新型化学修饰电极的制备及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化学修饰电极在分子层面上实现了对电极功能的设计,可以按意图赋予电极预定的功能,以便能选择性地进行检测反应。本论文中主要研究了三种化学修饰玻碳电极的制备及其在生物传感与化学传感中的应用,主要包括以下内容:
     (1)通过共价键合法将转录因子Sp1修饰在玻碳电极表面,并以之作为探针使用交流阻抗法(EIS)与差示脉冲法(DPV)检测其与样品DNA的特异性结合。结果显示,我们的方法可有效地将活性Sp1修饰到电极表面,且该修饰电极不仅可用于研究Sp1与其DNA识别序列在不同条件下的结合和解离,还可用于研究点突变与抑制剂(抗癌药品光辉霉素)对结合的影响。此外,对该修饰电极的特异性、灵敏度、重复性以及再生能力都进行了研究,结果表明其能够在大量无关DNA序列中检测出低至1×10?10 mol/L的特异性结合序列(wtDNA)。
     (2)在上述修饰电极的基础上,为进一步提高电极性能,以葡萄糖为原料通过水热法制备了有良好生物相容性和导电性的碳纳米球(CNP),使用CNP修饰玻碳电极后再与Sp1通过酰胺键偶联。结果显示,CNP的修饰进一步优化了该蛋白修饰电极的检测性能,具体表现在:检测信号的背景干扰降低、信噪比明显增大,对wtDNA检测限降低了5个数量级达到1 fM,且电极的再生能力得到了极大的增强,有望成为一种快速而有效的检测手段,以用于DNA结合蛋白与其识别序列间相互作用的研究,及对其新DNA识别位点的筛查和新型药物抑制剂的筛选。
     (3)使用Nafion膜将半胱氨酸修饰的碳纳米球固定在玻碳电极表面,通过阳极溶出伏安法实现了对重金属离子(铅和镉)的痕量检测。结果表明,铅离子和镉离子的检测限分别为1×10~(-14) M和1×10~(-9) M,这与裸电极相比,效果得到了极大的增强,并且该修饰电极可以对溶液中的铅离子和镉离子同时进行检测。
In electrochemistry, electrodes can be functionally designed for selective detections through chemical modification of the electrode surface. In this thesis, three types of chemically modified glass carbon electrodes (GCEs) have been fabricated using different methods, and their applications in biosensing and chemical sensing have been assayed:
     The first one, a biomolecule-modified GCE, was fabricated by covalently immobilizing transcription factor Sp1 on the GCE surface and the interaction of immobilized Sp1 with different DNA samples was analyzed using electrochemical impedance spectroscopy (EIS) and difference pulse voltammetry (DPV). Our results show that both the association/disassociation of Sp1 with its consensus sequence (wtDNA) under different conditions and the change of affinity caused by either point mutations or an inhibitor (anticancer drug mithramycin A) can be effectively monitored through Sp1-functionalized GCE, and as low as 1×10?10 mol/L wtDNA can be selectively detected in a DNA pool containing huge access of non-specific DNA fragments.
     I further developed an enhanced electrode from the above one, taking the advantage of bio-compatible and high electrical conductive carbon nanoparticles (CNPs) derived from glucose by one step hydrothermal oxidation method. To fabricate this electrode, the bare GCE was first modified by CNPs before protein (Sp1) immobilization. The CNPs-modification greatly enhanced the performance of the electrode, and was able to lower the detection limit of Sp1-specific DNA to 1×10?15 mol/L. The CNPs-Sp1-modified GCE exihibits enhanced signal-to-noise ratio, and can be easily regenerated, suggesting a promising approach for rapid and highly sensitive DNA detection.
     For the last one, L-cysteine modified CNPs were immobilized on the GCE by Nafion. This modified electrode was used to detect trace amount of heavy metal ions by anodic stripping voltammeter. Both Pb~(2+) and Cd~(2+) can be detected concurrently in a mixture, and compare to the bare GCE, the Cys-CNPs modification greatly enhanced the performance of the electrode, successfully lowering the detection limits for Pb2+ and Cd2+ to 1×10~(-14) M and 1×10~(-9) M, respectively.
引文
[1]张鉴清,电化学测试技术.
    [2]金利通,仝威,徐金瑞,方禹之,化学修饰电极.
    [3] Luo X, Morrin A, Killard AJ, Smyth MR, Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis 2006,18,319-326.
    [4] Ivnitski D, Abdel-Hamid I, Atanasov P, Wilkins E, Stricker S, Application of electrochemical biosensors for detection of food pathogenic bacteria. Electroanalysis 2000, 12, 317-325.
    [5] Bang GS, Cho S, Kim B-G, A novel electrochemical detection method for aptamer biosensors. Biosensors and Bioelectronics 2005, 21, 863-870.
    [6] Orata D, Buttry DA: Virtues of composite structures in electrode modification: Preparation and properties of poly (aniline)/nafion composite films. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1988, 257, 71-82.
    [7] Baldrich E, G ez R, Gabriel G, Mu z FX, Magnetic entrapment for fast, simple and reversible electrode modification with carbon nanotube, Application to dopamine detection. Biosensors and Bioelectronics, 26, 1876-1882.
    [8] Nazemi Z, Shams E, Amini MK, Covalent modification of glassy carbon electrodeby nile blue: Preparation, electrochemistry and electrocatalysis. Electrochimica Acta, 55, 7246-7253.
    [9] Grieshaber D, MacKenzie R, Reimhult E, Electrochemical biosensors - sensor principles and architectures. Sensors 2008, 8, 1400-1458.
    [10] Scholz F, Retter U, Lohse H, Electrochemical impedance spectroscopy; Electroanalytical methods, Springer Berlin Heidelberg, pp 159-177.
    [11] Ivers-Tiffée E, Weber A, Schichlein H, Electrochemical impedance spectroscopy. John Wiley & Sons, Ltd
    [12] Chang B-Y, Park S-M, Electrochemical impedance spectroscopy. Annual Review of Analytical Chemistry, 3, 207-229.
    [13]史美伦等,交流阻抗谱原理及应用,史美伦等, 2001
    [14]崔晓莉等,交流阻抗谱的表示及应用.上海师范大学学报:自然科学版2001, 4, 30.
    [15]崔晓莉,等效电路中元件参数数值对交流阻抗谱的影响.河北师范大学学报(自然科学版) 2002, 4, 6.
    [16] Ates M, Sarac AS, Electrochemical impedance spectroscopy of poly[carbazole-co-n-p-tolylsulfonyl pyrrole] on carbon fiber microelectrodes, equivalent circuits for modelling. Progress in Organic Coatings 2009, 6, 281-287.
    [17] Wang J, Greene B, Morgan C, Carbon paste electrodes modified with cation-exchange resin in differential pulse voltammetry. Analytica Chimica Acta 1984, 158, 15-22.
    [18] Giovanni M, Pumera M, Molybdenum metallic nanoparticle detection via differential pulse voltammetry. Electrochemistry Communications, 13, 203-204.
    [19] Copeland TR, Skogerboe RK, Anodic stripping voltammetry. Analytical Chemistry 1974, 46, 1257A-1268a.
    [20] Florence TM, Anodic stripping voltammetry with a glassy carbon electrode mercury-plated in situ. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1970, 27, 273-281.
    [21] Wang J, Modified electrodes for electrochemical sensors, Electroanalysis 1991, 3, 255-259.
    [22] Vittal R, Gomathi H, Kim K-J, Beneficial role of surfactants in electrochemistry and in the modification of electrodes, Advances in Colloid and Interface Science2006, 119, 55-68.
    [23]董绍俊,车广礼,谢远武,化学修饰电极, 2003
    [24] Watkins BF, Behling JR, Kariv E, Miller LL, Chiral electrode. Journal of the American Chemical Society 1975, 97, 3549-3550.
    [25] Moses PR, Wier L, Murray RW, Chemically modified tin oxide electrode. Analytical Chemistry 1975, 47, 1882-1886.
    [26] Millan KM, Mikkelsen SR, Sequence-selective biosensor for DNA based on electroactive hybridization indicators. Analytical Chemistry 1993, 65, 2317-2323.
    [27]董绍俊,许莉娟,马跃,化学学报, 1983
    [28] Havens N, Trihn P, Kim D, Luna M, Wanekaya AK, Mugweru A, Redox polymer covalently modified multiwalled carbon nanotube based sensors for sensitive acetaminophen and ascorbic acid detection. Electrochimica Acta, 55, 2186-2190.
    [29] Lane RF, Hubbard AT, Electrochemistry of chemisorbed molecules. I. Reactants connected to electrodes through olefinic substituents. The Journal of Physical Chemistry 1973, 77, 1401-1410.
    [30] Cosnier S, Biomolecule immobilization on electrode surfaces by entrapment or attachment to electrochemically polymerized films. A review. Biosensors and Bioelectronics 1999, 14, 443-456.
    [31] Wang P, Olbricht WL, Pedot/nafion composite thin films supported on pt electrodes: Facile fabrication and electrochemical activities, Chemical Engineering Journal, 160, 383-390.
    [32] Kokkinos C, Economou A: Disposable nafion-modified micro-fabricated bismuth-film sensors for voltammetric stripping analysis of trace metals in the presence of surfactants. Talanta, In Press, Corrected Proof
    [33] Deng S, Jian G, Lei J, Hu Z, Ju H, A glucose biosensor based on direct electrochemistry of glucose oxidase immobilized on nitrogen-doped carbon nanotubes. Biosensors and Bioelectronics 2009, 25, 373-377.
    [34] Liu Z, Zhou X, Qian Y, Synthetic methodologies for carbon nanomaterials. Advanced Materials, 22, 1963-1966.
    [35] Jordá-Beneyto M, Suárez-García F, Lozano-CastellóD, Cazorla-Amorós D, Linares-Solano A, Hydrogen storage on chemically activated carbons and carbon nanomaterials at high pressures. Carbon 2007, 45, 293-303.
    [36] David WIF, Ibberson RM, Matthewman JC, Prassides K, Dennis TJS, Hare JP, Kroto HW, Taylor R, Walton DRM: Crystal structure and bonding of ordered c60. Nature 1991, 353, 147-149.
    [37] Qin L-C, Zhao X, Hirahara K, Miyamoto Y, Ando Y, Iijima S, Materials science: The smallest carbon nanotube. Nature 2000, 408, 50-50.
    [38] Novoselov K, Graphene: Mind the gap. Nat Mater 2007, 6:720-721.
    [39] Yá?ez-Sede?oa P, Pingarróna JM, Riub J, Rius FX, Electrochemical sensing based on carbon nanotubes. TrAC Trends in Analytical Chemistry, 29, 939-953.
    [40] Musameh M, Notivoli MR, Hickey M, Kyratzis IL, Gao Y, Huynh C, Hawkins SC: Carbon nanotube webs: A novel material for sensor applications. Advanced Materials, 23, 906-910.
    [41] Jacobs CB, Peairs MJ, Venton BJ, Review: Carbon nanotube based electrochemical sensors for biomolecules. Analytica Chimica Acta, 662, 105-127.
    [42] Cui R, Liu C, Shen J, Gao D, Zhu J-J, Chen H-Y, Gold nanoparticle–colloidal carbon nanosphere hybrid material: Preparation, characterization, and application for an amplified electrochemical immunoassay. Advanced Functional Materials 2008, 18, 2197-2204.
    [43] Zubizarreta L, Mendez JA, Pis JJ, Arenillas A, Improving hydrogen storage in ni-doped carbon nanospheres. International Journal of Hydrogen Energy 2009, 34, 3070-3076.
    [44] Sinnott SB, Andrews R, Qian D, Rao AM, Mao Z, Dickey EC, Derbyshire F: Model of carbon nanotube growth through chemical vapor deposition. Chemical Physics Letters 1999, 315, 25-30.
    [45] Reina A, Jia XT, Ho J, Nezich D, Son HB, Bulovic V, Dresselhaus MS, Kong J, Layer area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Letters 2009, 9, 3087-3087.
    [46] Wang Q, Li H, Chen LQ, Huang XJ, Monodispersed hard carbon spherules with uniform nanopores. Carbon 2001, 39, 2211-2214.
    [47] Hagfeldt A, Graetzel M: Light-induced redox reactions in nanocrystalline systems. Journal Name: Chemical Reviews, 2010, 95, 49-68.
    [48] Liu J, He P, Yan J, Fang X, Peng J, Liu K, Fang Y: An organometallic super-gelator with multiple-stimulus responsive properties. Advanced Materials 2008, 20, 2508-2511.
    [49] Wang Y, Mahler W: Degenerate four-wave mixing of cds/polymer composite. Optics Communications 1987, 61:233-236.
    [50] Vairavapandian D, Vichchulada P, Lay MD, Preparation and modification of carbon nanotubes: Review of recent advances and applications in catalysis and sensing. Analytica Chimica Acta 2008, 626, 119-129.
    [51]佟珊珊,石云峰,吕学举,宋乃忠,刘威,贾琼,周伟红,多壁碳纳米管对稀土元素的吸附性能.应用化学2010, 8, 7.
    [52] Wang J, Wiley. ANALYTICAL ELECTROCHEMISTRY
    [53] Pei H, Lu N, Wen Y, Song S, Liu Y, Yan H, Fan C, A DNA nanostructure-based biomolecular probe carrier platform for electrochemical biosensing, Advanced Materials, 22, 4754-4758.
    [54] Gooding JJ, Nanostructuring electrodes with carbon nanotubes: A review on electrochemistry and applications for sensing. Electrochimica Acta 2005, 50, 3049-3060.
    [55] Wang J, Carbon-nanotube based electrochemical biosensors: A review. Electroanalysis 2005, 17, 7-14.
    [56] Gong K, Yan Y, Zhang M, Su L, Xiong S, Mao L, Electrochemistry and electroanalytical applications of carbon nanotubes: A review. Analytical Sciences 2005, 21, 1383-1393.
    [57] Weber JE, Pillai S, Ram MK, Kumar A, Singh SR, Electrochemical impedance-based DNA sensor using a modified single walled carbon nanotube electrode. Materials Science and Engineering: C, In Press, Corrected Proof
    [58] Wang Z, Zhang J, Chen P, Zhou X, Yang Y, Wu S, Niu L, Han Y, Wang L, Boey F, Zhang Q, Liedberg B, Zhang H, Label-free, electrochemical detection of methicillin-resistant staphylococcus aureus DNA with reduced graphene oxide-modified electrodes. Biosensors and Bioelectronics, In Press, Accepted Manuscript
    [59] Du M, Yang T, Jiao K: Immobilization-free direct electrochemical detection for DNA specific sequences based on electrochemically converted gold nanoparticles/graphene composite film. Journal of Materials Chemistry, 20, 9253-9260.
    [60] Skládal P, Advances in electrochemical immunosensors. Electroanalysis 1997, 9,737-745.
    [61] Rusling JF, Sotzing G, Papadimitrakopoulosa, Designing nanomaterial-enhanced electrochemical immunosensors for cancer biomarker proteins. Bioelectrochemistry 2009, 76, 189-194.
    [62] Yemini M, Reches M, Gazit E, Rishpon J, Peptide nanotube-modified electrodes for enzyme biosensor applications. Analytical Chemistry 2005, 77, 5155-5159.
    [63] Lin Y, Lu F, Tu Y, Ren Z, Glucose biosensors based on carbon nanotube nanoelectrode ensembles. Nano Letters 2003, 4, 191-195.
    [64] Cui R, Zhu J-J, Fabrication of a novel electrochemical immunosensor based on the gold nanoparticles/colloidal carbon nanosphere hybrid material. Electrochimica Acta, 55, 7814-7817.
    [65] Gong J, Zhou T, Song D, Zhang L, Monodispersed au nanoparticles decorated graphene as an enhanced sensing platform for ultrasensitive stripping voltammetric detection of mercury(ii). Sensors and Actuators B: Chemical, 150, 491-497.
    [66] Tsai Y-C, Chen J-M, Marken F, Simple cast-deposited multi-walled carbon nanotube/nafion? thin film electrodes for electrochemical stripping analysis. Microchimica Acta 2005, 150, 269-276.
    [1] H.F. Lodish, Molecular cell biology, 5th ed., W.H. Freeman and Company, 2004.
    [2] M.L. DePamphilis, DNA replication and disease, 1st ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2006.
    [3] F.H. Epstein, D.S. Latchman, New England Journal of Medicine, 334 (1996) 28-33.
    [4] C.O. Pabo, R.T. Sauer, Annual Review of Biochemistry, 53 (1984) 293-321.
    [5] C. Wolberger, Current Opinion in Structural Biology, 3 (1993) 3.
    [6] L. Jen-Jacobson, Biopolymers, 44 (1997) 153.
    [7] T. Fujita, G.P. Nolan, S. Ghosh, D. Baltimore, Genes & Development, 6 (1992) 775-787.
    [8] P. Bucher, Journal of Molecular Biology, 212 (1990) 563.
    [9] R.W. Kriwacki, S.C. Schultz, T.A. Steitz, J.P. Caradonna, Proceedings of the National Academy of Sciences of the United States of America, 89 (1992)9759-9763.
    [10] D.J. Galas, A. Schmitz, Nucleic Acids Research, 5 (1978) 3157-3170.
    [11] H.H. Hassanain, W. Dai, S.L. Gupta, Analytical Biochemistry, 213 (1993) 162-167.
    [12] D.H. Coombs, G.D. Pearson, Proc. Natl. Acad. Sci. USA, 75 (1978) 5291-5295.
    [13] F. Huber, M. Hegner, C. Gerber, H.-J. Güntherodt, H.P. Lang, Biosensors and Bioelectronics, 21 (2006) 1599-1605.
    [14] B.J. Cheskis, S. Karathanasis, C.R. Lyttle, Journal of Biological Chemistry, 272 (1997) 11384-11391.
    [15] S.J. Neo, X. Su, J.S. Thomsen, Analytical Chemistry, 81 (2009) 3344.
    [16] H.F. Teh, W.Y.X. Peh, X. Su, J.S. Thomsen, Biochemistry, 46 (2007) 2127.
    [17] X. Su, R. Robelek, Y. Wu, G. Wang, W. Knoll, Analytical Chemistry, 76 (2003) 489.
    [18] B. Zhang, J. Yao, H. Yan, W. Fu, Sensors and Actuators B: Chemical, 149 (2010) 259.
    [19] G. Liu, Y. Wan, V. Gau, J. Zhang, L. Wang, S. Song, C. Fan, Journal of the American Chemical Society, 130 (2008) 6820.
    [20] Y. Xiao, A.A. Lubin, A.J. Heeger, K.W. Plaxco, Angewandte Chemie International Edition, 44 (2005) 5456.
    [21] N. Yang, H. Uetsuka, O.A. Williams, E. Osawa, N. Tokuda, C.E. Nebel, physica status solidi (a), 206 (2009) 2048.
    [22] N. Yang, H. Uetsuka, C.E. Nebel, Diamond and Related Materials, 18 (2009) 592.
    [23] G. Liu, C. Sun, D. Li, S. Song, B. Mao, C. Fan, Z. Tian, Advanced Materials, 22 (2010) 2148.
    [24] H. Pei, N. Lu, Y. Wen, S. Song, Y. Liu, H. Yan, C. Fan, Advanced Materials, 22 (2010) 4754.
    [25] Y. Wan, J. Zhang, G. Liu, D. Pan, L. Wang, S. Song, C. Fan, Biosensors and Bioelectronics, 24 (2009) 1209.
    [26] A.L. Ghindilis, M.W. Smith, K.R. Schwarzkopf, K.M. Roth, K. Peyvan, S.B. Munro, M.J. Lodes, A.G. Stover, K. Bernards, K. Dill, A. McShea, Biosensors and Bioelectronics, 22 (2007) 1853.
    [27] D. Li, S. Song, C. Fan, Accounts of Chemical Research, 43 (2010) 631.
    [28] A. Sassolas, B.D. Leca-Bouvier, L.J. Blum, Chemical Reviews, 108 (2007) 109.
    [29] O.A. Sadik, A.O. Aluoch, A. Zhou, Biosensors and Bioelectronics, 24 (2009)2749-2765.
    [30] H. Chen, X.-J. Liu, Y.-L. Liu, J.-H. Jiang, G.-L. Shen, R.-Q. Yu, Biosensors and Bioelectronics, 24 (2009) 1955-1961.
    [31] M. Cho, S. Lee, S.-Y. Han, J.-Y. Park, M.A. Rahman, Y.-B. Shim, C. Ban, Nucl. Acids Res., 34 (2006) e75-.
    [32] Y. Jin, Analytica Chimica Acta, 634 (2009) 44-48.
    [33] R. Meunier-Prest, A. Bouyon, E. Rampazzi, S. Raveau, P. Andreoletti, M. Cherkaoui-Malki, Biosensors and Bioelectronics, 25 (2010) 2598.
    [34] H. Chang, J. Li, Electrochemistry Communications, 11 (2009) 2101-2104.
    [35] G.-J. Zhang, M.J. Huang, Z.H.H. Luo, G.K.I. Tay, E.-J.A. Lim, E.T. Liu, J.S. Thomsen, Biosensors and Bioelectronics, 26 (2010) 365.
    [36] M.R. Briggs, J.T. Kadonaga, S.P. Bell, R. Tjian, Science, 234 (1986) 47-52.
    [37] J.T. Kadonaga, K.R. Carner, F.R. Masiarz, R. Tjian, Cell, 51 (1987) 1079-1090.
    [38] K.M. Millan, S.R. Mikkelsen, Analytical Chemistry, 65 (1993) 2317-2323.
    [39] S.-M. Park, J.-S. Yoo, Analytical Chemistry, 75 (2003) 455 A-461 A.
    [40] D.J. Hart, R.E. Speight, J.M. Blackburn, M.A. Cooper, J.D. Sutherland, Nucleic Acids Research, 27 (1999) 1063-1069.
    [41] J. Sambrook, D. Russell, Molecular Cloning: A Laboratory Manual, 3rd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2001.
    [42] D. Shanmukaraj, S. Grugeon, G. Gachot, S. Laruelle, D. Mathiron, J.-M. Tarascon, M. Armand, Journal of the American Chemical Society, 132 (2010) 3055.
    [43] P. Du, H. Li, Z. Mei, S. Liu, Bioelectrochemistry, 75 (2009) 37-43.
    [44] A. Bogomolova, E. Komarova, K. Reber, T. Gerasimov, O. Yavuz, S. Bhatt, M. Aldissi, Analytical Chemistry, 81 (2009) 3944-3949.
    [45] C. Li, X. Li, X. Liu, H.-B. Kraatz, Analytical Chemistry, (2010).
    [46] N. Zhou, T. Yang, C. Jiang, M. Du, K. Jiao, Talanta, 77 (2009) 1021-1026.
    [47] G. Li, X. Li, J. Wan, S. Zhang, Biosensors and Bioelectronics, 24 (2009) 3281.
    [48] N. Wei, J. Chen, J. Zhang, K. Wang, X. Xu, J. Lin, G. Li, X. Lin, Y. Chen, Talanta, 78 (2009) 1227.
    [49] S. Zhang, N. Wang, H. Yu, Y. Niu, C. Sun, Bioelectrochemistry, 67 (2005) 15.
    [50] L. Chen, X. Cao, J. Zhang, Applied Surface Science, 256 (2010) 1647-1651.
    [51] W. Sanders, M.R. Anderson, Journal of Colloid and Interface Science, 342 (2010) 499-504.
    [52] Q. Sheng, J. Wang, J. Zheng, Z. Xu, H. Zhang, Biosensors and Bioelectronics, 25 (2010) 2071.
    [53] H. Ago, K. Petritsch, M.S.P. Shaffer, A.H. Windle, R.H. Friend, Adv. Mater., 11 (1999) 1281-1285.
    [54] R. Ray, R.C. Snyder, S. Thomas, C.A. Koller, D.M. Miller, The Journal of Clinical Investigation, 83 (1989) 2003.
    [55] K.A. Jones, J.T. Kadonaga, P.A. Luciw, R. Tjian, Science, 232 (1986) 755-759.
    [1] P. Avouris, J. Appenzeller, R. Martel, and S. J. Wind, 'Carbon nanotube electronics', Proceedings of the IEEE, 2003, 91, 1772-1784.
    [2] H. Cai, T. M.-H. Lee, and I. M. Hsing, 'Label-free protein recognition using an aptamer-based impedance measurement assay', Sensors and Actuators B: Chemical, 2006, 114, 433-437.
    [3] X. Chen, K. Zhang, J. Zhou, J. Xuan, W. Yan, L.-P. Jiang, and J.-J. Zhu, 'Electrochemical immunosensor based on colloidal carbon sphere array', Biosensors and Bioelectronics, 25, 1130-1136.
    [4] R. Cui, C. Liu, J. Shen, D. Gao, J.-J. Zhu, and H.-Y. Chen, 'Gold Nanoparticle–Colloidal Carbon Nanosphere Hybrid Material: Preparation, Characterization, and Application for an Amplified Electrochemical Immunoassay', Advanced Functional Materials, 2008, 18, 2197-2204.
    [5] F. L. Darkrim, P. Malbrunot, and G. P. Tartaglia, 'Review of hydrogen storage by adsorption in carbon nanotubes', International Journal of Hydrogen Energy, 2002, 27, 193-202.
    [6] J. J. Davis, R. J. Coles, H. Allen, and O. Hill, 'Protein electrochemistry at carbonnanotube electrodes', Journal of Electroanalytical Chemistry, 1997, 440, 279-282.
    [7] T. G. Drummond, M. G. Hill, and J. K. Barton, 'Electrochemical DNA sensors', Nat Biotech, 2003, 21, 1192-1199.
    [8] G. A. Evtugyn, A. V. Porfireva, T. Hianik, M. S. Cheburova, and H. C. Budnikov, 'Potentiometric DNA Sensor Based on Electropolymerized Phenothiazines for Protein Detection', Electroanalysis, 2008, 20, 1300-1308.
    [9] S. Iijima, 'Carbon nanotubes: past, present, and future', Physica B: Condensed Matter, 2002, 323, 1-5.
    [10] Iijima, Sumio, 'Helical microtubules of graphitic carbon', Nature, 1991, 354, 56-58.
    [11] C. B. Jacobs, M. J. Peairs, and B. J. Venton, 'Review: Carbon nanotube based electrochemical sensors for biomolecules', Analytica Chimica Acta, 662, 105-127.
    [12] S. Jones and J. M. Thornton, 'Protein-protein interactions: A review of protein dimer structures', Progress in Biophysics and Molecular Biology, 1995, 63, 31-59.
    [13] P. C. Ke and R. Qiao, 'Carbon nanomaterials in biological systems', Journal of Physics-Condensed Matter, 2007, 19.
    [14] K. Kerman, Y. Morita, Y. Takamura, and E. Tamiya, '<i>Escherichia coli</i> single-strand binding protein–DNA interactions on carbon nanotube-modified electrodes from a label-free electrochemical hybridization sensor', Analytical and Bioanalytical Chemistry, 2005, 381, 1114-1121.
    [15] H. Kroto, 'SPACE, STARS, C-60, AND SOOT', Science, 1988, 242, 1139-1145.
    [16] Y.-H. Li, J. Ding, Z. Luan, Z. Di, Y. Zhu, C. Xu, D. Wu, and B. Wei, 'Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes', Carbon, 2003, 41, 2787-2792.
    [17] M. S. Mauter and M. Elimelech, 'Environmental Applications of Carbon-Based Nanomaterials', Environmental Science & Technology, 2008, 42, 5843-5859.
    [18] Y. Mi, W. Hu, Y. Dan, and Y. Liu, 'Synthesis of carbon micro-spheres by a glucose hydrothermal method', Materials Letters, 2008, 62, 1194-1196.
    [19] K. Novoselov, 'Graphene: Mind the gap', Nat Mater, 2007, 6, 720-721.
    [20] M. Pandurangappa and T. Ramakrishnappa, 'Microwave-assisted functionalization of glassy carbon spheres: electrochemical and mechanistic studies', Journal of Solid State Electrochemistry, 14, 687-695.
    [21] S.-M. Park and J.-S. Yoo, 'Peer Reviewed: Electrochemical Impedance Spectroscopy for Better Electrochemical Measurements', Analytical Chemistry,2003, 75, 455 A-461 A.
    [22] O. A. Sadik, A. O. Aluoch, and A. Zhou, 'Status of biomolecular recognition using electrochemical techniques', Biosensors and Bioelectronics, 2009, 24, 2749-2765.
    [23] C. Schaefer and W. Messer, 'DnaA protein/DNA interaction. Modulation of the recognition sequence', Molecular and General Genetics MGG, 1991, 226, 34-40.
    [24] B. R. Selvi, D. Jagadeesan, B. S. Suma, G. Nagashankar, M. Arif, K. Balasubramanyam, M. Eswaramoorthy, and T. K. Kundu, 'Intrinsically Fluorescent Carbon Nanospheres as a Nuclear Targeting Vector: Delivery of Membrane-Impermeable Molecule to Modulate Gene Expression In Vivo', Nano Letters, 2008, 8, 3182-3188.
    [25] K. L. Sugars and D. C. Rubinsztein, 'Transcriptional abnormalities in Huntington disease', Trends in Genetics, 2003, 19, 233-238.
    [26] F. R. R. Teles and L. P. Fonseca, 'Trends in DNA biosensors', Talanta, 2008, 77, 606-623.
    [27] M.-M. Titirici, M. Antonietti, and A. Thomas, 'A Generalized Synthesis of Metal Oxide Hollow Spheres Using a Hydrothermal Approach', Chemistry of Materials, 2006, 18, 3808-3812.
    [28] J. Wang, 'Carbon-nanotube based electrochemical biosensors: A review', Electroanalysis, 2005, 17, 7-14.
    [29] L. Wang, D. Wei, S. Huang, Z. Peng, X. Le, T. T. Wu, J. Yao, J. Ajani, and K. Xie, 'Transcription Factor Sp1 Expression Is a Significant Predictor of Survival in Human Gastric Cancer', Clinical Cancer Research, 2003, 9, 6371-6380.
    [30] R. Wintjens and M. Rooman, 'Structural Classification of HTH DNA-binding Domains and Protein - DNA Interaction Modes', Journal of Molecular Biology, 1996, 262, 294-313.
    [31] J.-B. Yang, L.-C. Ling, L. Liu, F.-Y. Kang, Z.-H. Huang, and H. Wu, 'Preparation and properties of phenolic resin-based activated carbon spheres with controlled pore size distribution', Carbon, 2002, 40, 911-916.
    [32] W. Yang, K. R. Ratinac, S. P. Ringer, P. Thordarson, J. J. Gooding, and F. Braet, 'Carbon Nanomaterials in Biosensors: Should You Use Nanotubes or Graphene?', Angewandte Chemie International Edition, 49, 2114-2138.
    [1] K. C. ARMSTRONG, C. E. TATUM, R. N. DANSBY-SPARKS, J. Q. CHAMBERS, and Z.-L. XUE, 'Individual and simultaneous determination of lead, cadmium, and zinc by anodic stripping voltammetry at a bismuth bulk electrode', Talanta, 2010, 82, 675-680.
    [2] B. CHEN, L. LAMBERTS, G. BEHETS, T. ZHAO, M. ZHOU, G. LIU, X. HOU, G. GUAN, and P. D’HAESE, 'Selenium, Lead, and Cadmium Levels in Renal Failure Patients in China', Biological Trace Element Research, 2009, 131, 1-12.
    [3] D. CHEN, B. HU, M. HE, and C. HUANG, 'Micro-column preconcentration/separation using thiacalix[4]arene tetracarboxylate derivative modified mesoporous TiO2 as packing materials on-line coupled to inductively coupled plasma optical emission spectrometry for the determination of trace heavy metals in environmental water samples', Microchemical Journal, 2010, 95, 90-95.
    [4] J. CHOU, G. CLEMENT, B. BURSAVICH, D. ELBERS, B. CAO, and W. ZHOU, 'Rapid detection of toxic metals in non-crushed oyster shells by portable X-ray fluorescence spectrometry', Environmental Pollution, 2010, 158, 2230-2234.
    [5] S. DANIELE, C. BRAGATO, M. A. BALDO, and I. CIANI, 'Application of thin-shielded mercury microelectrodes in anodic stripping voltammetry', Talanta, 2008, 77, 235-240.
    [6] W. DENG, Y. TAN, Y. LI, Y. WEN, Z. SU, Z. HUANG, S. HUANG, Y. MENG, Q. XIE, Y. LUO, and S. YAO, 'Square wave voltammetric determination of Hg(II) using thiol functionalized chitosan-multiwalled carbon nanotubes nanocomposite film electrode', Microchimica Acta, 2010, 169, 367-373.
    [7] D. DU, Z. ZOU, Y. SHIN, J. WANG, H. WU, M. H. ENGELHARD, J. LIU, I. A. AKSAY, and Y. LIN, 'Sensitive Immunosensor for Cancer Biomarker Based on Dual Signal Amplification Strategy of Graphene Sheets and Multienzyme Functionalized Carbon Nanospheres', Analytical Chemistry, 2010, 82, 2989-2995.
    [8] A. ECONOMOU, 'Recent developments in on-line electrochemical stripping analysis--An overview of the last 12 years', Analytica Chimica Acta, 2010, In Press, Corrected Proof.
    [9] F. EDWARD, C. YAP, A. ISMAIL, and S. TAN, 'Interspecific Variation of Heavy Metal Concentrations in the Different Parts of Tropical Intertidal Bivalves', Water,Air, & Soil Pollution, 2009, 196, 297-309.
    [10] M. J. GOLDCAMP, M. N. UNDERWOOD, J. L. CLOUD, S. HARSHMAN, and K. ASHLEY, 'An Environmentally Friendly, Cost-Effective Determination of Lead in Environmental Samples Using Anodic Stripping Voltammetry', Journal of Chemical Education, 2008, 85, 976-null.
    [11] B. HU, K. WANG, L. WU, S.-H. YU, M. ANTONIETTI, and M.-M. TITIRICI, 'Engineering Carbon Materials from the Hydrothermal Carbonization Process of Biomass', Advanced Materials, 2010, 22, 813-828.
    [12] M. JANG, 'Application of portable X-ray fluorescence (pXRF) for heavy metal analysis of soils in crop fields near abandoned mine sites', Environmental Geochemistry and Health, 2009, 32, 207-216.
    [13] N. X. JINGXING CHEN, TIANXIANG ZHOU, SANXIANG TAN, FENGPING JIANG, DINGSHENG YUAN, 'Mesoporous Carbon Spheres: Synthesis, Characterization and Supercapacitance', International Journal of ELECTROCHEMICAL SCIENCE, 2009, 4, 1063 - 1073.
    [14] I. M. M. KENAWY, M. A. H. HAFEZ, M. A. AKL, and R. R. LASHEIN, 'Determination by AAS of Some Trace Heavy Metal Ions in Some Natural and Biological Samples after Their Preconcentration Using Newly Chemically Modified Chloromethylated Polystyrene-PAN Ion-Exchanger', Analytical Sciences, 2000, 16, 493-500.
    [15] R. KHLIFI and A. HAMZA-CHAFFAI, 'Head and neck cancer due to heavy metal exposure via tobacco smoking and professional exposure: A review', Toxicology and Applied Pharmacology, 2010, 248, 71-88.
    [16] L. KONG, X. LU, X. BIAN, W. ZHANG, and C. WANG, 'Accurately Tuning the Dispersity and Size of Palladium Particles on Carbon Spheres and Using Carbon Spheres/Palladium Composite as Support for Polyaniline in H2O2 Electrochemical Sensing', Langmuir, 2010, 26, 5985-5990.
    [17] T. LECH, 'Lead, copper, zinc, and magnesium content in hair of children and young people with some neurological diseases', Biological Trace Element Research, 2002, 85, 111-126.
    [18] T. LEE, K.-C. CHUNG, and J. PARK, 'Anodic Stripping Voltammetric Characteristics of Carbon Composite Electrodes with Mercuric Precursors', Electroanalysis, 2002, 14, 833-838.
    [19] J. LI, S. GUO, Y. ZHAI, and E. WANG, 'Nafion-graphene nanocomposite film as enhanced sensing platform for ultrasensitive determination of cadmium', Electrochemistry Communications, 2009, 11, 1085-1088.
    [20] Y. LIU, Y. LI, and X.-P. YAN, 'Preparation, Characterization, and Application of L-Cysteine Functionalized Multiwalled Carbon Nanotubes as a Selective Sorbent for Separation and Preconcentration of Heavy Metals', Advanced Functional Materials, 2008, 18, 1536-1543.
    [21] M. E. MAHMOUD, I. M. M. KENAWY, M. A. H. HAFEZ, and R. R. LASHEIN, 'Removal, preconcentration and determination of trace heavy metal ions in water samples by AAS via chemically modified silica gel N-(1-carboxy-6-hydroxy) benzylidenepropylamine ion exchanger', Desalination, 2010, 250, 62-70.
    [22] W. T. MM RADHI, M ZAKI, B AB RAHMAN, ' Voltammetric Detection of Hg (ii) at C60, Activated Carbon and MWCNT Modified Glassy Carbon Electrode', Research Journal of Applied Sciences, 2010, 5, 59-64.
    [23] J. MORTON, N. HAVENS, A. MUGWERU, and A. K. WANEKAYA, 'Detection of Trace Heavy Metal Ions Using Carbon Nanotube- Modified Electrodes', Electroanalysis, 2009, 21, 1597-1603.
    [24] Y. SHAO, J. WANG, H. WU, J. LIU, I. AKSAY, and Y. LIN, 'Graphene Based Electrochemical Sensors and Biosensors: A Review', (WILEY-VCH Verlag, 2010), pp. 1027-1036.
    [25] L. P. NAMPOOTHIRI and S. GUPTA, 'Biochemical effects of gestational coexposure to lead and cadmium on reproductive performance, placenta, and ovary', Journal of Biochemical and Molecular Toxicology, 2008, 22, 337-344.
    [26] X. NIE and W. HU, 'Fabrication of a Carbon Sphere-modified Electrode and Sensitive Determination of Cadmium(II)', Analytical Sciences, 2010, 26, 141-142.
    [27] G. SKOROBOGATOV, V. EREMIN, and S. TIMOFEEV, 'Use of neutron activation analysis for evaluating the efficiency of water treatment to remove heavy metal ions by zone freezing', Radiochemistry, 2009, 51, 524-528.
    [28] X. SUN and Y. LI, 'Colloidal Carbon Spheres and Their Core/Shell Structures with Noble-Metal Nanoparticles', Angewandte Chemie International Edition, 2004, 43, 597-601.
    [29] J. WANG, Stripping Analysis (Wiley-VCH Verlag GmbH & Co. KGaA, 2007).
    [30] S. K. YADAV, 'Heavy metals toxicity in plants: An overview on the role ofglutathione and phytochelatins in heavy metal stress tolerance of plants', South African Journal of Botany, 2009, 76, 167-179.
    [31] YOON, H. JANG, YANG, JEEEUN, KIM, JONGPHIL, BAE, JONGSEONG, SHIM, B. YOON, WON, and G. MI-SOOK, 'Simultaneous Detection of Cd (II), Pb (II), Cu (II), and Hg (II) Ions in Dye Waste Water Using a Boron Doped Diamond Electrode with DPASV', Bulletin of the Korean Chemical Society (Korean Chemical Society, Seoul, COREE, REPUBLIQUE DE, 2010), pp. 6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700