 206-209
    [66] Yun J H, Kim J, Park Y C, et al. Highly sensitive carbon nanotube-embedding gas sensors operating at atmospheric pressure. Nanotechnology, 2009, 20(5): 55503-55508
    [67] Daniel M C, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chemical Review, 2004, 104(1): 293-346
    [68] Hao E, Schatz G C, Hupp J T. Synthesis and optical properties of anisotropic metal nanoparticles. The Journal of Fluorescence, 2004, 14(4): 331-341
    [69] Burda C, Chen X, Narayanan R, et al. Chemistry and properties of nanocrystals of different shapes. Chemical Review, 2005, 105(4): 1025-1102
    [70] Xia Y, Yang P, Sun Y, et al. One-dimensional nanostructures: synthesis, characterization, and applications. Advanced Materials, 2003, 15(5): 353-389
    [71] Pileni M P. The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals. Nature Materials, 2003, 2(3): 145-150
    [72] Jin R, Cao Y W, Mirkin C A, Kelly K L, et al. Photoinduced conversion of silver nanospheres to nanoprisms. Science, 2001, 294(5548): 1901-1903
    [73] Murphy C J, Sau T K, Gole A M, et al., Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. The Journal of Physical Chemistry B, 2005, 109(29): 13857-13870
    [74] Yu T, Ober C K, Kuebler S M, et al., Chemically amplified positive resists for two-photon three-dimensional microfabrication. Advanced Materials, 2003, 15(6): 517-521
    [75] Haes A J, Hall W P, Chang L, et al. A localized surface Plasmon resonance biosensor: first steps toward an assay for alzheimer’s disease. Nano Letters, 2004, 4(6): 1029-1034
    [76] Pileni M P. Nanosized particles made in colloidal assemblies. Langmuir, 1997, 13(13): 3266-3276
    [77] Eustis S, El-Sayed M A. Why gold nanoparticles are more precious than pretty gold: Noble metal surface Plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chemical Society Reviews, 2006, 35(3): 209-217
    [78] Kostelansky C N, Pietron J J, Chen M S, et al., Triarylphosphine -stabilized platinum nanoparticles in three-dimensional nanostructured films as active electrocatalysts. The Journal of Physical Chemistry B, 2006, 110(43): 21487-21496.
    [79] Lee K S, El-Sayed M A. Gold and silver nanoparticles in sensing and imaging: Sensitivity of plasmon response to size, shape, and metal composition. The Journal of Physical Chemistry B, 2006, 110(39): 19220-19225.
    [80] Tsai M C, Yeh T K, Tsai C H. An improved electrodeposition technique for preparing platinum and platinum-ruthenium nanoparticles on carbon nanotubes directly grown on carbon cloth for methanol oxidation. Electrochemistry Communications, 2006, 8(9): 1445-1452.
    [81] Bonello J M, Lambert R M, Kunzle N, et al. Platinum-Catalyzed Enantioselective Hydrogenation of -Ketoesters: An Unprecedented Surface Reaction of Methyl Pyruvate. The Journal of the American Chemical Society, 2000, 122(40): 9864-9865.
    [82] Watanabe K, Menzel D, Nilius N, et al. Photochemistry on metal nanoparticles. Chemical Reviews, 2006, 106(10): 4301-4320.
    [83] Aslan K, Malyn S N, Geddes C D. Multicolor microwave-triggered metal-enhanced chemiluminescence. The Journal of American Chemistry Society, 2006, 128(41): 13372-13373
    [84] Ibanez F J, Zamborini F P. Ozone-and thermally activated films of palladium monolayer-protected clusters for chemiresistive hydrogen sensing. Langmuir, 2006, 22(23): 9789-9796
    [85] Chang G, Oyama M, Hirao K. In situ chemical reductive growth of platinum nanoparticles on indium tin oxide surfaces and their electrochemical applications. The Journal of Physical Chemistry B, 2006, 110(4): 1860-1865.
    [86] Chang G, Oyama M, Hirao K. Seed-mediated growth of palladium nanocrystals on indium tin oxide surfaces and their applicability as modified electrodes. The Journal of Physical Chemistry B, 2006, 110(41): 20362-20368.
    [87] Chang G, Zhang J D, Oyama M, et al. Silver-nanoparticle-attached indium tin oxide surfaces fabricated by a seed-mediated growth approach. The Journal of Physical Chemistry B, 2005, 109(3): 1204-1209.
    [88] Johansson P, Xu H X, Kall M. Surface-enhanced Raman scattering and fluorescence near metal nanoparticles. Physical Review B, 2005, 72(3): 1-17
    [89] Lakowicz J R, Geddes C D, Gryczynski I, et al. Advances in surface-enhanced fluorescence. The Journal of Fluorescence, 2004, 14(4): 425-441.
    [90] Lee I Y S, Suzuki H, Ito K, et al. Surface-enhanced fluorescence and reverse saturable absorption on silver nanoparticles. The Journal of Physical Chemistry B, 2004, 108(50): 19368-19372.
    [91] Zhang J, Malicka J, Gryczynski I, et al. Surface-enhanced fluorescence of fluorescein-labeled oligonucleotides capped on silver nanoparticles. The Journal of Physical Chemistry B, 2005, 109(16): 7643-7648.
    [92] Hou M, Sun S J, Jiang Z L. A new and selective and sensitive nanogold-labeled immunoresonance scattering spectral assay for trace prealbumin. Talanta, 2007, 72(2): 463-467
    [93] Zhang S B, Wu Z S, Guo M M, et al. A novel immunoassay strategy based on combination of chitosan and a gold nanoparticle label. Talanta, 2007, 71(4): 1530-1535
    [94] Lomillo M A A, Ruiz J G, Pascual F J M. Biosensor based on platinum chips for glucose determination. Analytica Chimica Acta, 2005, 547(2): 209-214
    [95] Zhou H H, Chen H, Kuang Y F, et al. Glucose biosensor based on platinum microparticles dispersed in nano-fibrous polyaniline. Biosensors & Bioelectronics, 2005, 20(7): 1305-1311
    [96] Otten C J, Lourie O R, Buhro W E. Crystalline Boron Nanowires. The Journal of American Chemical Society, 2002, 124(17): 4564-4565
    [97] Li C, Curreli M, Lin H, et al. Complementary detection of prostate-specific antigen using In2O3 nanowires and carbon nanotubes. The Journal of American Chemical Society, 2005, 127(36): 12484-12485
    [98] Barrelet C J, Wu Y, Bell D C. Synthesis of CdS and ZnS nanowires using single-source molecular precursors. The Journal of American Chemical Society, 2003, 125(38): 11498-11499
    [99] Mu Y Y, Liang H P, Hu J S, et al. Controllable Pt nanoparticles deposition on carbon nanotubes as an anode catalyst for direct methanol fuel cells. The Journal of Physical Chemistry B, 2005, 109(47): 22212-22216
    [100] Lux K W, Rodriguez K J. Template synthesis of arrays of nano fuel cells. Nano Letters, 2006, 6(2): 288-295
    [101] Yoon B, Wai C M. Micromulsion-templated synthesis of carbon nanotube-supported Pd and Rh nanoparticles for catalytic applications. The Journal of American Chemical Society, 2005, 127(49): 17174-17175
    [102] Bakker E, Qin Y. Electrochemical sensors. Analytical Chemistry, 2006, 78(12): 3965-3984
    [103] Zhao W, Song C, Pehrsson P E. Water-soluble and optically pH-sensitive single-walled carbon nanotubes from surface modification. The Journal of American Chemical Society, 2002, 124(42): 12418-12419
    [104] Landi B J, Ruf H J, Worman J J, et al. Effects of alkyl amide solvents on the dispersion of single-wall carbon nanotubes. The Journal of Physical Chemistry B, 2004, 108(44): 17089-17095
    [105] Wang C, Waje M, Wang X, et al. Proton exchange membrane fuel cells with carbon nanotube based electrodes. Nano Letters, 2004, 4(2): 345-348
    [106] Quinn B M, Dekker C, Lemay S G. Electrodeposition of noble metal nanoparticles on carbon nanotubes. The Journal of American Chemical Society, 2005, 127(17): 6146-6147
    [107] Wang J, Dai J H, Yarlagadda T. Carbn nanotube-conducting-polymer composite nanowires. Langmuir, 2005, 21(1): 9-12
    [108] Zhang M, Smith A G, Gorski W. Carbon nanotube-chitosan system for electrochemical sensing based on dehydrogenase enzymes. Analytical Chemistry, 2004, 76(17): 5045-5050
    [109] Sun N, Guan L, Shi Z, et al. Ferrocene peapod modified electrodes: preparation, characterization, and mediation of H2O2. Analytical Chemistry, 2006, 78(17): 6050-6057
    [110] Kidambi S, Dai J H, Li J, et al. Selective hydrogenation by Pd nanoparticles embedded in polyelectrolyte multilayers. The Journal of American Chemical Society, 2004, 126(9): 2658-2659
    [111] Mukhopadhyay K, Phadtare S, Viond V P, et al. Gold nanoparticles assembled on amine-functionalized Na-Y zeolite: A biocompatible surface for enzyme immobilization. Langmuir, 2003, 19(9): 3858-3863
    [112] Liu F, Lee J Y, Zhou W J. Template preparation of multisegment PtNi nanorods as methanol electro-oxidation catalysts with adjustable bimetallic pair sites. The Journal of Physical Chemistry B, 2004, 108(46): 17959-17963
    [113] Park H I, Mushtaq U, Perello D, et al. Effective and low-cost platinum electrodes for microbial fuel cells deposited by electron beam evaporation. Energy Fuels, 2007, 21(5): 2984-2990
    [114] Matsumoto N, Chen X H, Wilson G S. Fundamental studies of glucose oxidase deposition on a Pt electrode. Analytical Chemistry, 2002, 74(2): 362-367
    [115] Hoshi T, Saiki H, Kuwazawa S, et al. Selective permeation of hydrogen peroxide through polyelectrolyte multilayer films and its use for amperometric biosensors. Analytical Chemistry, 2001, 73(21): 5310-5315
    [116] Jana N R, Gearheart L, Murphy C . Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. The Journal of Physical Chemistry B, 2001, 105(19):4065-4067
    [117] Son S J, Lee S B. Controlled gold nanoparticle diffusion in nanotubes: platform of partial functionalization and gold capping. The Journal of American Chemical Society, 2006, 128(50): 15974-15975
    [118] Gole A, Murphy C J. Seed-mediated synthesis of gold nanorods: role of the size and nature of the seed. Chemistry of Materials, 2004, 16(19): 3633-3640
    [119] Valentini F, Amine A, Orlanducci S, et al. Carbon nanotube purification: preparation and characterization of carbon nanotube paste electrodes. Analytical Chemistry, 2003, 75(20): 5413-5421
    [120] Chiang I W, Brinson B E, Smalley R E, et al. Purification and characterization of single-wall carbon nanotubes. The Journal of Physical Chemistry B, 2001, 105(6): 1157-1161
    [121] Bard A J, Faulkner L R. Electrochemical Methods-Fundamental and Applications. NY: John Wiley and Sons, 2000: 58-60
    [122] Kamin R A, Wilson G S. Rotating ring-disk enzyme electrode for biocatalysis kinetic studies and characterization of the immobilized enzyme layer. Analytical Chemistry, 1980, 52(8): 1198-1205
    [123] Liu G, Liu J Q, B?cking T, et al. The modification of glassy carbon and gold electrodes with aryl diazonium salt: The impact of the electrode materials on the rate of heterogeneous electron transfer. Chemical Physics, 2005, 319(1-3): 136-146
    [124] Mehdipour-Ataei S, Tadjarodi A, Babanzadeh S, et al. Novel ferrocene modified poly (amide ether amide)s and investigation of physical and thermal properties. European Polymer Journal, 2007, 43(2): 498-506
    [125] Issa T B, Singh P, Baker M V. Potentiometric measurement of state-of-charge of lead-acid battery by using a bridged ferrocene surface modified electrode. Journal of Power Sources, 2006, 158(2): 1034-1038
    [126] Kershman J R, Paris K E, Stamey J A, et al. Electrochemistry and blocking properties of thin films of platinum phenylethynyl complexes. Journal of Electroanalytical Chemistry, 2006, 597(2): 87-94
    [127] Liu Q F, Kirchhoff J R. Amperometric detection of methanol with a methanol dehydrogenase modified electrode sensor. Journal of Electroanalytical Chemistry, 2007, 601(1-2): 125-131
    [128] Escorcia A, Dhirani A A. Electrochemical properties of ferrocenylalkane dithiol-gold nanoparticle films prepared by layer-by-layer self-assembly. Journalof Electroanalytical Chemistry, 2007, 601(1-2): 260-268
    [129] Viswanathan S, Ho J A. Dual electrochemical determination of glucose and insulin using enzyme and ferrocene microcapsules. Biosensors & Bioelectronics, 2007, 22(6): 1147–1153
    [130] Carney, M J, Lesniak, J S, Likar, M. D, et al. Ferrocene derivatives as metalloprotein redox probes: electron-transfer reactions of ferrocene and ferricenium ion derivatives with cytochrome c. The Journal of American Chemical Society, 1984, 106(9): 2565-2569.
    [131] Badia A, Carlini R, Fernandez A, et al. Intramolecular electron-transfer rates in ferrocene-derivatized glucose oxidase. The Journal of American Chemical Society, 1993, 115(16): 7053-7060.
    [132] Cass A, Davis G, Francis G D, et al. Ferrocene-Mediated Enzyme Electrode for Amperometric Determination of Glucose. Analytical Chemistry, 1984, 56(4): 667-671
    [133] Ballarin B, Cassani M C, Mazzoni R, et al. Enzyme electrodes based on sono-gel containing ferrocenyl compounds. Biosensors & Bioelectronics, 2007, 22 (7): 1317-1322
    [134] Delacote C, Bouillon J P, Walcarius A. Voltammetric response of ferrocene-grafted mesoporous silica. Electrochimica Acta, 2006, 51(28): 6373-6383.
    [135] Forrow N J, Bayliff S W. A commercial whole blood glucose biosensor with a low sensitivity to hematocrit based on an impregnated porous carbon electrode. Biosensors & Bioelectronics, 2005, 21(4): 581-587
    [136] Yamamotoa K, Zenga H, Shena Y, et al. Evaluation of an amperometric glucose biosensor based on a ruthenium complex mediator of low redox potential. Talanta, 2005, 66(5): 1175-1180
    [137] Wang Y, Iqbal Z, Malhotra S V. Functionalized of carbon nanotubes with amines and enzymes. Chemical Physics Letters, 2005, 402(1-3): 96-101
    [138] Padeste C, Grubelnik A, Tiefenauer L. Ferrocene-avidin conjugates for bioelectrochemical applications. Biosensors & Bioelectronics, 2000, 15(9-10): 431-438
    [139] Qiu J D, Deng M Q, Liang R P, et al. Ferrocence-modified multiwalled carbon nanotubes as building block for construction of reagentless enzyme-based biosensors. Sensors ad Actuators B: Chemical, 2008, 135(1): 181-187

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700