工程陶瓷超声辅助固着磨料高效研磨机理及试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工程陶瓷零件的精密超精密加工技术越来越被得到重视,不同的精整加工方法被提出和应用。固着磨料高效研磨技术是在离散磨料研磨基础上发展起来的一种精整加工技术,兼具超精密磨削和传统研磨的特点,较好解决了传统的游离磨料研磨效率低、磨料浪费严重、研磨质量不易控制等缺点,并且克服了传统超精密磨削中对环境和机床依赖性大等不足。同时考虑到超声振动加工方法在加工硬脆材料方面独特的优越性,本文提出了采用固着磨料对工程陶瓷进行超声辅助研磨这一课题,将特种加工与普通超精密加工技术相结合,高效获得工程陶瓷材料高精密超光滑加工表面。
     本课题在河南省杰出人才创新基金和河南省自然科学基金的资助下,选择常见的Al2O3、ZrO2工程陶瓷和目前陶瓷界研究热点之一的ZTA复相陶瓷作为研究对象,对工程陶瓷的超声辅助固着磨料高效研磨机理及其表面加工质量进行了系统的理论和试验研究。研究内容主要包括:
     1.针对工程陶瓷精密外圆类零件的高效精密加工要求,提出超声辅助固着磨料高效研磨技术,并研制出相应的加工装置。采用有限元方法结合振动特性试验对超声研磨装置声学系统振动特性进行分析,获得在发生器频率可调范围内的系统固有频率和振型及研具内外两条金刚石丸片路径的振动幅值分布特性,研究结果为超声辅助固着磨料高效研磨机理及相关试验的研究提供有力的保证。
     2.通过对圆柱面超声辅助固着磨料研磨磨粒运动特性进行分析,建立了无附加超声、附加轴向、径向和切向超声振动四种模式下的单颗磨粒运动模型。基于压痕断裂力学,结合单点金刚石超声辅助单摆刻划试验,对三种超声辅助方式下的工件材料去除机理进行研究,分析了辅助超声能够增大延性加工范围的原因。基于冲量理论和振动加工理论,对附加超声振动的磨粒受力进行分析,建立了在延性域和脆性域的材料去除率理论模型,并定性讨论了影响工程陶瓷研磨去除率的因素及规律。
     3.试验研究了研磨参数对材料延性去除与脆性断裂比例的影响规律及研磨过程平均研磨分力比与材料脆延去除特性之间的关系。通过对ZTA陶瓷超声辅助单点金刚石单摆刻划过程的声发射信号进行时频分析,结合划痕CCI图像,获得材料脆延去除特征频率范围。构建工程陶瓷超声辅助研磨材料脆延去除特性在线监测系统,通过小波包分析,建立了基于小波包分解频带能量的材料脆延去除特性在线监测判据。
     4.从表面形貌、表面粗糙度、表面分形特性、表面残余应力特性以及表面物相结构的变化等五方面,对ZrO2、Al2O3和ZTA三种工程陶瓷材料超声辅助固着磨料研磨表面质量进行研究,获得不同加工方式和参数对研磨表面质量的影响规律,研究结果表明超声振动的附加在一定程度上改善了表面加工质量。
     5.结合生产实践要求,基于响应曲面法(RSM)建立了工程陶瓷超声辅助研磨加工材料去除率和表面粗糙度的预测模型;综合处理高效与精密的关系,以最大材料去除率为目标变量,以表面粗糙度为约束变量,同时考虑机床和工件的实际约束条件,建立了超声研磨参数优化数学模型,应用遗传算法(GA)对超声辅助研磨参数进行了寻优并进行了工程实例验证。
     课题研究结果有助于揭示工程陶瓷超声辅助高效精密加工机理,完善和发展工程陶瓷固着磨料研磨加工新技术,寻求高效精密延性域研磨加工新工艺,进一步推动工程陶瓷的工程实际应用。
Nowadays, there are more and more attentions on the precision and ultra-precision processing technology of engineering ceramics parts, and different finishing processing methods have been proposed and put to use. The new developed high efficiency lapping technology with solid diamond abrasive based on traditional free abrasive lapping, possessing both the advantages of ultra-precision grinding and traditional lapping, is suitable for the precision processing of engineering ceramics. For it, the weaknesses of low efficiency, serious waste of abrasive, difficulty to control the quality and so on in the traditional lapping are resolved, and the severe dependence on the environment and machine tool in the ultra-precision grinding is overcomed. Meanwhile, considering the unique advantages of the ultrasonic vibration machining in the processing of hard-brittle materials, in order to ultra-precision lap engineering ceramics parts with high efficiency, a new ultrasonic aided high efficiency lapping technology for engineering ceramics cylinder is developed in this study by combining the ultra-precision lapping technology with the USM technology.
     Sponsored by Henan Innovative Fund for Outstanding Scholars (No. 0421001200) and Henan Natural Science Fund (No. 0411053500), a series of theoretical and experimental studies on the ultrasonic aided high efficiency lapping mechanism and surface machining quality of Al2O3、ZrO2 and ZTA engineering ceramics are carried out in this project. The main contents of this study are as follows:
     1. Ultrasonic aided high efficiency lapping technology of engineering ceramics is put forward and the corresponding machining device is researched to meet the precision machining requirements for engineering ceramics cylindrical parts. The vibration characteristics of acoustic system in the ultrasonic lapping device are clarified on the base of finite element analyses (FEA) and vibration characteristics experiments. The system natural frequencies within the adjustable scope of generator and corresponding vibration modes are analyzed, and the vibration amplitude distribution characteristics along the two paths of diamond pellet installation location in the lapping tool are obtained. The study results provide a powerful guarantee to the research of ultrasonic aided high efficiency lapping mechanism and related experiments.
     2. Single-grit motion models with additional axial, radial and tangential ultrasonic vibration and without additional ultrasonic vibration are established respectively through the analyses of the movement characteristics in the process of ultrasonic aided lapping of the engineering ceramics cylinder. Based on indentation fracture mechanics and ultrasonic aided pendulum scratch tests with single-point diamond, the material removal mechanisms in the three ultrasonic aided scratch modes are investigated. The reasons that ultrasonic assistance can enlarge the ductile regime are analyzed. Based on the impulse theory and the vibration machining theory, the material removal rate (MRR) models in ductile and brittle regime are established and the influencing factors and rules on MRR in ultrasonic aided lapping of engineering ceramics are discussed qualitatively.
     3. The effect of lapping parameters on the proportions of ductile removal and brittle fracture removal is discussed experimentally, and the relationship between the ratio of lapping component forces and material removal character is investigated. The characteristic frequency range of material removal is obtained through the time-frequency analysis of the acoustic emission signals in single point diamond pendulum scratch of ZTA engineering ceramics together with the CCI images of scratch marks. The in-process identification system of material removal mode in the process of ultrasonic aided lapping of engineering ceramics is constructed, and the in-process material removal criteria is established based on the wavelet packet frequency band energy decomposition of AE signals.
     4. The surface processing quality characteristics in ultrasonic aided lapping of ZrO2, Al2O3 and ZTA engineering ceramics are investigated experimentally. The influence rules of different lapping modes and parameters on the surface quality are researched from different aspects including surface topography, surface roughness, surface fractal characteristic, surface residual stress and surface phase structures, etc. The research results show that surface quality is improved to a certain extent for the assistance of ultrasonic vibration.
     5. The prediction models of surface roughness and material removal rate in the process of ultrasonic aided lapping are built using response surface methodology (RSM). To deal with the relationship between the high efficiency and precision synthetically, taking the maximum material removal rate as target variable and the surface roughness as bounded variable, and considering the actual constraint between the machine tool and the workpiece, the parameters optimization mathematical model is constructed, and the optimized parameters are solved by genetic algorithm (GA) and validated by the contrast experiments.
     The research results are help to reveal the precision and high efficient mechanism of ultrasonic aided lapping, develop the new technology of solid abrasive lapping of engineering ceramics, and further promote the applications of engineering ceramics.
引文
[1] I. Inasaki and K. Nakayama. High-Efficiency Grinding of Advanced Ceramics [J]. CIRP Annals - Manufacturing Technology, 1986, 35(1): 211-214.
    [2] 任敬心, 史兴宽. 磨削技术的新进展-硬脆材料光滑表面的超精磨削[J]. 中国机械工程. 1997, 8(4): 106-110.
    [3] 王昕, 孙康宁. 纳米复合陶瓷材料的研究进展[J]. 复合材料学报. 1999, 16(1): 105-109.
    [4] 新原皓一. セぅミツクス构造材の新しぃ材料设计-ナノ复合材料[J]. 日本セぅミツクス协会学论文志(日). 1991, 99(10): 974-982.
    [5] 张希华, 张建华等. 氧化铝基陶瓷材料增韧研究现状及其发展方向[J]. 山东大学学报(工学版). 2004(5):14-17.
    [6] 邓朝晖, 张璧, 孙宗禹等. 陶瓷磨削材料去除机理的研究进展[J]. 中国机械工程. 2002(18): 1608-1611.
    [7] 林滨, 林彬, 于思远. 陶瓷材料延性域去除临界条件新研究[J]. 金刚石与磨料磨具工程. 2002(01): 44-45.
    [8] 郑焕文, 蔡光启. 国内外磨削技术的现状与主要发展方向[J]. 汽车工艺与材料. 1996(5): 1-5.
    [9] Maksoud T M, Mokbel A A, Morgan J E. Evaluation of surface and sub-surface cracks of ground ceramic[J]. J. Mater. Process. Technol. 1999, 88(1-3): 222-243.
    [10] 许琰, 王贵成. 工程陶瓷磨削加工的研究及其发展[J]. 工具技术. 2004(9): 53-55.
    [11] 张凤莲, 陈吉荣. 工程陶瓷的新加工方法[J]. 机械制造. 2003(12): 42-44.
    [12] 潘洪平, 梁迎春, 董申. 陶瓷材料加工技术发展概况[J]. 工具技术. 1999, 33(4): 3-6.
    [13] 于思远, 林滨, 林彬. 国内外先进陶瓷材料加工技术的进展[J]. 金刚石与磨料磨具工程. 2001, 124(4): 36-39.
    [14] 邹济林. 研磨加工技术及其发展[J]. 机械制造. 1999(5): 12-13.
    [15] 杨建东, 田春林. 高速研磨技术[M]. 北京: 国防工业出版社, 2004.
    [16] 王忠琪, 陈锡让. 工程陶瓷镜面加工的研磨与抛光技术[J]. 天津大学学报. 1996, 29(2): 292-297.
    [17] 杨建东, 田春林, 王长兴. 纳米级高速研磨技术[J]. 中国科学:E辑. 2007, 37(9): 1214-1223.
    [18] 朱炳森, 王成勇. 工程陶瓷薄件固着磨料研磨研究[J]. 金刚石与磨料磨具工程. 2001, 115(1): 23-26.
    [19] Yuan J L, Zhao P. Lapping and polishing process for obtaining super-smooth surfaces of quartzcrystal[J]. J. Mater. Process. Technol. 2003, 138: 116-119.
    [20] Tomoda S, Sugawara A. The effect of Surfactant Properties on Lapping Bechavior of Materials[J]. Int.J.Japan Soc. Prec.Eng. 1997, 31(1): 21-25.
    [21] Jiandong Y. Effect of abrasive size on machined workpiece surface in solid abrasive lapping[J]. Proceedings of SPIE. 2000, 4231(11): 527-530.
    [22] Spur G, Holl S -. Ultrasonic assisted grinding of ceramics[J]. J. Mater. Process. Technol. 1996, 62(4): 287-293.
    [23] Uhlmann E, Spur G. Surface Formation in Creep Feed Grinding of Advanced Ceramics with and without Ultrasonic Assistance[J]. CIRP Annals - Manufacturing Technology. 1998, 47(1): 249-252.
    [24] 王军, 庞楠, 郑焕文. 工程陶瓷超声波磨削加工技术[J]. 金刚石与磨料磨具工程. 2000(03): 32-34.
    [25] 叶邦彦, 周泽华. 超声振动切削改善硬脆材料加工性的研究[J]. 华南理工大学学报. 1994, 22(5): 132-137.
    [26] 赵波. 工程陶瓷发动机缸套零件超声振动磨削研究(Ⅰ )[J]. 金刚石与磨料磨具工程. 1997(06).
    [27] 赵波. 纵向超声振动珩磨系统及硬脆材料延性切削特征研究[D]. 上海: 上海交通大学, 1999.
    [28] Jiao F, Zhao B, Liu C S. Research on Ultrasonic Honing Performance of Zro2 Engineering Ceramics Using Diamond Oil-stone with Coarse Grains[J]. Key Engineering Materials. 2004, 258-259: 297-301.
    [29] Zhao B, Liu C S, Gao G F, et al. Surface characteristics in the ultrasonic ductile honing of ZrO2 ceramics using coarse grits[J]. J. Mater. Process. Technol. 2002, 123(1): 54-60.
    [30] 焦锋, 赵波. 超声纵振珩磨的切削模型及其临界速度研究[J]. 金刚石与磨料磨具工程. 2002(3): 43-45.
    [31] 陈永胜, 胡永强, 余雷等. 工程陶瓷材料的现状及发展趋势[J]. 金刚石磨料磨具工程. 1998, 104(2): 37-39.
    [32] 张勤和, 张建华, 高军. 工程陶瓷材料的应用[J]. 现代技术陶瓷. 1998, 78(4): 21-24.
    [33] 阚艳梅, 靳喜海. 复相陶瓷的内在增韧机制及其影响因素[J]. 陶瓷学报. 1998, 19(4): 221-224.
    [34] Garvie R C, Hannink R H, Pascoe R T. Ceramic Steel[J]. Nature. 1975, 258: 703-704.
    [35] 靳喜海, 高濂. 纳米复相陶瓷[J]. 化工进展. 2003, 22(6): 553-558.
    [36] 王宏志, 高濂等. Al2O3-ZrO2 (3Y)-SiC 纳米复合材料的制备及性能[J]. 无机材料学报. 1999, 14(2): 280-286.
    [37] Yan B H, Huang,f. Y, Chow,h. M. Study on the turning characteristics of alumina-based ceramics[J]. J. Mater. Process. Technol. 1995, 54(10): 341-347.
    [38] 韩荣第, 孙玉洁. 非氧化物系精细陶瓷及预烧陶瓷的精密切削加工[J]. 工具技术. 1994(11): 45-48.
    [39] 卢芳, 田欣利, 吴志远. 等离子弧加热切削工程陶瓷试验[J]. 装甲兵工程学院学报. 2007, 21(1): 81-83.
    [40] 葛宰林, 江亲瑜. 工程陶瓷材料的切削加工研究[J]. 现代制造工程. 2002(9): 51-52.
    [41] 李伯民, 赵波. 现代磨削技术[M]. 北京: 机械工业出版社, 2004.
    [42] 赵波, 焦锋, 向道辉. 浅谈磨削加工技术的发展趋势[J]. 机械工人. 2004(9): 13-15.
    [43] Ohmori H, Takahashi I, Bandyopadhyay B P. Ultra-precision Grinding of Structural Ceramics by Electrolytic in-Process Dressing (ELID) Grinding[J]. J. Mater. Process. Technol. 1996, 57: 272-277.
    [44] 仇中军, 张飞虎, 谢大纲. 应用ELID技术进行微晶玻璃超精密磨削[J]. 金刚石与磨料磨具工程. 2002(1): 37-39.
    [45] 隈部淳一郎. 精密加工振动切削基础与应用[M]. 北京: 机械工业出版社, 1985.
    [46] (日)海野邦昭. 超音波除去加工技术的基礎と应用[J]. 机械と工具. 2000(1-11).
    [47] Bifano T G, Dow T A, Scattergood R O. Ductile-regime grinding: a new technology for machining brittle materials[J]. Journal of Engineering for Industry. 1991, 113(5): 184-489.
    [48] 杨世春, 汪鸣铮, 张银喜. 表面质量与光整技术[M]. 北京: 机械工业出版社, 2001.
    [49] 夏伯雄. 超精加工陶瓷[J]. 精密制造与自动化. 2001, 146(2): 43-44.
    [50] 周政. 当代国外超精加工机现状[J]. 磨床与磨削. 1994(1): 23-31.
    [51] Malkin S, Hwang T W. Grinding Mechanisms for Ceramics[J]. CIRP Annals - Manufacturing Technology. 1996, 45(2): 569-580.
    [52] Lawn B R, Swain M V. Microfracture Beneath Point Indentation in Brittle Solids[J]. J. Mater. Sci. 1975, 10: 113-122.
    [53] Evans A G, Marshall D B. Wear Mechanisms in Ceramics, Fundamentals of friction and wear of Materials[J]. ASME. 1981: 439-445.
    [54] Imanaka A, Fujino S, Mameta S. Direct Observation of Material Removal Process During Grinding of Ceramics by Micro-Flash Technique[J]. The Science of Ceramic Machining and Surface finishing 2. 1972, 348: 37.
    [55] Zhang B, Howes T D. Material-Removal Mechanisms in Grinding Ceramics[J]. CIRP Annals - Manufacturing Technology. 1994, 43(1): 305-308.
    [56] Huerta M, Malkin S. Grinding of Glass: Surface Structure and fracture Strength,[J]. ASME J.of Eng. for Ind. 1976: 468-473.
    [57] Huerta M, Malkin S. Grinding of Glass: The Mechanics of the Process[J]. ASME J.of Eng.for Ind . 1976: 459-467.
    [58] Kirchnern H P, Conway J C. Mechanisms of Material and Damage Penetration during Single Point Grinding of Ceramics[J]. Machining of Ceramic Materials and Components ASME. 1985, 17: 53-61.
    [59] Tonshoff H K, Telle R, Roth P. Chip Formation and Material Removal in Grinding of Ceramics[C]. 4th Int.Grinding Conf. SME Technical Paper MR90-539, 1990.
    [60] Brinksmeier E, Preub W, Riemer O. From Friction to Chip Removal. An Experimental Investigation of Micro Cutting Process. Part II: Ductile to Brittle Transition in Monocrystalline Silicon and Germanium[C]. Proceedings of 8th International Precision Engineering Seminar, 1995.
    [61] Kirchner, P H. Damage Penetration at Elongated Machining grooves in Hot Pressed Si3N4[J]. J. Australas. Ceram. Soc. 1984, 67: 127-132.
    [62] Shore P. State of the art in Damage-Free Grinding of Advanced Engineering Ceramics[J]. British Ceramic Proceedings. 1990, 116: 263-266.
    [63] Rentach R, Inasaki I, Yokohama. Molecular Dynannes Sirnolation for A brasiveP raccsses[J]. Annals of the CIRP. 1994, 43(1): 327-330.
    [64] 林滨. 工程陶瓷超精密磨削机理与实验研究[D]. 天津: 天津大学, 1999.
    [65] Subramanian K, Ramanath S, Matsuda Y O. Precision Production grinding of Fine ceramics[J]. Industrial Diamond Review. , 50: 254-262.
    [66] Richerson D W. Modern Ceramic Engineering: Properties, Processing, and Use in Design[M]. New York: Marcel Dekker, Inc, 1992.
    [67] Xu H H K, Jahamir S. Microstructure and Material Removal in Scratching of Alumina[J]. J. Mater. Sci. 1995, 30: 2235-2247.
    [68] Xu H H K, Iahanmir S, Ives L K. Material Removal and Damage Formation Mechanisms in Grinding Silicon Nitride[J]. J. Mater. Res. 1996, 11: 1717-1724.
    [69] Blake P, Bifano T G, Dow T A, et al. Precision Machining of Ceramic Materials[J]. Amer. Ceramic Soc. Bulletin. 1988, 67(6): 1038-1044.
    [70] 史兴宽, 滕霖, 李雅卿等. 脆性材料延性域磨削的临界条件[J]. 航空精密制造技术. 1996, 32(4): 10-13.
    [71] Xu X, Li Y, Malkin S. Forces and Energy in Circular Sawing and Grinding of Granite[J]. Journal of Manufacturing Science and Engineering, Transactions of the ASME. 2001, 123: 13-22.
    [72] Huang H, Liu Y C. Experimental investigations of machining characteristics and removal mechanisms of advanced ceramics in high speed deep grinding[J]. Int J Mach Tool Manufact. 2003, 43: 811-823.
    [73] Huang H. Machining characteristics and surface integrity of yttria stabilized tetragonal zirconia in high speed deep grinding[J]. Materials Science and Engineering A. 2003, 345(1-2): 155-163.
    [74] 纳米尔, 林滨等. 几种工程陶瓷的延性域磨削[J]. 天津大学学报(自然科学版). 1999(04): 486-491.
    [75] Zhong Z, Venkatesh C. Semi-Ductile Grinding and Polishing of Ophthalmic Aspherics and Spherics[J]. Annals of the CIRP. 1995, 44(1): 339-342.
    [76] 柯宏发, 张耀辉, 陈友良. 陶瓷半延展性磨削试验研究[J]. 金刚石与磨料磨具工程. 1998(01): 25-28.
    [77] Zarudi I, Zhang L C. On the Limit of Surface Integrity of Alumina by Ductile-Mode Grinding[J]. Journal of Engineering Materials and Technology, Transactions of the ASME. 2000, 122: 129-134.
    [78] 魏源迁. 国外硬脆材料的最新加工技术[J]. 磨床与磨削. 1998(2): 15-19.
    [79] Ichida Y, Sato R, Morimoto Y, et al. Material removal mechanisms in non-contact ultrasonic abrasive machining[J]. Wear. 2005, 258: 107-114.
    [80] Wang A C, Yan B H, Li X T, et al. Use of micro ultrasonic vibration lapping to enhance the precision of microholes drilled by micro electro-discharge machining[J]. Int J Mach Tool Manufact. 2002, 42: 915-923.
    [81] 潘洪平, 梁迎春, 董申. 陶瓷球的超声振动研磨[J]. 哈尔滨理工大学学报. 1999, 4(3): 29-33.
    [82] 周忆, 米林, 廖强等. 基于超声研磨的超精密加工[J]. 航空精密制造技术. 2003, 39(1): 1-4.
    [83] 王娜君季远,朱波,杨晶明. PCD 复合片超声振动研磨去除率的研究[J]. 机械工艺师. 2001(4): 13-14.
    [84] Min-seog K J A C. A study on the optimization of the cylindrical lapping process for engineering fine-ceramics(Al2O3) by the statistical design method[J]. J. Mater. Process.Technol. 1995, 52: 368-385.
    [85] Kang J, Hadfield M. Examination of the material removal mechanisms during the lapping process of advanced ceramic rolling elements[J]. Wear. 2005, 258: 2-12.
    [86] Lee E S, Won J K, Chun Y J, et al. Ultra-precision lapping of machinable ceramic Si3N4-BN by in-process electrolytic dressing[J]. Int J Adv Manuf Technol. 2007, 31: 1101-1108.
    [87] Nobuhide I, Hitoshi O. Grinding Characteristics of Hard and Brittle Materials by Fine Grain Lapping Wheels with ELID[J]. J. Mater. Process. Technol. 1996, 62: 315-320.
    [88] 周海. 氧化铝工程陶瓷研磨工艺研究[J]. 机械. 2000, 27(5): 20-22.
    [89] 邓广敏, 陈锡让, 于思远等. 工程陶瓷精密研磨技术[J]. 天津大学学报. 1996, 29(1): 93-98.
    [90] 李宗智. 超声振动研磨的研究[J]. 金刚石与磨料磨具工程. 1995, 89(2): 42-43.
    [91] 张云电. 超声微研磨装置的研制[J]. 应用声学. 2002, 21(6): 40-42.
    [92] Frei H, Grathwohl G. Microstructure and Strength of Advanced Ceramics After Machining[J]. Ceramics International. 1993, 19(2): 93-104.
    [93] Prabhakar D, Pei Z J, M F P. A Theoretical Model for Predicting Material Removal Rates in Rotary Ultrasonic Machining of Ceramics[J]. Society of Manufacturing Engineers, Transactions of the North American Manufacturing Research Institution of SME. 1993, XXI: 167-172.
    [94] Pei Z J, Ferreira P M. An experimental investigation of rotary ultrasonic face milling[J]. Int J Mach Tool Manufact. 1999, 39(8): 1327-1344.
    [95] Pei Z J, Ferreira P M. Modeling of ductile-mode material removal in rotary ultrasonic machining[J]. Int J Mach Tool Manufact. 1998, 38(10-11): 1399-1418.
    [96] Pei Z J, Ferreira P M, Haselkorn M. Plastic flow in rotary ultrasonic machining of ceramics[J]. J. Mater. Process. Technol. 1995, 48(1-4): 771-777.
    [97] Pei Z J, Ferreira P M, Kapoor S G, et al. Rotary ultrasonic machining for face milling of ceramics[J]. Int J Mach Tool Manufact. 1995, 35(7): 1033-1046.
    [98] Pei Z J, Prabhakar D, Ferreira, P M And Haselkorn M. A mechanistic approach to the prediction of material removal rates in rotary ultrasonic machining[J]. Transactions of the ASME. 1995, 5: 333-338.
    [99] Kim J D, Lee E S. A study of the ultrasonic-vibration cutting of carbonfiber reinforced plastics[J]. J. Mater. Process. Technol. 1994, 43(2-4): 259-277.
    [100] Kim J, Choi, In-hyu. Micro surface phenomenon of ductile cutting in the ultrasonic vibration cutting of optical plastics[J]. J. Mater. Process. Technol. 1997, 68: 89-98.
    [101] Lee T C, Chan C W. Mechanism of the ultrasonic machining of ceramic composites[J]. J. Mater. Process. Technol. 1997, 71: 195-201.
    [102] Varghess B, Malkin S. Experimental Investigation of Methods to Enhance Stock Removal for Superfinishing[J]. Annals of the CIRP. 1998, 47(1): 231-234.
    [103] 王先逵. 超声砂带精密磨削技术[J]. 电加工. 1988(4): 4-9.
    [104] 王先逵. 带式振动研抛加工磁盘表面[J]. 机械工艺师. 1986(11).
    [105] 于思远, 赵艳红, 刘殿通. 超声磨削加工工程陶瓷小孔的实验研究[J]. 电加工与模具. 2001(04): 31-34.
    [106] 张勤河, 景辉. 超声波加工工程陶瓷孔的研究[J]. 电加工. 1998(1): 19-23.
    [107] 张勤河, 张建华, 贾志新等. 超声振动钻削加工陶瓷的研究: 实验研究分析[J]. 新技术新工艺. 1997(2): 17-18.
    [108] 赵波, 郑玉歌. 超声珩磨难加工材料精密表面的高效特性研究[J]. 中国机械工程. 1998, 9(8): 61-64.
    [109] Zhao B, Zhu X S, S L C, et al. Research on Relationships Between Surface Fracture States and Surface Roughness Dispersion Range in Ultrasonic Grinding ZrO2[J]. Key Engineering Materials. 2004, 258-259: 239-243.
    [110] 曹志远. 板壳振动理论[M]. 北京: 中国铁道出版社, 1989: 63-69.
    [111] 贺西平, 胡时岳. 复合超声纵振型变幅杆的简化设计[J]. 兰州大学学报(自然科学版). 2002(05): 24-27.
    [112] 郭钟宁, 李大超等. 应用传递矩阵方法设计超声抛光工具[J]. 电加工. 1996(2): 8-12.
    [113] 胡小平, 黄仕彪等. 圆锥形变幅杆的设计及有限元分析[J]. 机电工程. 2005, 22(2): 32-35.
    [114] 贾杨, 沈建中. 带过渡段阶梯形变幅杆的有限元分析[J]. 声学技术. 2006, 25(1): 75-81.
    [115] Ansys公司. ANSYS动力学分析指南[M]. 2001.
    [116] 赵腾伦. ABAQUS6.6在机械工程中的应用[M]. 北京: 中国水利水电出版社, 2007.
    [117] 石亦平, 周玉蓉. ABAQUS有限元分析实例详解[M]. 北京: 机械工业出版社, 2006.
    [118] Jiao F, Zhao B, Zhu X S, et al. Ultrasonic dressing of grinding wheel and its influence on grinding quality[J]. Key Engineering Materials. 2006, 304-305: 62-65.
    [119] Xiang D H, Ma Y P, Zhao B, et al. Study on surface quality of nano ZrO2 ceramics in grinding by the aid of ultrasonic vibration[J]. Key Engineering Materials. 2006, 315-316: 190-194.
    [120] Zhao B, Wu Y, Jiao F, et al. Experimental research on surface integrity of ceramic nanocomposites in two-dimensional ultrasonic vibration grinding[J]. Key Engineering Materials. 2007, 329: 445-450.
    [121] Zhao B, Wu Y, Liu C S, et al. The study on ductile removal mechanisms of ultrasonic vibration grinding nano-ZrO2 ceramics[J]. Key Engineering Materials. 2006, 304-305: 171-175.
    [122] 王爱玲, 祝锡晶, 吴秀玲. 功率超声振动加工技术[M]. 北京: 国防工业出版社, 2007.
    [123] B.r,lawn A A G E. A Model for Crack Initiation in Elastic/Plastic: Indentation Field[J]. J. Mater. Sci. 1977, 12: 2195-2199.
    [124] George J. Microindentation analysis of di-ammonium hydrogen citrate single crystal[J]. J. Mater. Sci. 1985, 20(9): 3150-3156.
    [125] Marshall D B, Lawn B R, Evans A G. Elastic/plastic Indentation Damage in Ceramics: the Lateral Crack System[J]. J. Am. Ceram. Soc. 1982, 65: 561-566.
    [126] 刘德福, 段吉安. 光纤端面研磨加工机理研究[J]. 光学精密工程. 2004, 12(6): 570-575.
    [127] Qu W M. The effects of high-frequency vibration on the grinding process[D]. Michigan: Michigan Technological University, 1999.
    [128] 庞楠. 新陶瓷材料的超声波磨削复合加工[D]. 沈阳: 东北大学, 1997.
    [129] 王军. 陶瓷轴承加工技术及其性能研究[D]. 沈阳: 东北大学, 1999.
    [130] 肖德贤, 赵福令, 冯冬菊. 旋转超声波加工中延性去除模式的实验研究[J]. 电加工与模具. 2004(4): 27-30.
    [131] 马春翔, 王艳, 社本英二等. 超声波振动金刚石刀具对脆性材料临界切削深度的影响[J]. 机械工程学报. 2005, 41(6): 198-202.
    [132] Qu W, Wang K, Miller M H, et al. Using vibration-assisted grinding to reduce subsurface damage[J]. Precision Engineering. 2000, 24(4): 329-337.
    [133] Pei Z J. Rotary ultrasonic machining of ceramics: Characterization and extensions[D]. University of Illinois at Urbana-Champaign, 1995.
    [134] Xu H H K, Jahanmir S, Wang Y S. Effect of grain size on scratch interactions and material removal in alumina[J]. J. Am. Ceram. Soc. 1995, 78: 881-891.
    [135] 于爱兵,林彬等. 珩磨参数对Al2O3工程陶瓷材料去除率的影响[J]. 天津大学学报. 2002, 35(1): 105-107.
    [136] Q.h. Zhang, J.h. Zhang, Z.x. Jia J L S. Material-removal-rate analysis in the ultrasonic machining of engineering ceramics[J]. J. Mater. Process. Technol. 1999, 88: 180-184.
    [137] Wiercigroch M, Neilson R D, et al. Material removal rate prediction for ultrasonic drilling of hard materials using an impact oscillator approach[J]. Physics Letters A. 1999, 259: 91-96.
    [138] Beltrao P A, Gee A E, Corbett J, et al. Ductile Mode Machining of Commercial PZT Ceramics[J]. CIRP Annals - Manufacturing Technology. 1999, 48(1): 437-440.
    [139] Hiroshi E, Jun S, Zhou L. Study on Ultra-Precision Machining of Ceramics for Optical Components[C]. Yokohama,Japan: International Conference on Optical Engineering for Sensing and Nanotechnology, 1999.
    [140] 柯宏发, 张耀辉, 赵燕. 工程陶瓷半延展性磨削加工机理监测系统[J]. 金刚石与磨料磨具工程. 1999(01): 18-20.
    [141] 田欣利, 于爱兵. 工程陶瓷加工的理论与技术[M]. 北京: 国防工业出版社, 2006.
    [142] Malkin S, Ritter J E. Grinding mechanisms and strength degration for ceramics[J]. ASME Journal of Engineering for Industry. 1989, 111: 167-174.
    [143] Subhash G, Loukus J E, et al. Application of data dependent systems approach for evaluation of frature modes during a single-grit scratching[J]. Mechanics of Materials. 2002, 34: 25-42.
    [144] 黄林国, 杜好阳. 用单摆划痕法研究Ni-P 化学镀层的塑脆转变[J]. 吉林电力. 2001(6): 1-4.
    [145] Bifano T G. Ductile-Regime Grinding of Brittle Materials[D]. Raleigh: North Carolina State University, 1988.
    [146] Yuan Y. Ultraprecision grinding of ceramic mirrors[D]. Boston: Boston University, 1993.
    [147] Ichida Y. Identifying of Transition from Ductile to Brittle Groove Formation in Scratching Fine Ceramics by Using Acoustic Emission Method[J]. Int J Jpn Soc Precis Eng. 1992, 58(5): 97-102.
    [148] Lee Y. Monitoring and planning for open architecture manufacturing of precision machining using acoustic emission[D]. Berkeley: University of California, 2000.
    [149] Daniel J P. Applications of Quantitative Acoustics in Monitoring Precision Manufacturing[D]. Berkeley: University of California, 1996.
    [150] Chen X. Monitoring and Analysis of Ultra-Precision Machining Processes using Acoustic Emission[D]. Berkeley: University of California, 1998.
    [151] Qu W. The effects of high frequency vibration on the grinding process[D]. Michigan: Michigan technological university, 1999.
    [152] 袁振明. 声发射技术及其应用[M]. 北京: 机械工业出版社, 1990.
    [153] Bifano T G, Yi Y. Acoustic emission as an indicator of material removal regime in glass micro-machining[J]. Precision Engineering. 1992, 14(4): 219-228.
    [154] 葛哲学, 陈仲生. Matlab时频分析技术及其应用[M]. 北京: 人民邮电出版社, 2006.
    [155] 何正嘉, 訾艳阳, 孟庆丰等. 机械设备非平稳信号的故障诊断原理及应用[M]. 北京:高等教育出版社, 2001.
    [156] 飞思科技产品研发中心.小波分析理论与MATLAB7实现[M]. 北京:电子工业出版社, 2005.
    [157] 喻俊馨, 王计生, 黄惟公等. 小波包分析在刀具声发射信号特征提取中的应用[J]. 数据采集与处理. 2005, 20(3): 346-350.
    [158] 季远, 王娜君等. 聚晶金刚石的超声振动研磨机理研究[J]. 工具技术. 2001, 35(12): 12-14.
    [159] 陈日曜. 金属切削原理[M]. 北京: 机械工业出版社, 2000.
    [160] 陈欢, 芮延年, 袁曾燕等. 高精度超薄水晶片表面超声磨削机理的研究[J]. 苏州大学学报:工科版. 2006, 26(4): 35-38.
    [161] 陈颙, 陈凌. 分形几何学[M]. 北京: 地震出版社, 2005.
    [162] Thomas A P, Thomas T R. Engineering surface as fractals, fractal aspects of materals[M]. Pittsburgh: Materials Research Society, 1996.
    [163] 王海容, 蒋庄德, 等. 切削加工表面分形机理的研究[J]. 机械科学与技术(西安). 2002, 21(1): 13-15.
    [164] 陈国安, 葛世荣. 用分形几何表征工程表面的几个问题[J]. 润滑与密封. 1998(03).
    [165] Hasegawa M, Liu J, Okuda K, et al. Calculation of the fractal dimensions of machined surface profiles[J]. Wear. 1996, 192(1-2): 40-45.
    [166] 李小兵, 刘莹. 表面形貌分形表征方法的比较[J]. 南昌大学学报. 2006, 30(1): 84-86.
    [167] 高佳宏, 朱梅玲, 王琳. 分形理论在金属切削加工中的应用[J]. 煤矿机械. 2006, 27(12): 97-99.
    [168] 李成贵, 田继成. 分形表面的结构函数及其应用[J]. 航空计测技术. 1997, 17(4): 6-8.
    [169] Wang Bing-cheng,JING Chang. A Study on Application of Fractal Theory in Examination of Striation Marks[J]. International Journal of Plant Engineering and Management. 2005, 10(4): 249-254.
    [170] 王贵林李圣怡,戴一帆. 光学表面的分形特点与模拟表征算法[J]. 国防科技大学学报. 2003, 25(4): 72-75.
    [171] 刘亚俊, 汤勇, 万珍平等. SiC颗粒增强铝基复合材料切削表面分形维数及其与抗磨损性能的关系[J]. 材料科学与工程学报. 2003, 10(1): 17-20.
    [172] 刘小君. 表面形貌的分形特征研究[J]. 合肥工业大学学报. 2000, 13(2): 236-239.
    [173] 高佳宏,王琳. 电解机械复合抛光表面的分形特性研究[J]. 煤矿机械. 2007, 28(4): 128-129.
    [174] 葛世荣. 粗糙表面的分形特征与分形表达研究[J]. 摩擦学学报. 1997(01): 73-80.
    [175] 索双富, 葛世荣, 强颖怀. 磨削加工表面形貌的分形研究[J]. 中国机械工程. 1996(01): 41-42.
    [176] 王西彬, 李相真. 结构陶瓷磨削表面的残余应力[J]. 金刚石与磨料磨具工程. 1997(06): 18-22.
    [177] 阳纯和. 陶瓷磨削参数对表面残余应力的影响[J]. 湖南科技学院学报. 2005(05): 281-283.
    [178] 张定铨, 何家文. 材料中残余应力的X射线衍射分析和作用[M]. 西安: 西安交通大学出版社, 1999.
    [179] 陈秉均, 杨锐邦. 干磨与湿磨的残余应力试验研究[J]. 机电工程技术. 2004, 33(5): 40-41.
    [180] 徐进, 陈秉均. 强冷散热对磨削表面残余应力的影响[J]. 机械. 2002, 28(2): 29-30.
    [181] 杨建东, 田春林, 金海峰. 固着磨料研磨对工件表面残余应力的影响[J]. 中国表面工程. 2002, 57(4): 37-40.
    [182] 田欣利, 张纾等. 工程陶瓷磨削过程对表面残余应力的影响研究[J]. 中国机械工程. 2000, 11(11): 1209-1212.
    [183] 黄继武. MDI Jade使用手册-X射线衍射实验操作指导[M], 2006.
    [184] 刘粤惠, 刘平安. X射线衍射分析原理与应用[M]. 北京: 化学工业出版社, 2003.
    [185] A. Kohli U S D. A neural-network-based methodology for the prediction of surface roughness in a turning process[J]. Int. J. Adv. Manuf. Technol. 2005, 25(1-2): 118-129.
    [186] Benardos P G, Vosniakos G C. Prediction of surface roughness in CNC face milling using neural networks and Taguchi's design of experiments[J]. Robot. Comput.-Integr. Manuf. 2002, 18: 343-354.
    [187] X W. Development of empirical models for surface roughness prediction in fish turning[J]. Int. J. Adv. Manuf. Technol. 2002, 20(5): 348-356.
    [188] (美)蒙哥马利(montgomerydc). 实验设计与分析[M]. 北京: 中国统计出版社, 1998.
    [189] Kwak J. Application of Taguchi and response surface methodologies for geometric error in surface grinding process[J]. Int. J. Mach. Tools Manuf. 2005, 45: 327–334.
    [190] Jae-seob Kwak, Sung-bo Sim. An analysis of grinding power and surface roughness in external cylindrical grinding of hardened SCM440 steel using the response surface method[J]. Int J Mach Tool Manufact. 2006, 46: 304–312.
    [191] 龙震海, 王西彬, 蒋放. 镁合金高速切削条件下表面粗糙度影响因素析因分析[J]. 航空制造技术. 2005(4): 104-107.
    [192] 刘牧, 杨茂奎. 基于响应曲面法的表面粗糙度预测模型研究[J]. 精密制造与自动化. 2006, 166(2): 37-40.
    [193] Anne Venu Gopal P V R. Selection of optimum conditions for maximum material removal rate with surface finish and damage as constraints in SiC grinding[J]. Int J Mach Tool Manufact. 2003, 43: 1327–1336.
    [194] Kalyanmoy D. Optimization for engineering design: algorithms and examples[M]. New Jersey:Upper Saddle River,N.J. USA : Prentice Hall, 1995.
    [195] 姜彬, 郑敏利, 李振加. 数控车削的切削用量多目标优化[J]. 哈尔滨理工大学学报. 2001, 6(2): 43-46.
    [196] 高爽, 郑耀. 一种模拟最速下降法的表面网格优化方法[J]. 江南大学学报:自然科学版. 2005, 4(5): 446-450.
    [197] 张英平, 王志伟. 改进PSB拟牛顿算法与最速下降算法的联合算法[J]. 郑州经济管理干部学院学报. 2004, 19(3): 75-76.
    [198] 王小平, 曹立明. 遗传算法--理论、应用与软件实现[M]. 西安: 西安交通大学出版社, 2002.
    [199] Saravanan R, Asokan P, Sachithanandam M. Comparative analysis of conventional and non - conventional optimisation techniques for CNC turning process[J]. Int. J. Adv. Manuf. Technol.. 2001, 17(7): 471-476.
    [200] 李建广, 姚英学等. 基于遗传算法的车削用量优化研究[J]. 计算机集成制造系统. 2006, 12(10): 1651-1656.
    [201] 飞思科技产品研发中心. MATLAB 6.5 辅助优化计算与设计[M]. 北京: 电子工业出版社, 2003.
    [202] 雷英杰, 张善文, 李续武等. 遗传算法工具箱及应用[M]. 西安: 西安电子科技大学出版社, 2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700