城市垃圾填埋场振动台模型试验与地震稳定性分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市垃圾填埋场的地震稳定性评价是环境岩土工程领域遇到的新问题。鉴于目前对其地震变形机理缺乏深入的了解、工程设计中仍沿用传统土力学边坡稳定分析方法的研究现状,本文结合国家自然科学基金重点项目(50538080)“城市垃圾填埋场固、液、气相互作用及土力学机理”中的第4子题“垃圾填埋场动力稳定机理及分析方法”,利用振动台模型试验技术,在垃圾填埋场地震破坏机理分析的基础上进行理论研究,尝试建立适合城市垃圾填埋场结构特点的地震稳定性分析方法。
     论文主要内容如下:
     1.针对城市垃圾填埋场的结构形式设计8个缩尺模型,进行振动台模型试验,通过对比分析一系列的试验现象,揭示了地震作用下填埋场的几个响应规律:
     (1)沿填埋场底部衬垫层和顶部覆盖层的接触面发生较大相对滑移,是地震作用下现代城市垃圾填埋场的主要破坏模式,其中观察到的覆盖层破坏现象能够印证Ling,H.I.提出的“双滑楔体”假定,垃圾堆体内部不容易出现明显的滑动面;
     (2)填埋场防渗层的永久位移与振动台台面的水平最大位移近似成比例;
     (3)填埋场衬垫层土工膜能够减弱地震能量向上部结构的传递,输入地震动的加速度峰值越大,减弱的效果越明显。
     2.对振动台试验中的模型填埋场进行非线性数值模拟,目的是补充验证振动台试验的主要结论,以及为验证本文第四、五章的填埋场地震稳定性评价方法做准备。
     3.假定沿填埋场底部衬垫层的潜在滑动体由三个刚性滑块组成,对基础具有一定坡角的填埋场进行极限平衡分析,推导了衬垫层屈服加速度系数的计算公式,采用非线性数值计算和振动台试验结果对公式进行了验证;在填埋场地震破坏机理分析的基础上,定义了填埋场覆盖层和衬垫层的水平等效加速度(时程)HEA_c(t)和HEA_d(t),通过二维非线性数值计算,说明了以覆盖层和衬垫层的最大水平等效加速度MHEA_c和MHEA_d代表地震在防渗层引起的荷载水平,评价填埋场的地震稳定性具有客观合理性;给出对填埋场防渗层的地震稳定性进行2D拟静力分析的步骤。
     4.对具有摩擦型接触面的NewMark双滑块系统进行能量分析,建立NewMark双滑块模型的能量守恒方程,理论分析得到,谐振激励下接触面发生最大相对滑移量时对应的能量系数e与(K_y/K_a)~2存在近似线性关系:利用这一关系对真实地震波作用下地震永久位移的计算结果进行统计分析,给出了地震永久位移的简化计算公式;将简化计算公式与其它学者建议的计算公式进行对比、以及算例表明,本文的公式计算结果合理、具有简单的形式、便于工程应用。
     5.对具有典型几何构型的填埋场进行二维分析,以考察填埋场的地震响应特性,研究垃圾土初始剪切波速、填埋场高度、场地条件、输入地震动频谱特性等参数对填埋场顶部加速度响应的影响;作为本文研究成果的工程应用实例,分别以最大水平等效加速度MHEA_d和MHEA_c代表填埋场基底衬垫层和覆盖层的地震荷载水平,评价了填埋场的地震稳定性;针对最危险工况,采用本文建议的公式(5.29)和(5.30),计算了地震作用下填埋场衬垫层和覆盖层的永久位移。
     6.对复杂荷载条件下填埋场防渗层HDPE土工膜的受力状况进行了非线性数值模拟,得到的主要结论有:土工膜内的拉应力随着垃圾土分层填埋、基础不均匀沉降、地震荷载的作用而积累,基础不均匀沉陷是影响衬垫层土工膜局部拉应力的主要因素,中等强度地震动输入可使覆盖层土工膜锚固位置的拉应力超过极限拉应力。
Seismic stability evaluation of municipal waste landfill is a new challenge in environmental geotechnology. Due to lack of understanding seismically induced deformation mechanism, seismic stability analyses of landfills are commonly performed using the methods developed to analyze earth embankments. Physical model experiments of landfill are conducted on shaking table in this thesis, then, based on analyzing earthquake failure mechanism of landfills, theoretical studies are performed, in order to develop the special methods for seismic stability evaluations of landfills.
     The main research results of are as followed:
     1. According to the typical landfill configuration, 8 physical models are designed, and the following conclusions are drawn from shaking table test:
     (1) Experiencing excessive relative displacement within the specific interfaces of landfill liner and cover systems is the primary observed failure patterns induced by earthquake, however, waste itself collapse is seldom a concern problem.
     (2) When other parameters are fixed, seismically induced permanent displacement of landfill liner are shown to be approximately proportional to the amplitude of input motion.
     (3) Significant acceleration attenuation of motion took place when earthquake wave transfer through landfill base liner which including HDPE geomembrane, moreover, the attenuation is more obvious, while the peak acceleration of input motion is larger.
     2. Nonlinear numerical simulation of Landfill models using in shaking table test is conducted, in order to supplement verification of the physical model test results and be prepared to validate the proposed stability evaluation method.
     3. On supposing that the potential sliding mass above landfill base liner are constituted of three rigid blocks, a formulation, to estimate the yield acceleration of landfill base liner approximately, is presented by limit equilibrium analysis. Based on analyzing seismically induced deformation mechanism of landfills, the Horizontal Equivalent Acceleration (time-history) HEA_c(t) and MHEA_d(t) are defined at landfill top cover slop and base liner respectively. Nonlinear numerical calculation of the landfill models indicates that the Maximum Horizontal Equivalent Acceleration MHEA_c and MHEA_d can represent the loading level induced by earthquake. The process of pseudo-static analysis to evaluate the earthquake stability of 2D landfill is given.
     4. Energy dissipation and transfer of frictional slip surface between two rigid blocks are investigated; then, an energy balance equation is formulated for NewMark sliding-block model. Theoretically, an approximate linear relationship between the energy coefficient e vs (ky/ka)~2 is found when the relative displacement in the interface get the maximum value with sine wave input. Considering the approximate linear relationship, statistical analysis of earthquake-induced permanent displacement data, which are results from. NewMark sliding-block model numerical calculation, is conducted, and a Simplified formulation for predicting the earthquake-induced displacement of landfill is presented, Comparison with other earthquake-induced permanent displacement fomulas in literature indicates that calculating results using the proposed formulation is reasonable, and can be used in practice more easily.
     5. 2D seismic response of landfills with typical geometry configuration is explored in detail, in order to investigate seismic response characteristics of landfills, as well as to study how the factors, including wastes properties, landfill heights, input motion and site conditions, to influence top acceleration response of landfills. With the Maximum Horizontal Equivalent Acceleration (MHEA_d and MHEA_c) representing the loading induced by earthquake in landfill deep liner system and cover system respectively, the stability of landfill is evaluated. As an engineering application example of the formulation (5.29) and (5.30) suggested in this thesis, the permanent displacement induced by earthquake of the most dangerous case.
     6. A finite difference analysis using the computer code FLAC is conducted of tension in landfill HDPE geotechnical membrane under complicated loads. The main conclusions are: (1)the accumulative tensile stress is developed in HDPE membrane by waste dumping, differential settlement, and earthquake. (2) the differential settlement effects the stress in liner HDPE membrane primarily. (3) the tensile stress in cover system HDPE membrane is higher than ultimate strength of HDPE geotechnical membrane under moderate intensity motion input (eg peak acceleration is 0.25g)
引文
[1] 钱学德,郭志平,施建勇,卢廷浩.现代卫生填埋场的设计与施工.北京:中国建筑工业出版社2001.
    [2] 周健,刘文白,贾敏才.环境岩土工程.北京:人民交通出版社,2004.
    [3] 包承纲,陈云敏.第一届全国环境岩土工程与土工合成材料技术研讨会论集,杭州:浙江大学出版社,2002.
    [4] 冯世进,陈云敏,孔宪京,邹德高.城市固体废弃物动力特性试验研究.岩土工程学报,2005,27(7):750-754
    [5] 孔宪京,孙秀丽.城市固体废弃物沉降模型研究现状及其进展.大连理工大学学报,2006,46(4):615-624.
    [6] 中华人民共和国统计局.2006中国统计年鉴.北京:中国统计出版社,2006.
    [7] 胡敏云,城市生活垃圾卫生填埋场的土工问题研究.浙江大学博士后研究报告,2000.
    [8] Augello, A.J. Seismic response of solid-waste landfills:[dissertation].Berkeley: Univ. of California, 19997.
    [9] Anderson, R.L. Earthquake related damage and landfill performance. Proceedings of the earthquake design and performance of solid waste landfills. ASCE, California, 1995.
    [10] 刘君,孔宪京.卫生填埋场复合边坡地震稳定性和永久变形分析.岩土力学,2005,25(5):778-782.
    [11] 周健,王浩.现代卫生填埋场设计中的岩土工程问题.第一届全国环境岩土工程与土工合成材料技术研讨会论集.杭州:浙江大学出版社,2002.
    [12] Ellis L. Krinitzsky, Mary Ellen Hynes, Arley, G. Franklin, Classification of Landfills for Seismic Stability Assessment. Proceedings of the earthquake design and performance of solid waste landfills. ASCE, California, 1995.
    [13] United States Environmental Protection Agency, Solid Waste Disposal Facility Criteria, Technical Manual EPA530-R-93-017, PB94-100-450, November 1993: p339-350.
    [14] 周健,苏燕.环境岩土工程进展与展望.全国岩土与工程学术大会论文集.北京:人民交通出版社,2003.
    [15] 《城市生活垃圾卫生填埋技术规范》(CJJ17-001,J122-2001),建筑工业出版社,2004.
    [16] 柯瀚.城市固体废弃物沉降、静力和动力稳定性研究:(博士学位论文),杭州:浙江大学,2002.
    [17] 冯世进.城市固体废弃物静动力强度特性及填埋场的稳定性分析:(博士学位论文),杭州:浙江大学,2005.
    [18] 彭功勋.城市生活固体废弃物MSW的沉降变形研究:(博士学位论文),南京:河海大学,2004.
    [19] 施建勇.城市卫生填埋场工程有关问题的研究综述.首届环境岩土工程学术交流会论文集:环境岩土工程理论与实践.2002.
    [20] 雄孝波,施斌,张凌.我国城市垃圾填埋场岩土工程研究的现状与展望.水文地质工程地质,2000,(3):25—28.
    [21] Hoe I. Ling, Dov leshchinsky. Seismic stability and permanent displacement of landfill cover systems, Journal of Geotechnical and Geoenvironmental Engineering, 1997, 123(2):113-122.
    [22] Koerner, R.M., Designing with Geosynthetics, 3~(rd)Edition, Pretice Hall Inc. Englwood Cliffs, New Jersey, 1994.
    [23] Ducan, J.M. State-of-the-art:Static Stability and Deformation Analysis, Proceedings ASCE Specialty Cconference on Stability and Performance of Slopes and Embankments-Ⅱ Berkeley, California, 1992, p222-266.
    [24] Mitchell, R.A. and Mitchell, J.K.,Stability Evaluation of Waste Landfills, Proceedings ASCE Specialty Conference on Stability and Performance of Slopes and Embankments-Ⅱ, Berkeley, California, 1992, p1152-1187.
    [25] Mitchell, J.K, Bray, J.D. and Mitchell, R.A. Material Interactions in Solid-Waste Landfills, Proceedings of Geoenvironment, ASCE GSP, 2000, 46:568-590.
    [26] Singh, S. and Murphy, B.,Evaluation of the Stability of Sanitary Landfills, ASTMSTP 1070, Geotechnics of Waste Landfills Theory and Practice, A, Landva and G.D. Knowles, eds.,American Society for Testing and Materials, p240-258.
    [27] Newmark N.M., Effects of Earthquakes on Dams and Embankments, Géotechnique, 1965,15(2):139.
    [28] Seed H.B. and Martin G.R., The Seismic Coefficient in Earth Dam Design, Journal of the Soil Mechanical and Foundation Division, 1966,92(3):25-58.
    [29] Makdisi F.I. and Seed H.B., Simplified Procedure for Estimating Dam and Embankment Earthquake- Induced Deformation", Journal of the Geotechnical Engineering Division, 1978,104(7):849-867.
    [30] Bray, J.D.,Augello, A.J.,Leonards, G.A.,Repetto, P.C. and Byrne, R.J.,Closure to Seismic Analytical Procedures for Solid Waste Landfills, Journal of the Geotechnical Engineering Division, ASCE, 1996,122(11)
    [31] Kavazanjian, E.,Jr. and Matasovic, M.,Seismic Analysis of Solid Waste Landfills, Proceedings of Geoenvironment, ASCE GSP, 2000,46:1066-1080
    [32] Bray, J.D.,Augello, Augello, A.J.,Leonards, G.A.,Repetto, P.C. and Byme, R.J.,Seismic Stability Procedures for Solid Waste Landfills, Journal of Geotechnical Engineering, ASCE, 1995,121(2):139-151.
    [33] Xuede Q., Donald H.G., Robert M. K., Estimation of Maximum Liquid Head over Landfill Barriers, Journal of Geotechnical and Geoenvironmental Engineering. 2004,5:488-497.
    [34] Kramer, S.L. and Smith, M.W., Modified Newmark Model for Seismic Slope Displacements of Compliant Slopes, Journal of Geotechnical Engineering, 1997,123(7):635-644.
    [35] Elton, D. J.,Shie, C. F., and Hadj-Hamou, T., One and Two-Dimensional Analysis of Earth Dams, Proceedings Second International Conference on Recent Advances in Geotechnical Earthquake Engineering and SoilDynamics, St. Louis, MO,:1043-1049.
    [36] Augello, A.J.,Bray, J.D.,Leonards, G.A.,Repetto, P.C., Byrne, R.J.,Response of Landfills to Seismic Loading, Proceedings of Geoenvironment 2000 Geotechnical Special Publication No. 46, American Society of Civil Engineer, New York, NY, p1051-1065.
    [37] Rathje E. M. and Bray J.D.,One-and two-dimensional seismic analysis of solid-waste landfills, Published on the NRC Research Press Web site at HTTP://cgj.nrc.ca on august 21,2001.
    [38] Rathje, E.M. and Bray, J. D.,An Examination of Simplified Earthquake-lnduced Displacement Procedures for Earth Structures, Canadian Geotechnical Journal, 1999, 36(1):72-87.
    [39] Gunturi, V.R.,Elgamal, A.M., A class of inhomogeneous shear models for seismic analysis of landfills. Soil Dynamic and Earthquake Engineering, 1998,17:197-209.
    [40] 陈云敏,柯瀚等.城市垃圾填埋体的动力特性及地震响应[J].土木工程学报,2002,35(3):66—71.
    [41] 柯瀚、陈云敏等,城市垃圾填埋场地震稳定分析及永久位移计算,地震学报,2001,23(2):4-212.
    [42] 陈云敏,王立忠等.城市固体垃圾填埋场边坡稳定分析.土木工程学报,2002,33(2):204-212.
    [43] 梅其岳,吴世明,山谷型填埋及堆体边坡稳定分析,岩土工程学报,2000,22(3):375-378
    [44] Giroud, J.P. and Beech, J.F.,Stability of Soil Layers on Geosynthetic Lining Systems, Geosynthetics'89, Industrial Fabrics Associates International.
    [45] Koerner, RM 与 Hwu, BL. Stability and tension considerations regarding cover soils on geomembrane lined slopes, Geotextiles and Geomembranes, 1991,10:335-355.
    [46] Long, J.H.,Gilbert, R.B. and Daly, J.J.,Geosynthetic Loads in Landfill Slopes: Displacement Compatibility, Journal of Geotchnical Engineering, ASCE, 1994,120, (11): 2009-2025.
    [47] Wilson-Fahmy, R.F. and Koerner, R.M., Finite element modelling of soil-geogrid interaction with application to the behavior of geogrids in a pullout loading condition. Geotextiles and Geomembranes, 1994,12(5):479 - 501
    [48] Gilbert, R.B. and Long, J.H.,Daly, J.J. Structural integrity of composite geosynthetic lining and coversystems. Proceedings of conference geosynthetics. Canada:1993, p1389-1401.
    [49] Long, J.H.,Gilbert, R.B. and Daly, J.J.,Effective Waste Settlement on Sloped Lining Systems, Proceeding Geosynthetics' 95, Nashville, TN, 1995,2:729- 744.
    [50] Jayantha Kodikara. Analysis of tension development in geomembranes placed on landfill slopes. Geotexiles and Geomembranes, 2000,18(1):47--61.
    [51] 张鹏,王建华,陈锦剑,垃圾填埋场边坡上土工膜的拉应力与位移分析,岩土力学,2004,25(5):789-792.
    [52] 钱学德,郭志平.填埋场黏土衬垫的设计与施工.水利水电科技进展.1997,17(4):55—59.
    [53] 钱学德,郭志平.填埋场复合衬垫系统.水利水电科技进展.1997,17,(5):64-67.
    [54] 钱学德,郭志平.填埋场最终覆盖(封顶)系统.水利水电科技进展.Vol.17,No.3,1997.6.62—65.
    [55] Martin, R.B., Koerner, R.M., and Whitty, J. E., Experimental Friction Evaluation of Slippage Between Geomembrances, Geotextiles and Soils, Proceeding of the International Conference on Geomembranes, Denver CO, June20-30,1984.
    [56] Mitchell, J.K., Geotechnics of Soil-Waste Material Interactions, 2nd International Congress Environmental Geotechnics, Osaka, Japan. A.A. Balkema, 1996,3:1311-1328.
    [57] Seed, R.B. and Boulanger, R.W., Smooth HDPE-Clay Liner Interface ShearStrengths: Compaction Effects, Journal of Geotechnical Engineering, 1991,117(4):686-693.
    [58] Stark T.D. and Poeppel, A.R.,Landfill Liner interface Strengths from Torsional-Ring-Shear Tests, Journal of Geotechnical Engineering, 1994,120(3):597-615.
    [59] Yegian M.K. and Lahlaf A.M.,Dynamic Interface Shear Strength Properties of Geomembranes and Geotextiles, Journal of Geotechnical Engineering, 1992,118(5):760-779.
    [60] Yegian M.K. and Harb J.N. Slip Displacement of Geosynthetic Systems under Dynamic Excitation, Yegian M.K. and Finn W.D.L., eds., Earthquake Design and American Society of Civil Engineers New York,1995.
    [61] 胡黎明、濮家骝,土与结构物接触面物理力学特性试验研究,岩土工程学报,2001,23(4):431-435.
    [62] 姜炳阳,含土工膜夹层土坡地震稳定性研究:(硕士学位论文),沈阳,大连理工大学,2002.
    [63] 张嘎、张建民,大型土与结构接触面循环加载剪切仪的研制及应用,岩土工程学报,2003,25(2):151-155.
    [64] 徐光明,张为民,彭功勋.HDPE膜的力学特性受损伤影响初步研究.河海大学学报,2004,32(1):76-80.
    [65] 钱学德,郭志平.城市固体废弃物(MSW)的工程性质.岩土工程学报.1998.29(5):1-6.
    [66] 张振营、吴世明、陈云敏.城市生活垃圾土性参数的室内实验研究,岩土工程学报,2000,22(1):35-39.
    [67] 陈云敏,柯瀚,城市固体废弃物的工程特性及填埋技术,水平报告,第一届全国环境岩土工程与土工合成材料技术研讨会论文集,2002年11月,杭州.
    [68] 朱向荣,谢新宇等.杭州天子岭垃圾填埋体土工性状试验研究,土木工程学报,2004,37(10):52-58.
    [69] Fassett, J., Leonards, G.,and Reppeto, P.,Geotechnical Properties of Municipal Solid Waste and Their Use in Landfill Design, Proc. Waste Tech ' 94, Solid Waste Association of North America, Silver Springs, Maryland: 1-31.
    [70] Kavazanjian, Jr., E., Matasovic, N., Bonaparte, R. and Schmertmann, G.R., Evaluation of MSW Properties for Seismic Analysis, Geoenvironment 2000, Acar, Y.B. and Daniel, D.E., Editors, Geotechnical Special Publication No. 46, ASCE, Vol. 2, proceedings of a specialty conference held in New Orleans, Louisiana, USA, February, 1995:1126-1141.
    [71] Landva, A. D. and Clark, J. I., 1990. Geotechnical of Waste Fill. In: Landva A, Knowles G D, eds. Geotechnics of Waste Fills-theory and Practice, Philadiphia. ASTMSTP 1070:86-103.
    [72] Kavazanjian, Jr., E., Matasovic, N., Stokoe, K.H. and Bray, J.D.,In Situ Shear Wave Velocity of Solid Waste From Surface Wave Measurements, Proceedings of the Second International Congress on Environmental Geotechnics, Balkema, Osaka, Japan, 1996,1(11): 97-102.
    [73] 张季如,陈超敏.城市生活垃圾抗剪强度参数的测试与分析[J].岩石力学与工程学报,2001,22(1):110-114
    [74] 朱俊高,施建勇,严蕴.垃圾填埋场固体废弃物的强度特性试验研究[A].第一届全国环境岩土工程与土工合成材料技术研讨会论文集.杭州:浙江大学出版社,2002。
    [75] 张振营,吴世明.城市垃圾填埋场土工参数的基本特点.青岛建筑工程学院学报, 1999,20(3):14-18.
    [76] Sowers, G.F. Foundation problem in sanitary landfills, Journal of Sanitary Engineering, ASCE, 1968,94(1):103-116.
    [77] Br jarngard, A.B, Edgers, L. Settlement of municipal solid waste landfill, Proceedings of the 13~(th) annual Madison waste conference, University of Wisconsin, Madison, Wisconsin, 1990.
    [78] 赵由才,黄仁华等.大型填埋场垃圾降解规律研究.环境科学学报.2000.22(6):736—740.
    [79] 胡敏云,陈云敏,温振统.城市垃圾填埋场垃圾土压缩变形的研究.岩土工程学报.南京.2001,23(1):124-126.
    [80] Sharma, H.D.,Dukes, M.T.,and Olsen, D.M.,Field Measurements of Dynamic Moduli and Poisson's of Refuse and Underlying Soils at a Landfill Site, ASTM STP 1070, Geotechniques of Waste Landfills-Theory and Practice, A. Landva and G.D. Knowles, eds.,American Society for Testing and Materials.
    [81] 周健,池毓蔚等.垃圾土室内动力试验研究.岩土力学,1999,20(4):1-5.
    [82] 陈云敏,冯世进,孔宪京,唐晓武.城市固体废弃物的动力特性及参数确定,土木工程学报,2006,39(5),p90-95.
    [83] 陈云敏,柯瀚,凌道盛.城市垃圾填埋体的动力特性及地震响应.土木工程学报,2002,35(3):66—72.
    [84] Wartman, J.,Physical model studies of seismically induced deformation in slopes[D]., Univ. of California, Berkeley, Calif. 1999.
    [85] Sandro L. Machado, Miriam F. Carvalho and Orencio M. Vilar, Contitutive Model for Municipal Solid Waste, Journal of Geotechnical and Geoenvironmental Engineering, 2002(11):p940-951.
    [86] Matasovic, N.,Vucetic, M., Seismic response of soil deposits composed of fully-saturated clay and sand layers, Proc.,lst Int. Conf. on Earthquake Geotechnica Engineering.,Tokyo, Japan, 1995.
    [87] Koerner, R.M.,Designing with Geosynthetics, 3~(rd) Edition, Prentice Hall Inc.,Englewood Cliffs, New Jersey.
    [88] Koerner, R.M.,Koerner, G.R.,and Hwu, B.L.,Three Dimensional Axi-Symmetric Geomembrane Tension Test, ASTM STP 1081, R.M. Koerner, ed, Philadelphia, p170-184.
    [89] Mitchell. J.K.,Seed, R.B.,Kettleman Hills Waste Landfill Slop Failure. I:Liner-system ProPerties [J]. Journal of Geotechnical Engineering, 1990,116(4):p647-668.
    [90] Mitchell, J.K.,Bray, J.D.,and Mitchell, R.A.,Material interactionsin solid waste landfills. Proceeding of Geoenvironmental, 2000, Geotech. spec. Publ. No. 46, ASCE, Vol. 1, p568-590.
    [91] Mitchell, J.K.,Geotechnics of Soil-Waste Material Interactions, 2nd International Congress Environmental Geotechnics, Osaka, Japan. A.A. Balkema, 1996,3:1311-1328.
    [92] Kramer SL, Geotechnical Earthquake Engineering, Prentice-Hall, Inc. Upper Saddle River, NJ,1996.
    [93] Repetto, P.C. and Bray, J.D.,Considerations for Seismic Analysis of Landfills. Workshop of the Technical Committee of Roundation Performance During Earthquakes and its Influence in Building Codes, lnternational Society for Soil Mechanics and Foundation Engineering, Mexico City.
    [94] Repetto, P.C.,Bray, J.D.,Byrne, R.J. and Augello, A.J.,Applicability of Wave ProPagation Methods to the Seismic Analysis of Landfill, Proceedings Waste Tech' 93. Marina del Ray, CA, January:14-15.
    [95] Repetto, P.C.,Bray, J.D.,Byrne, R.J. and Augello, A.J.,Seismic Design of Landfills, Progress in Geotechnical Engineering Practice, Pennsylvania ASCE and DOT Hershey, Pennsylvania, April 12-14.
    [96] 韩国城,栾茂田等,瀑布沟心墙堆石坝地震反应三维非线性分析,大连理工大学学报,2000,40(2):218-223.
    [97] 孔宪京,刘君,韩国城,倪汉根,混凝土面板堆石坝地震反应分析的剪切梁法,水利学报,2000,31(7):55-59.
    [98] Xuede, Q., Koerner, R.M., Effect of apparent cohesion on translational failure analysis of landfills. Journal of Geotechnical and Geoenvironmental Engineering, 2004,30(1):71-80.
    [99] 倪汉根、金崇磐 大坝抗震特性与抗震计算,大连:大连理工大学出版社1994.
    [100] Bray.J.D., Augello, A., Repetto, P.C. and Byrne, R.J.,Seismic Stability Procedures for Solid-waste Landfills[J].J. Geotech. Engrg.,ASCE, 1995,121(2):139-151.
    [101] T. Kohusho, T. Ishizawa, Energy Approach for Earthquake Induced Slope Failure Evaluation, Soil Dynamics and Earthquake Engineering 2006,26:221-230.
    [102] Yegian, M.K., Marciano, E.A., Ghahraman, V.G.,Integrated Seismic Risk Analysis for Earth Dams, Report No. CE-88-15,12. 1988.
    [103] Chopra, A.K. Earthquake responseof earth dams[J]. Journal of the Soil Mechanics and Foundation Engineering Division, ASCE, 1967, 93(SM2):65- 81.
    [104] Franklin, A.G. and Chang, F.K.,Earthquake Resistance of Earth and Rockfill Dams, Misc. Paper S-71-17, U.S. Army Waterways Experiment Station, Vicksburg, MS, Nov.
    [105] Yegian, M.K.,Marciano, E.A.,Ghahraman, V.G.,Integrated Seismic Risk Analysis for Earth Dams. Report No. CE-88-15, Northeastern University, Boston, Massachusetts, 1988.
    [106] Seed, R.B. and Bonaparte, R., Seismic Analysis and Design of Lined Waste Fills: Current Practice, Proceedings ASCE Specialty Conference on Stability and Performance of Slopes and Embankments-Ⅱ, Berkeley, California, June 28-July 1, p1152-1187.
    [107] Newmark, N.M.,Effects of Earthquakes on Dams and Embankments, Geotechnique, 1965, 15(2):139-160.
    [108] Gazetas, G. and Uddin, N.,Permanent Deformation on Preexisting Sliding Surfaces in Dams, Journal of Geotechnical Engineering, ASCE, 1994.120(11):2041-2061.
    [109] Kramer, S.L. and Smith, M.W.,Modified Newmark Model for Seismic Slope Displacements of Compliant Slopes, Journal of Geotechnical Engineering, ASCE, 1997,123(7):635-644.
    [110] 朱伯芳.有限元原理与应用.北京:中国水利水电出版社.1998.
    [111] 张涛.中型动三轴仪的研制及城市垃圾土动力特性试验研究(硕士学位论文),大连:大连理工大学,2004.
    [112] 周健,垃圾土室内动力试验研究,岩土力学,1999,20(4):1-4.
    [113] 徐超,廖星樾,叶观宝,李志斌.HDPE膜界面摩擦特性的斜板试验研究.岩土工程学报.2006,28(8):989—993.
    [114] 冯世进,陈云敏,高广运.垃圾填埋场沿底部衬垫系统破坏的稳定性分析.岩土工程学报.2007,29(1):20-25.
    [115] 施建勇,卢廷浩,朱俊高.城市生活垃圾变形性质试验研究,河海大学学报,200129(12):131-134.
    [116] 彭功勋、施建勇,卫生填埋场室内离心试验模拟试验研究,河海大学学报,2003,31(2):171-174
    [117] Kavazanjian, E., Jr., Matasovic, N., Bray, J.D., Augello, A.J., and Seed, R.B. Material Properties for Landfill Design[A], Geotechnical Earthquake Engineering and Soil Dynamics Conference[C], Seattle, WA, 1998.
    [118] 胡敏云,陈云敏.城市生活垃圾填埋场沉降分析与计算,土木工程学报,2001,34(6):88-92.
    [119] 胡敏云,陈云敏,城市垃圾填埋场垃圾土的压缩变形的研究,岩土工程学报,2001,23(1):123—126.
    [120] 黄仁华,周乃杰,赵由才.城市生活垃圾压实工程试验研究.同济大学学报.2000,28(3):376—378.
    [121] F. Ma, Axial tension development in the liner of a proposed cedar hills regional municipal solid waste landfill expansion [A], FLAC and Numerical Modeling in Geomechanics[C]. Tokyo:A.A. Balkema Publishers. 2003
    [122] 温振统.城市固体废弃物填埋场沉降与稳定分析(硕士学位论文).杭州:浙江大学,1999.
    [123] 袁建新.环境岩土工程问题综述.岩土力学,1998,17(2):88-93.
    [124] 张丙印,袁会娜.垃圾力学的基本理论[A].第一届全国环境岩土工程与土工合成材料技术研讨会论文集[C].杭州:浙江大学出版社,2002:147-160.
    [125] 朱向荣,方朝晖,方鹏飞.杭州天子岭垃圾填埋场扩容可行性研究.岩土工程学报,2002,24(3):281-285.
    [126] 周健,贾敏才.固体废弃物堆埋场抗震稳定性研究现状[J].世界地震工程,2001,17(3):38-42.
    [127] 周健,吴世明,徐建平.环境岩土工程.北京:中国建筑工业出版社,2001.
    [128] 赵由才,龙燕,张华.生活垃圾卫生填埋技术.北京:化学工业出版社,2004.
    [129] 锁志文.中国城市垃圾的现状及对策.环境保护.1997.4:46—47.
    [130] 减文超.我国固体废物污染防治现状、问题与对策.环境保护科学.1995,21(2):57—60.
    [131] 华振明,高忠爱,祁梦兰等.固体废弃物的处理与处置(修订版).北京:高等教育出版社.1993.
    [132] 俞调梅,朱百里编译.废弃物填埋场设计.上海:同济大学出版社.
    [133] 钱学德,郭志平.填埋场淋洗液收集和排放系统.水利水电科技进展.1997,17(1):59—63.
    [134] Hoe I. Ling, Yoshiyuki Mohri, Toshinori Kawabata, Tensile Properties of Geogrids under cyclic Loadings[J]. Journal of Geotechnical and Geoenvironmental engineering. 1998,8: 782-788.
    [135] 钱学德,郭志平.美国的现代卫生填埋工程.水利水电科技进展.1995,15(5):8-12.
    [136] Anderson, D.G.,Hushmand, B.,and Martin, G.R. Seismic Response of Landfill Slopes and Embankments-Ⅱ, Berkeley, California, June 28-July 1,:973-989.
    [137] 彭功勋,施建勇,徐光明.卫生填埋场室内离心模拟试验研究.河海大学学报.南京.2003.3:
    [138] 钱家欢,殷宗泽主编.土工原理与计算.北京:中国水利水电出版社.1996.
    [139] 钱学德,郭志平.填埋场气体收集系统.水利水电科技进展.1997,17(2):64-68.
    [140] 沈珠江.理论土力学.北京:中国水利水电出版社.2000.
    [141] Singh. S. and Sun, J.,Seismic Evaluation of Municipal Solid Waste Landfills, Proceedings of Geoenvironment2OOO, ASCE Geotechnical Special Publication No. 46. New York, NY,:1081-1096.
    [142] Rathje, E.M.,Avrahamson, N. and Bray, J.D.,Simplified Frequency Content Estimates of Earthquake GroundMotions, Journal of Geotechnical Engineering ,ASCE, 1998,124(2).
    [143] Itasca Consulting Group, Inc. FLAC2D, Fast Lagrangian Analysis of Continua in 2 Dimensions, version 2.0, users mannual[R].USA:Itasca Consulting Group, Inc.,2002.
    [144] Yegian, M.K.,Kadakal, U. Geosynthetic interface behavior under dynamic loading. Geosynthetics International, 1998,5.
    [145] Augello, A.J. Bray, J.D.,Matasovic, N.,Kavazanjian, E.,Jr.,and Seed, R.B.,Solid Waste Landfill Performance During the 1994 Northridge Earthquake, Proceedings Third International Conference on Recent Advances in Geotechnical Earthquake Engineering, St. Louis, Mo, 1995,3:163-169.
    [146] 孔宪京,孙秀丽,邹德高,娄树莲.垃圾土中有机物降解引起的体积缩减量与时间的关系研究.岩土工程学报.2006,28(12):2061-2065.
    [147] Wartman, J. and Riemer, M.F.,The use of fly ash to alter the geotechnical proprieties of artificial "model" caly, Proceeding to Physical Modelingin Geotechnics, ICPMG' 02, St. John' s, Canda.
    [148] United States Environmental Protection Agency, Solid Waste Disposal Facility Criteria, Technical Manual EPA530-R-93-017, PB94-100-450,1993.
    [149] Augello A.J., Bray J.D., Abrahamson N.A. and Seed R.B., Dynamic Properties of Solid Waste Based on Back-Analysis of the OII Landfill, Journal of GeotechnicalEngineering, 1998,124(3):87-99.
    [150] Idriss I.M.,FiegeIG. L.,Hudson M. B.,Mundy P. K. and Herzig R.,Seismic Response of the Operating Industries Landfill, Earthquake Design and Performance of Solid Waste Landfills, Yegian, M.K. and Finn W.D.L., Editors, Geotechnical Special Publication No. 54, ASCE, proceedings of a specialty conference, San Diego, California, USA, 1995,10:83-118.
    [151] Mitchell, R.A., and Mitchell, J.K, Stability Evaluation of Waste Landfills, Proceedings ASGE Specialty Conference on Stability and Performance of Slopes and Embankments-Ⅱ, Berkeley, California, 1992:1152-1187.
    [152] 陈云敏,唐晓武.环境岩土工程进展和展望.第九届全国土力学及岩土工程学术会议论文集,2003:69-78.
    [153] 龚育宁.SH波在滑动接触面上的反射与折射.固体力学学报,1987,8:174-178.
    [154] Miller, R.K.,The Effects of Boundary Friction on the Propagation of Elastic Waves, Bulletin of the Seismological Society of America, 1987,68(4):987-998.
    [155] 卢文波.应力波与可滑移岩石界面的相互作用研究.岩土力学,1996,17(3):70-75.
    [156] 汪越胜,于桂兰,章梓茂,冯仰德.复杂界面(界面层)条件下的弹性波传播问题综述.力学进展.2000,30(3):378-387.
    [157] 柯瀚,陈云敏.城市固体废弃物的压缩性及填埋场容量分析,环境科学学报.2003,23(5):694—698.
    [158] Matasovic, N.,Vucetic, M., Seismic response of soil deposits composed of fully-saturated clay and sand layers, Proc.,1~(st) Int. Conf. on Earthquake Geotechnica Engineering.,Tokyo, Japan, 1995,1:611-616.
    [159] Xuede Q.,Donald H.G.,Robert M. K., Estimation of Maximum Liquid Head over Landfill Barriers, Journal of Geotechnical and Geoenvironmental Engineering. Mar. 2004:488-497.
    [160] Rathje, E.M.,Nonlinear and Two Dimensional Seismic response of solid-waste landfills: [dissertation], University of California, Berkeley, 1997.
    [161] Howland, J. and Landva, A. O.,Stability analysis of a municipal solid waste landfill. Stability and performance of slope and embankments- Ⅱ, ASCE GSP 1992,31:1216-1231.
    [162] Hoe, I.L.,Recent applications of sliding block theory to geotechnical design. Soil Dynamics and Earthquake Engineering, 2001,21:189-197.
    [163] Shewbridge, S.E.,Yield Acceleration of Lined Landfills, Journal of Geotechnical Engineering, 1996.122(2):156-158.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700