代谢综合征早期肾损害尿液多肽生物标志物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的优化弱阳离子交换磁珠(MB-WCX)联合基质辅助激光解析电离飞行时间质谱(MALDI-TOF-MS)建立尿液多肽谱的实验方法,建立代谢综合征(MS)早期肾损害尿液多肽谱。方法(1)探讨尿液采集方式、溶解温度、pH值、样本上样量、样品靶和质谱数据采集方式对磁珠联合基质辅助激光解析电离飞行时间质谱(MB-MALDI-TOF-MS)建立尿液多肽谱的影响,评估实验方法的重复性;(2)尿液样本来源于2008~2009年北京平谷地区“代谢综合征肾脏损害”流行病学研究。MS按美国国家胆固醇教育计划的成人治疗专家组Ⅲ(ATPⅢ)诊断标准,MS患者20μg/min≤尿白蛋白排泄率(UAE)<200μg/min和估算肾小球滤过率(eGFR)≥60ml/min.1.73m2则为早期肾损害。入选者分为健康对照(组Ⅰ)、MS合并正常白蛋白尿组(组Ⅱ)和MS合并微量白蛋白尿组(组Ⅲ)。应用MB-MALDI-TOF-MS方法建立三组样本尿液多肽谱。结果(1)MB-MALDI-TOF-MS建立尿液多肽谱的优化实验流程包括:收集过夜段尿标本、常温溶解、上样量30μL、点靶Polished steel target及手动模式采集数据;该实验方法日内变异系数为7.7%~14.2%,日间变异系数为7.9%~23.0%。(2)165例入选者中组Ⅰ65例、组Ⅱ54例、组Ⅲ46例,采用优化的MB-MALDI-TOF-MS建立了三组尿液多肽谱。结论本实验建立了灵敏度较高、稳定性较好的MB-MALDI-TOF-MS实验流程,适合高通量的临床蛋白质组学研究。应用该技术建立了正常人、MS合并正常白蛋白尿及MS合并微量白蛋白尿的尿液多肽谱。
     目的应用生物信息学方法筛选差异多肽峰并建立MS早期肾损害的尿液诊断模型,对尿液多肽标志物进行序列鉴定。方法两种方法进行数据分析:(1)三组样本分别分为training组和testing组,ClinProTools 2.1中统计学方法筛选差异多肽峰,遗传算法(GA)分别对组Ⅰ和组Ⅲ、组Ⅱ和组Ⅲ的training组数据构建诊断模型,采用10倍交叉验证评估模型的诊断能力;用testing组数据进行外部验证评估模型的预测能力;(2)Matlab7.10.0中的随机森林(RF)算法筛选差异多肽峰,支持向量机(SVM)算法对组Ⅰ和组Ⅲ、组Ⅱ和组Ⅲ及三组数据分别构建诊断模型,采用10倍交叉验证和ROC曲线评估模型的诊断能力。应用线性离子阱静电场轨道阱质谱仪(LTQ Orbitrap Velos)对尿液差异多肽峰分别进行鉴定,分析多肽标志物的生物学功能。结果(1)组Ⅰ和组Ⅲ多肽谱比较,GA算法构建诊断模型10倍交叉验证敏感性100%、特异性92.1%、准确性95.9%,外部验证敏感性76.2%、特异性80%、准确性78.4%;SVM算法构建模型的敏感性82.0%、特异性90.9%、准确性87.3%, ROC曲线下面积(AUC)为0.924。两个模型共同包含四个多肽峰:m/z 2755.97、3016.72、9076.41和11728.45;(2)组Ⅱ和组Ⅲ多肽谱比较,GA算法构建诊断模型10倍交叉验证敏感性100%、特异性87.5%、准确性93.4%,外部验证敏感性71.4%、特异性73.1%、准确性72.3%;SVM算法构建模型的敏感性89.2%、特异性81.1%、准确性85.5%,AUC为0.911。两个模型共同包含四个多肽峰:m/z 2755.97、3016.72、9076.41、10052.09;(3)三组多肽谱比较,SVM算法构建诊断模型准确性64.5%,包含8个多肽峰:m/z 2048.72、2562.67、2755.97、8779.30、9076.41、10052.09、10530.43和11728.45。(4)三个多肽峰m/z 1884.33、2562.67和2661.41均为纤维蛋白原α链的肽段。m/z 2562.67在组Ⅱ和组Ⅲ表达上调,m/z 1884.33和2661.41在组Ⅱ表达上调。结论通过两种生物信息学方法构建的模型均具有较好的诊断能力。鉴定得到了差异肽段m/z 1884.33、2562.67和2661.41的序列并鉴定为Fibrinogen alpha chain的多肽片段,可能是MS早期肾脏损害尿液多肽标志物,参与了MS及MS肾脏损伤的致病过程。
Objective To optimize the peptidome analysis of magnetic bead-based weak cation exchange chromatography (MB-WCX) based matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) method and to generate urine peptidome profiling of metabolic syndrome with early renal injury. Methods (1) Six preanalytical variables (urine collection methods, urine thawing temperature, pH values, urinary protein concentration, MALDI-TOF targets and spectra acquisition modes) were investigated on the influence of urine peptidome profiling, and the precision of this experiment method was evaluated. (2) Urine samples were collected from epidemiologic study of MS and renal involvement in Pinggu district, Beijing during the period of 2008 and 2009. MS was diagnosed by ATPⅢcriteria, while MS patients with early renal injury were defined as 20μg/min≤urinary albumin excretion(UAE)<200μg/min and estimated glomerμLar filtration rate (eGFR)≥60ml/min.1.73m2.Participants were divided into three group:group I (healthy subjects), group II (MS patients with normoalbuminuria) and group III (MS patients with microalbuminuria). ResμLts (1) An optimized method for urine peptidome profiling by MB-MALDI-TOF-MS included:overnight urine collection, thawing at room temperature, applying 30μL urine per sample, using polished steel target and acquire spectra data by manual mode. Within-day and between-day coefficient of variation (CV) ranged from 7.7% to 14.2% and from 7.9% to 23.0% respectively. (2) One hundred and sixty-five subjects were enrolled into our study(sixty five subjects in groupⅠ, fifty-four subjects in group II and forty-six subjects in groupⅢ) and their urinary peptidome spectra were generated separately by the optimized MB-MALDI-TOF-MS method. Conclusion We have established a high accurate and reproducible analytic platform for urine peptidome profiling, it is suitable for high-throughput clinical proteomics research technology. Appling this approach, we established urinary peptidome patterns of healthy subjects, MS with normoalbuminuria and MS with microalbuminuria.
     Objective To explore potential urine biomarkers and to generate diagnostic models by bioinformatics tools, to identify urinary peptide biomarkers of MS with early renal injury. Methods Two bioinformatics software had been applied to analyze urinary peptidome profiling mass spectrometry data:(1) Subjects in groupⅠ, groupⅡand groupⅢwere divided into training set and testing set. Statistical tests in ClinProTools 2.1 software were adopted to screen differential peptide peaks of urinary peptidome in training set of groupⅠversus groupⅢ, groupⅡversus groupⅢand comparison of three groups separately. Genetic algorithm (GA) was used to establish diagnostic models of groupⅠversus groupⅢ, groupⅡversus groupⅢ.10-fold cross validation in training set was used to evaluate recognizability and external validation in testing set was used to assess prediction ability of diagnostic models. (2) Random forests (RF) algorithm in Matlab7.10.0 software was used to screen differential peptide peaks, then combined support vector machine (S VM) algorithm to generate diagnostic models of group I versus group III, groupⅡversus groupⅢand three groups comparison separately.10-fold cross validation and receiver operating characteristic curve (ROC) were used to evaluate recognizability of diagnostic models. Differential peptide peaks were identified by linear ion trap-orbitrap mass spectrometry (LTQ Orbitrap Velos) and biologic function of these identified peptide biomarkers were analyzed. ResμLts (1)GroupⅠversus Group III:GA based model showed 100% sensitivity,92.1% specificity and 95.9% accuracy by 10-fold cross-validation in training set in identifying MS patients with early renal injury, and it revealed 76.2% sensitivity, 80% specificity and 78.4% accuracy in testing set; Correspondingly, SVM algorithm based model reported 82.0% sensitivity,90.9% specificity and 87.3% accuracy. Area under curve(AUC) value of receiver operating characteristic curve (ROC curve) was 0.924. Four peptide peaks were included in two diagnostic models with m/z 2755.97、3016.72.9076.41 and 11728.45;(2)GroupⅡversus GroupⅢ:GA based model showed 100% sensitivity,87.5% specificity and 93.4% accuracy by 10-fold cross-validation in training set, and it revealed 71.4% sensitivity,73.1% specificity and 72.3% accuracy in testing set; Correspondingly, SVM algorithm based model reported 89.2% sensitivity,81.1% specificity and 85.5% accuracy, AUC value was 0.911. Four peptide peaks were included in two diagnostic models with m/z 2755.97, 3016.72,9076.41,10052.09;(3)Three groups comparison:SVM algorithm based model showed 64.5% overall accuracy, the model included eight peptide peak:m/z 2048.72,2562.67,2755.97,8779.30,9076.41,10052.09,10530.43 and 11728.45.(4) Three differential peaks of m/z 1884.33,2562.67 and 2661.41 were identified as peptide derived from fibrinogen alpha chain. Fragment of m/z 2562.67 was up-regμLated in urine in patients of MS and MS with early renal injury, while fragments of m/z 1884.33 and 2661.41 were up-regμLated in MS patients without renal injury. Conclusion Diagnostic models based on GA and SVM showed highly accuracy and class prediction in discriminating MS patients with early renal injury. Three peptide peaks identified based on MS/MS spectra were all peptide fragments of fibrinogen alpha chain, suggesting fibrinogen alpha chain might be urinary peptide biomarkers of MS with early renal injury and participated in pathogenesis of MS and MS with renal injury
引文
[1]Ling XB, Mellins ED, Sylvester KG, Cohen HJ. Urine peptidomics for clinical biomarker discovery [J]. Adv Clin Chem 2010;51:181-213.
    [2]Poon TC. Opportunities and limitations of SELDI-TOF-MS in biomedical research:practical advices [J]. Expert Rev Proteomics 2007;4(1):51-65.
    [3]Zhang X, Leung SM, Morris CR, Shigenaga MK. Evaluation of a novel, integrated approach using functionalized magnetic beads, bench-top MALDI-TOF-MS with prestructured sample supports, and pattern recognition software for profiling potential biomarkers in human plasma [J]. J Biomol Tech 2004;15(3):167-75.
    [4]Fiedler GM, Ceglarek U, Leichtle A, Thiery J. Standardized preprocessing of urine for proteome analysis [J]. Methods Mol Biol 2010;641:47-63.
    [5]Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Anal Biochem 1976;72:248-54.
    [6]Fiedler GM, Baumann S, Leichtle A, et al. Standardized peptidome profiling of human urine by magnetic bead separation and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry [J]. Clin Chem 2007;53(3):421-8.
    [7]Calvano CD, Aresta A, Iacovone M, et al. Optimization of analytical and pre-analytical conditions for MALDI-TOF-MS human urine protein profiles [J]. J Pharm Biomed Anal 2009;51(4):907-14.
    [8]Caffrey RE. A review of experimental design best practices for proteomics based biomarker discovery:focus on SELDI-TOF [J]. Methods Mol Biol 2010 641:167-83.
    [9]Thongboonkerd V. Practical points in urinary proteomics [J]. J Proteome Res 2007;6(10):3881-90.
    [10]Koopman MG, Koomen GC, Krediet RT, de Moor EA, Hoek FJ, Arisz L. Circadian rhythm of glomerμLar filtration rate in normal individuals. Clin Sci (Lond) 1989;77(1):105-11.
    [11]Bottini PV, Ribeiro Alves MA, Garlipp CR. Electrophoretic pattern of concentrated urine:comparison between 24-hour collection and random samples. Am J Kidney Dis 2002;39(1):E2.
    [12]Nagasako H, Kiyoshi Y, Ohkawa T, et al. Estimation of 24-hour urine protein quantity by the morning-urine protein/creatinine ratio. Clin Exp Nephrol 2007;11(2):142-6.
    [13]Lane C, Brown M, Dunsmuir W, Kelly J, Mangos G. Can spot urine protein/creatinine ratio replace 24 h urine protein in usual clinical nephrology? Nephrology (Carlton) 2006; 11 (3):245-9.
    [14]Morales JV, Weber R, Wagner MB, Barros EJ. Is morning urinary protein/creatinine ratio a reliable estimator of 24-hour proteinuria in patients with glomerμLonephritis and different levels of renal function? J Nephrol 2004;17(5):666-72.
    [15]Shidham G, Hebert LA. Timed urine collections are not needed to measure urine protein excretion in clinical practice. Am J Kidney Dis 2006;47(1):8-14.
    [16]Birmingham DJ, Rovin BH, Shidham G, et al. Spot urine protein/creatinine ratios are unreliable estimates of 24 h proteinuria in most systemic lupus erythematosus nephritis flares. Kidney Int 2007;72(7):865-70.
    [17]Qiu F, Liu HY, Zhang XJ, Tian YP. Optimization of magnetic beads for maldi-TOF MS analysis [J]. Front Biosci 2009;14:3712-23.
    [18]Agrawal V, Shah A, Rice C, Franklin BA, McCμLlough PA. Impact of treating the metabolic syndrome on chronic kidney disease [J]. Nat Rev Nephrol 2009;5(9):520-8.
    [19]Ford ES, Giles WH, Mokdad AH. Increasing prevalence of the metabolic syndrome among u.s. AdμLts [J]. Diabetes Care 2004;27(10):2444-9.
    [20]陶世冰,任艳,田浩明,等.2007年成都地区成人代谢综合征患病率的流行病学调查[J].四川大学学报2007;40(6):1062-5.
    [21]Ryu S, Chang Y, Woo HY, el al. Time-dependent association between metabolic syndrome and risk of CKD in Korean men without hypertension or diabetes [J] Am J Kidney Dis 2009;53(1):59-69.
    [22]Chen J, Muntner P, Hamm LL, et al. The metabolic syndrome and chronic kidney disease in U.S. adμLts [J].Ann Intern Med 2004;140(3):167-74.
    [23]Mischak H, Apweiler R, Banks RE, et al. Clinical proteomics:A need to define the field and to begin to set adequate standards [J]. Proteomics Clin Appl 2007;1(2):148-56.
    [24]吴杰,李燕,陈香美,等。磁珠分离结合生物质谱分析肾小球疾病患者尿液多肽谱[J].中华肾脏病杂志2009;25(8):596-600
    [25]樊晓红,蔡建芳,李学旺,等。中国汉族人以尿白蛋白肌酐比值诊断微量白蛋白尿的界值研究[J].中华肾脏病杂志2010;26(11):807-11
    [26]Grundy SM, Cleeman JI, Daniels SR, et al. Diagnosis and management of the metabolic syndrome:an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement [J]. CircμLation 2005;112(17):2735-52.
    [27]Tabaei BP, Al-Kassab AS, Ilag LL, Zawacki CM, Herman WH. Does microalbuminuria predict diabetic nephropathy? [J]. Diabetes Care 2001;24(9):1560-6.
    [28]Bruno G, Merletti F, Biggeri A, et al. Progression to overt nephropathy in type 2 diabetes:the Casale Monferrato Study [J]. Diabetes Care 2003;26(7):2150-5.
    [29]Perkins BA, Ficociello LH, Silva KH, Finkelstein DM, Warram JH, Krolewski AS. Regression of microalbuminuria in type 1 diabetes [J]. N Engl J Med 2003;348(23):2285-93.
    [30]Levey AS, Stevens LA, Schmid CH, et al. A new equation to estimate glomerμLar filtration rate [J]. Ann Intern Med 2009;150(9):604-12.
    [31]Kooman JP. Estimation of renal function in patients with chronic kidney disease [J]. J Magn Reson Imaging 2009;30(6):1341-6.
    [1]Zhang X, Leung SM, Morris CR, Shigenaga MK. Evaluation of a novel, integrated approach using functionalized magnetic beads, bench-top MALDI-TOF-MS with prestructured sample supports, and pattern recognition software for profiling potential biomarkers in human plasma [J]. J Biomol Tech 2004;15(3):167-75.
    [2]Ketterlinus R, Hsieh SY, Teng SH, Lee H, Pusch W. Fishing for biomarkers: analyzing mass spectrometry data with the new ClinProTools software [J] Biotechniques 2005;Suppl:37-40.
    [3]Satten GA, Datta S, Moura H, et al. Standardization and denoising algorithms for mass spectra to classify whole-organism bacterial specimens [J] Bioinformatics 2004;20(17):3128-36.
    [4]Alexandrov T, Decker J, Mertens B, et al. Biomarker discovery in MALDI-TOF serum protein profiles using discrete wavelet transformation [J]. Bioinformatics 2009;25(5):643-9.
    [5]Wang L, Huang C, Yang JY. Predicting siRNA potency with random forests and support vector machines [J]. BMC Genomics 2010;11 Suppl 3:S2.
    [6]Poon TC. Opportunities and limitations of SELDI-TOF-MS in biomedical research:practical advices [J]. Expert Rev Proteomics 2007;4(1):51-65.
    [7]Sim J, Wright CC. The kappa statistic in reliability studies:use, interpretation, and sample size requirements [J]. Phys Ther 2005;85(3):257-68.
    [8]Datta S, Pihur V. Feature selection and machine learning with mass spectrometry data [J]. Methods Mol Biol;593:205-29.
    [9]Li L. Dimension reduction for high-dimensional data [J]. Methods Mol Biol 2010;620:417-34.
    [10]Schwamborn K, Krieg RC, Grosse J, et al. Serum proteomic profiling in patients with bladder cancer [J]. Eur Urol 2009;56(6):989-96.
    [11]Hansen HG, Overgaard J, Lajer M, et al. Finding diabetic nephropathy biomarkers in the plasma peptidome by high-throughput magnetic bead processing and MALDI-TOF-MS analysis [J]. Proteomics Clin Appl 2010;4(8-9):697-705.
    [12]Goldman R, Ressom HW, Abdel-Hamid M, et al. Candidate markers for the detection of hepatocellμLar carcinoma in low-molecμLar weight fraction of serum [J].Carcinogenesis 2007;28(10):2149-53.
    [13]Cherkassky V, Ma Y. Practical selection of SVM parameters and noise estimation for SVM regression [J]. Neural Netw 2004; 17(1):113-26.
    [14]Wu B, Abbott T, Fishman D, et al. Comparison of statistical methods for classification of ovarian cancer using mass spectrometry data [J]. Bioinformatics 2003;19(13):1636-43.
    [15]Kemena C, Notredame C. Upcoming challenges for mμLtiple sequence alignment methods in the high-throughput era. Bioinformatics 2009;25(19):2455-65.
    [16]Henschen AH. Human fibrinogen--structural variants and functional sites [J]. Thromb Haemost 1993;70(1):42-7.
    [17]Barazzoni R, Kiwanuka E, Zanetti M, Cristini M, Vettore M, Tessari P. InsμLin acutely increases fibrinogen production in individuals with type 2 diabetes but not in individuals without diabetes [J]. Diabetes 2003;52(7):1851-6.
    [18]Tessari P, Kiwanuka E, Barazzoni R, Vettore M, Zanetti M. Diabetic nephropathy is associated with increased albumin and fibrinogen production in patients with type 2 diabetes [J]. Diabetologia 2006;49(8):1955-61.
    [19]Nomura F, Tomonaga T, Sogawa K, et al. Identification of novel and downregμLated biomarkers for alcoholism by surface enhanced laser desorption/ionization-mass spectrometry [J]. Proteomics 2004;4(4):1187-94.
    [20]Villanueva J, Shaffer DR, Philip J, et al. Differential exoprotease activities confer tumor-specific serum peptidome patterns [J]. J Clin Invest 2006;116(1):271-84.
    [21]Gianazza E, Mainini V, Castoldi G, et al. Different expression of fibrinopeptide A and related fragments in serum of type 1 diabetic patients with nephropathy [J]. J Proteomics 2009;73(3):593-601.
    [22]Agrawal V, Shah A, Rice C, Franklin BA, McCμLlough PA. Impact of treating the metabolic syndrome on chronic kidney disease [J]. Nat Rev Nephrol 2009;5(9):520-8.
    [23]Sheen YJ, Sheu WH. Metabolic syndrome and renal injury [J]. Cardiol Res Pract;2011:567389.
    [1]Service RF. Genetics and medicine. Recruiting genes, proteins for a revolution in diagnostics [J]. Science 2003;300(5617):236-9.
    [2]Wasinger VC, Cordwell SJ, Cerpa-Poljak A, et al. Progress with gene-product mapping of the Mollicutes:Mycoplasma genitalium [J]. Electrophoresis 1995;16(7):1090-4.
    [3]A gene-centric human proteome project:HUPO--the Human Proteome organization [J]. Mol Cell Proteomics 2010;9(2):427-9.
    [4]Elias JE, Gygi SP. Target-decoy search strategy for mass spectrometry-based proteomics [J]. Methods Mol Biol 2009;604:55-71.
    [5]Ren F, Wu H, Lei Y, et al. Quantitative proteomics identification of phosphoglycerate mutase 1 as a novel therapeutic target in hepatocellμLar carcinoma [J].Mol Cancer;9:81.
    [6]Mischak H, Apweiler R, Banks RE, et al. Clinical proteomics:A need to define the field and to begin to set adequate standards [J]. Proteomics Clin Appl 2007;1(2):148-56.
    [7]Agrawal V, Shah A, Rice C, Franklin BA, McCμLlough PA. Impact of treating the metabolic syndrome on chronic kidney disease [J]. Nat Rev Nephrol 2009;5(9):520-8.
    [8]Ling XB, Mellins ED, Sylvester KG, Cohen HJ. Urine peptidomics for clinical biomarker discovery [J]. Adv Clin Chem 2010;51:181-213.
    [9]Smith MP, Banks RE, Wood SL, Lewington AJ, Selby PJ. [J] [J]. Nat Rev Nephrol 2009;5(12):701-12.
    [10]Perkins DN, Pappin DJ, Creasy DM, Cottrell JS. Probability-based protein identification by searching sequence databases using mass spectrometry data [J] Electrophoresis 1999;20(18):3551-67.
    [11]Frank A, Pevzner P. PepNovo:de novo peptide sequencing via probabilistic network modeling [J]. Anal Chem 2005;77(4):964-73.
    [12]Datta S, Pihur V. Feature selection and machine learning with mass spectrometry data [J].Methods Mol Biol;593:205-29.
    [13]Bramham K, Mistry HD, Poston L, Chappell LC, Thompson AJ. The non-invasive biopsy--will urinary proteomics make the renal tissue biopsy redundant? [J].QJM 2009;102(8):523-38.
    [14]Bruno G, Merletti F, Biggeri A, et al Progression to overt nephropathy in type 2 diabetes:the Casale Monferrato Study [J]. Diabetes Care 2003;26(7):2150-5.
    [15]Thongboonkerd V. Current status of renal and urinary proteomics:ready for routine clinical application? [J]. Nephrol Dial Transplant 2009;25(1):11-6.
    [16]Pejcic M, Stojnev S, Stefanovic V. Urinary proteomics--a tool for biomarker discovery [J].Ren Fail 2010;32(2):259-68.
    [17]Smith MP, Banks RE, Wood SL, Lewington AJ, Selby PJ. Application of proteomic analysis to the study of renal diseases [J]. Nat Rev Nephrol 2009;5(12):701-12.
    [18]Goligorsky MS, Addabbo F, O'Riordan E. Diagnostic potential of urine proteome:a broken mirror of renal diseases [J]. J Am Soc Nephrol 2007;18(8):2233-9.
    [19]Woroniecki RP, Orlova TN, Mendelev N, et al. Urinary proteome of steroid-sensitive and steroid-resistant idiopathic nephrotic syndrome of childhood [J]. Am J Nephrol 2006;26(3):258-67.
    [20]Merchant ML, Perkins BA, Boratyn GM, et al. Urinary peptidome may predict renal function decline in type 1 diabetes and microalbuminuria [J]. J Am Soc Nephrol 2009;20(9):2065-74.
    [21]Ho J, Lucy M, Krokhin O, et al. Mass spectrometry-based proteomic analysis of urine in acute kidney injury following cardiopμLmonary bypass:a nested case-control study [J]. Am J Kidney Dis 2009;53(4):584-95.
    [22]Clarke W, Silverman BC, Zhang Z, Chan DW, Klein AS, Molmenti EP. Characterization of renal allograft rejection by urinary proteomic analysis [J]. Ann Surg 2003;237(5):660-4; discussion 4-5.
    [23]Devarajan P. The use of targeted biomarkers for chronic kidney disease [J] Adv Chronic Kidney Dis 2010;17(6):469-79.
    [24]Calvano CD, Aresta A, Iacovone M, et al. Optimization of analytical and pre-analytical conditions for MALDI-TOF-MS human urine protein profiles [J]. J Pharm Biomed Anal 2009;51(4):907-14.
    [25]Court M, Selevsek N, Matondo M, et al. Toward a standardized urine proteome analysis methodology [J]. Proteomics 2011;11 (6):1160-71.
    [26]Thongboonkerd V. Practical points in urinary proteomics [J]. J Proteome Res 2007;6(10):3881-90.
    [27]Morales JV, Weber R, Wagner MB, Barros EJ. Is morning urinary protein/creatinine ratio a reliable estimator of 24-hour proteinuria in patients with glomerμLonephritis and different levels of renal function? [J]. J Nephrol 2004;17(5):666-72.
    [28]Birmingham DJ, Rovin BH, Shidham G, et al. Spot urine protein/creatinine ratios are unreliable estimates of 24 h proteinuria in most systemic lupus erythematosus nephritis flares [J]. Kidney Int 2007;72(7):865-70.
    [29]Lee RS, Monigatti F, Briscoe AC, Waldon Z, Freeman MR, Steen H. Optimizing sample handling for urinary proteomics [J]. J Proteome Res 2008;7(9):4022-30.
    [30]Havanapan PO, Thongboonkerd V. Are protease inhibitors required for gel-based proteomics of kidney and urine? [J]. J Proteome Res 2009;8(6):3109-17.
    [31]Yamamoto T. The 4th Human Kidney and Urine Proteome Project (HKUPP) workshop.26 September 2009, Toronto, Canada [J]. Proteomics 2010;10(11):2069-70.
    [32]Thongboonkerd V, McLeish KR, Arthur JM, Klein JB. Proteomic analysis of normal human urinary proteins isolated by acetone precipitation or ultracentrifugation [J]. Kidney Int 2002;62(4):1461-9.
    [33]Wittke S, Fliser D, Haubitz M, et al. Determination of peptides and proteins in human urine with capillary electrophoresis-mass spectrometry, a suitable tool for the establishment of new diagnostic markers [J]. J Chromatogr A 2003;1013(1-2):173-81.
    [34]Pisitkun T, Shen RF, Knepper MA. Identification and proteomic profiling of exosomes in human urine [J]. Proc Natl Acad Sci U S A 2004;101(36):13368-73.
    [35]Adachi J, Kumar C, Zhang Y, Olsen JV, Mann M. The human urinary proteome contains more than 1500 proteins, including a large proportion of membrane proteins [J]. Genome Biol 2006;7(9):R80.
    [36]Fiedler GM, Baumann S, Leichtle A, et al. Standardized peptidome profiling of human urine by magnetic bead separation and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry [J]. Clin Chem 2007;53(3):421-8.
    [37]Mischak H, Kaiser T, Walden M, et al. Proteomic analysis for the assessment of diabetic renal damage in humans [J]. Clin Sci (Lond) 2004;107(5):485-95.
    [38]Jiang H, Guan G, Zhang R, et al. Identification of urinary soluble E-cadherin as a novel biomarker for diabetic nephropathy. Diabetes Metab Res Rev 2009;25(3):232-41.
    [39]Haubitz M, Wittke S, Weissinger EM, el al. Urine protein patterns can serve as diagnostic tools in patients with IgA nephropathy [J]. Kidney Int 2005;67(6):2313-20.
    [40]吴杰,李燕,陈香美等,.磁珠分离结合生物质谱分析肾小球疾病患者尿液多肽谱[J].中华肾脏病杂志2009;25(8):596-600
    [41]Wu J, Wang N, Wang J, et al. Identification of a uromodμLin fragment for diagnosis of IgA nephropathy [J]. Rapid Commun Mass Spectrom 2010;24(14):1971-8.
    [42]Dihazi H, Asif AR, Agarwal NK, Doncheva Y, MμLler GA. Proteomic analysis of cellμLar response to osmotic stress in thick ascending limb of Henle's loop (TALH) cells [J]. Mol Cell Proteomics 2005;4(10):1445-58.
    [43]Rossing K, Mischak H, Dakna M, et al. Urinary proteomics in diabetes and CKD [J].J Am Soc Nephrol 2008; 19(7):1283-90.
    [44]Chutipongtanate S, Nakagawa Y, Sritippayawan S, et al. Identification of human urinary trefoil factor 1 as a novel calcium oxalate crystal growth inhibitor [J]. J Clin Invest 2005;115(12):3613-22.
    [45]Beck LH, Jr., Bonegio RG, Lambeau G, et al. M-type phospholipase A2 receptor as target antigen in idiopathic membranous nephropathy [J]. N Engl J Med 2009;361(1):11-21.
    [1]Poon TC. Opportunities and limitations of SELDI-TOF-MS in biomedical research:practical advices [J]. Expert Rev Proteomics 2007;4(1):51-65.
    [2]Dihazi H, MμLler GA, Lindner S, et al. Characterization of diabetic nephropathy by urinary proteomic analysis:identification of a processed ubiquitin form as a differentially excreted protein in diabetic nephropathy patients [J]. Clin Chem 2007;53(9):1636-45.
    [3]Otu HH, Can H, Spentzos D, et al. Prediction of diabetic nephropathy using urine proteomic profiling 10 years prior to development of nephropathy [J] Diabetes Care 2007;30(3):638-43.
    [4]Gu W, Zou LX, Shan PF, Chen YD. Analysis of urinary proteomic patterns for diabetic nephropathy by ProteinChip [J]. Proteomics Clin Appl 2008;2(5):744-50.
    [5]Bennett MR, Ravipati N, Ross G, et al. Using proteomics to identify preprocedural risk factors for contrast induced nephropathy [J]. Proteomics Clin Appl 2008;2(7-8):1058-64.
    [6]Ho J, Lucy M, Krokhin O, et al. Mass spectrometry-based proteomic analysis of urine in acute kidney injury following cardiopμLmonary bypass:a nested case-control study [J]. Am J Kidney Dis 2009;53(4):584-95.
    [7]Woroniecki RP, Orlova TN, Mendelev N, et al. Urinary proteome of steroid-sensitive and steroid-resistant idiopathic nephrotic syndrome of childhood [J]. Am J Nephrol 2006;26(3):258-67.
    [8]Zhang X, Jin M, Wu H, et al. Biomarkers of lupus nephritis determined by serial urine proteomics [J]. Kidney Int 2008;74(6):799-807.
    [9]Clarke W, Silverman BC, Zhang Z, Chan DW, Klein AS, Molmenti EP. Characterization of renal allograft rejection by urinary proteomic analysis [J]. Ann Surg 2003;237(5):660-4; discussion 4-5.
    [10]Schaub S, Wilkins J, Weiler T, Sangster K, Rush D, Nickerson P. Urine protein profiling with surface-enhanced laser-desorption/ionization time-of-flight mass spectrometry [J]. Kidney Int 2004;65(1):323-32.
    [11]Baggerly KA, Morris JS, Coombes KR. Reproducibility of SELDI-TOF protein patterns in serum:comparing datasets from different experiments [J] Bioinformatics 2004;20(5):777-85.
    [12]Petricoin EF, Ardekani AM, Hitt BA, et al. Use of proteomic patterns in serum to identify ovarian cancer [J]. Lancet 2002;359(9306):572-7.
    [13]Lee RS, Monigatti F, Briscoe AC, Waldon Z, Freeman MR, Steen H. Optimizing sample handling for urinary proteomics [J]. J Proteome Res 2008;7(9):4022-30.
    [14]Zhang X, Leung SM, Morris CR, Shigenaga MK. Evaluation of a novel, integrated approach using functionalized magnetic beads, bench-top MALDI-TOF-MS with prestructured sample supports, and pattern recognition software for profiling potential biomarkers in human plasma [J]. J Biomol Tech 2004;15(3):167-75.
    [15]Freed GL, Cazares LH, Fichandler CE, et al. Differential capture of serum proteins for expression profiling and biomarker discovery in pre- and posttreatment head and neck cancer samples [J]. Laryngoscope 2008;118(1):61-8.
    [16]Qiu F, Liu HY, Zhang XJ, Tian YP. Optimization of magnetic beads for maldi-TOF MS analysis [J]. Front Biosci 2009;14:3712-23.
    [17]Gianazza E, Mainini V, Castoldi G, et al. Different expression of fibrinopeptide A and related fragments in serum of type 1 diabetic patients with nephropathy [J]. J Proteomics 2009;73(3):593-601.
    [18]Wu J, Wang N, Wang J, et al. Identification of a uromodμLin fragment for diagnosis of IgA nephropathy [J]. Rapid Commun Mass Spectrom 2010;24(14):1971-8.
    [19]Kojima K, Asmellash S, Klug CA, Grizzle WE, Mobley JA, Christein JD. Applying proteomic-based biomarker tools for the accurate diagnosis of pancreatic cancer [J]. J Gastrointest Surg 2008;12(10):1683-90.
    [20]Hsieh SY, Chen RK, Pan YH, Lee HL. Systematical evaluation of the effects of sample collection procedures on low-molecμLar-weight serum/plasma proteome profiling [J]. Proteomics 2006;6(10):3189-98.
    [21]Baumann S, Ceglarek U, Fiedler GM, Lembcke J, Leichtle A, Thiery J. Standardized approach to proteome profiling of human serum based on magnetic bead separation and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry [J]. Clin Chem 2005;51(6):973-80.
    [22]Fiedler GM, Baumann S, Leichtle A, et al. Standardized peptidome profiling of human urine by magnetic bead separation and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry [J]. Clin Chem 2007;53(3):421-8.
    [23]Bruegel M, Planert M, Baumann S, et al. Standardized peptidome profiling of human cerebrospinal fluid by magnetic bead separation and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry [J]. J Proteomics 2009;72(4):608-15.
    [24]Schwamborn K, Krieg RC, Grosse J, et al. Serum proteomic profiling in patients with bladder cancer [J]. Eur Urol 2009;56(6):989-96.
    [25]Villanueva J, Martorella AJ, Lawlor K, et al. Serum peptidome patterns that distinguish metastatic thyroid carcinoma from cancer-free controls are unbiased by gender and age [J]. Mol Cell Proteomics 2006;5(10):1840-52.
    [26]Hansen HG, Overgaard J, Lajer M, et al. Finding diabetic nephropathy biomarkers in the plasma peptidome by high-throughput magnetic bead processing and MALDI-TOF-MS analysis [J]. Proteomics Clin Appl 2010;4(8-9):697-705.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700