闽江河口芦苇湿地甲烷和二氧化碳排放通量分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
闽江河口湿地是我国较大的河口湿地分布区之一,具有良好的代表性。鳝鱼滩湿地是闽江入海河口区域最大的湿地,人为干涉较少。本研究采用静态箱-气相色谱法,野外抽取气体样品,并定位观测了芦苇湿地涨潮前、涨落潮中和落潮后三个时段温度、pH值、Eh值、盐度、潮汐、植株等相关因子,室内精确测定、分析了长达两年的甲烷和二氧化碳排放通量变化规律。最终研究结果表明:
     (1)闽江河口芦苇湿地2008年和2009年的甲烷总排放通量分别为43.405·m-2·yr-1和40.761 g·m-2·yr-1,两年的二氧化碳总排放通量分别为4728.112 g·m-2·yr-1和4348.233 g·m-2·yr-1;
     (2)闽江河口芦苇湿地2008年涨潮前、涨落潮中、落潮后甲烷年平均排放通量分别为6.929 mg·m-2·h-1、2.163 mg·m-2·h-1和5.209 mg·m-2·h-1; 2009年三个时段甲烷年平均排放通量分别为7.126 mg·m-2·h-1、2.006 mg·m-2·h-1和4.222mg·m-2·h-1;
     (3)闽江河口芦苇湿地2008年涨潮前、涨落潮中、落潮后二氧化碳年平均排放通量分别为544.901 mg·m-2·h-1、437.124 mg·m-2·h-1和609.023mg·m-2·h-1;2009年三个时段二氧化碳年平均排放通量分别为626.663mg·m-2·h-1、254.525mg·m-2·h-1和555.751 mg·m-2·h-1;
     (4)闽江河口芦苇湿地甲烷排放通量与二氧化碳排放通量为极显著正相关关系;
     (5)闽江河口芦苇湿地甲烷和二氧化碳排放通量均呈现夏、秋季高于冬、春季节的特征;
     (6)温度是影响闽江河口芦苇湿地甲烷和二氧化碳排放通量年变化规律的最重要环境因子,研究区域高水位的潮汐也导致了涨落潮时段和非涨落潮时段甲烷和二氧化碳排放通量的差异。
The Minjiang river estuary marsh is one of the most representative esturay marsh in southeast of China. This article mainly studied CH4 and CO2 emissions of Phragmites australis marsh in the Shanyutan wetland. The CH4 and CO2 emissions and environment influencing factors were be monitored by using the closed black chamber-gas chromatograph techques. The relationship between environmental influencing factors and the CH4 emissions were discussed. The results indicated:
     (1).The CH4 emissions were 43.405g·m-2·yr-1, and the CO2 emissions were 4728.112g·m-2·yr-1 in 2008;The CH4 emissions were 40.761g·m-2·yr-1, and the CO2 emissions were 4348.233g·m-2·yr-1 in 2009;
     (2).The CH4 emissions of the Phragmites australis marsh were separated into three periods that is before flood tide, in the period of flood and ebb and after ebb.The average emissions were 6.929 mg·m-2·h-1、2.163 mg·m-2·h-1 and 5.209 mg·m-2·h-1 in 2008,which were7.126 mg·m-2·h-1、2.006 mg·m-2·h-1 and 4.222 mg·m-2·h-1 in 2009;
     (3).The CO2 emissions of the Phragmites australis marsh were separated into three periods that is before flood tide, in the period of flood and ebb and after ebb.The average emissions were 544.901 mg·m-2·h-1、437.124 mg·m-2·h-1 and 609.023 mg·m-2·h-1 in 2008,and which were 626.663 mg·m-2·h-1 254.525 mg·m-2·h-1 and 555.751 mg·m-2·h-1 in 2009;
     (4).The CH4 emissions has significant positive ralationships with the the CO2 emissions in the Phragmites australis marsh;
     (5).The CH4 and CO2 emissions in the summer and autum were higher than in the winter and spring;
     (6).The temperature is the most significant factor of which effect the CH4 and CO2 overall tendency, but the height of tide cannot be ignored.
引文
[1]郝庆菊,王跃思,宋长春等.三江平原湿地土壤CO2和CH4排放的初步研究[J].农业环境科学学报.2004,23(5):846-854.
    [2]Castro M S,Stedudler P A, Mellio J M. Factor controlling atmospheric methane consumption by temperate forest soil[J].Global Biogeochemical Cycles.1995,9:1-10.
    [3]IPCC. Climate change 2001:The scientific basis [R]. New York, USA:Cambridge University Press,2001:12-14.
    [4]Mer J L, Roger P. Production, oxidation, emission and consumption of methane by soils:A review[J]. Eur. J. Soil Biol,2001,37:25-50.
    [5]Alford D P, Delaune R D, Lindau CW. Methane flux from Mississipp i River deltaic p lain wetlands [J]. Biogeochemistry,1997,37 (4):227-236.
    [6]Hogan K B, et al. Methane on the greenhouse agenda[J]. Nature,1991,354: 181-182.
    [7]李兆富,吕宪国,杨青.湿地土壤CO2通量研究进展[J].生态学杂志.2002,21(6):47-50.
    [8]Jenkison D S, et al. Model estimates of C02 emissions fromsoil in response to global warming[J]. Nature,1991,351:304-306.
    [9]Detwiler R P, Hall C A S. Tropical forest and the global carbon cycle [J]. Science,1988,239:42-47.) (Raich, J. W. and Schelesinger, W. H. The Global carbon dioxide flux in soil respiration and its relationship to vegetation and climate[J]. Tellus,1992,44B:81-99.
    [10]陈宜瑜.中国湿地研究[C].长春:吉林科学技术出版社,1995:68-71.
    [11]Houghton J T, Meira Filho L G, Callander B A, etc. (Eds.)Climate Change 1995:the Science of Climate Change[M].New York:Cambridge University Press,1998
    [12]Joabsson A, Christensen T R, Wallen B. Vascular plant controls On methane emissions from northern peatforming wetlands. Trees,1999,14(10):385-388.
    [13]黄国宏,肖笃宁,李玉祥等.芦苇湿地温室气体甲烷(CH4)排放研究[J].生态学报.2001,21:1494-1497.
    [14]于洪贤,黄璞神.湿地碳汇功能探讨:以泥炭地和芦苇湿地为例[J].生态环境.2008,17(5):2103-2106.
    [15]王维奇,曾从盛,仝川.芦苇湿地甲烷排放机理及排放通量研究进展[J].农业系统科学与综合研究.2008,24:20-25.
    [16]王维奇,曾从盛,仝川.闽江口芦苇湿地土壤甲烷产生与氧化能力研究[J].湿地科学.2008,6:60-68.
    [17]陈冠雄,黄国宏,黄斌等.稻田CH4和N2O的排放及养萍和施肥的影响[J].应用生态学报,1995,6(4):378-382.
    [18]Wang, M. X., M. A. K. Khalil, R. A. Rasmussen. Chinese Science Bulletin, 1988,33: 942-947.
    [19]闵航,陈美慈,钱泽澍.水稻田的甲烷释放及其生物学机理[J].土壤学报,1993,30(2):125-130.
    [20]Wassmann, R.,H. Schutz, H. Papen, et al. Biogeochem.,1993,20:83-101.
    [21]Chen, Z., D. Li, K. Shao and B. Wang. Chemosphere,1993,26:239-1245.
    [22]蔡祖聪,徐华,卢维盛等.冬季水分管理方式对稻田CH4排放量的影响[J],应用生态学报,1998,9(2):171-175.
    [23]王明星,李晶,郑循华.稻田甲烷排放及产生、转化、输送机理[J].大气科学,1998,22(4):600-612.
    [24]陈中云,闵航,陈美慈等.不同水稻土甲烷氧化菌和产甲烷菌数量与甲烷排放量之间相关性的研究[J].生态学报,2001,21(9):1498-1505.
    [25]阂航,陈中云,吴伟祥等.碳、氮物质对水稻田土壤甲烷氧化活性影响的研究[J].环境科学学报,2002,22(1):70-75.
    [26]贾仲君,蔡祖聪.稻田甲烷氧化与铵氧化关系研究进展[J].农村生态环境,2003,19(4):40-44.
    [27]张稳,黄耀,郑循华等.张稳稻田甲烷排放模型研究——模型的验证[J].生态学报,2004,24(12):2679-2685.
    [28]徐华,蔡祖聪,八木一行.水稻土CH4产生潜力及其影响因素[J].土壤学报,2008,45(1):98-104.
    [29]丁维新,蔡祖聪.温度对甲烷产生和氧化的影响[J].应用生态学报.2003(14):604-608.
    [30]周叶锋,廖晓兰,黄璜等.甲烷氧化细菌氧化活性影响因素的研究[J].微生物学杂志.2008(28):77-80.
    [31]Bedford BL, Bouldin DR, Beliveau BD.Net oxygen and carbon-dioxide balances in solutions bathing roots of wetland plants[J].Journal of Ecology.1991 (79):943-959.
    [32]牟长城,石兰英,孙晓新.小兴安岭典型草丛沼泽湿地CO2、CH4和N2O的排放动态及其影响因素[J].植物生态学报,2009,33(3):617-623.
    [33]陈槐,高永恒,姚守平等.若尔盖高原湿地甲烷排放的时空异质性[J].生态学报,2008,28(7):3425-3437.
    [34]杨红霞,王东启,陈振楼等.长江口崇明东滩潮间带甲烷(CH4)排放及其季节变化[J].地理科学,2007,27(3):408-413.
    [35]王长科,吕宪国,蔡祖聪等.东北三江平原土壤氧化CH4研究[J].环境科学学报,2004,24(5):939-941.
    [36]黄国宏,李玉祥,陈冠雄等.环境因素对芦苇湿地CH4排放的影响[J].环境科学,2001,22(1):1-5.
    [37]卢昌义,叶勇,林鹏.海南海莲红树林土壤CH4的产生及其某些影响因素[J].海洋学报,1998,20(6):132-138.
    [38]Hans Brix, Brian K. Sorrell, Hans-Henrik Schierup. Gas fluxes achieved by in situ convective flow in Phragmites australis[J]. Aquatic Botany,1996(54):151-163.
    [39]G. BROOKS AVERY JR, ROBERT D. SHANNON, JEFFREY R WHITE, et al. Controls on methane production in a tidal freshwater estuary and a peatland methane production via acetate fermentation and C02 reduction[J]. Biogeochemistry.2003(62):19-37.
    [40]A. X. Hou, Z. P. Wang, G. X. Chen & W. H. Patrick, Jr. Effects of organic and N fertilizers on methane production potential in a Chinese rice soil and its microbiological aspect[J]. Nutrient Cycling in Agroecosystems.2000(58): 333-338.
    [41]MANABU FUKUI, JUNGIN SUH, YOSHITAKA YONEZAWA AND YOSHIKUNI URUSHIGAWA. Major substrates for microbial sulfate reduction in the sediments of Ise Bay[J], Japan. Ecological Research.1997(12):201-209.
    [42]祖波,祖建,周富春等.产甲烷菌的生理生化特性[J].环球科学与技术.2008(31):5-9.
    [43]JOSHUA P. SCHIMEL. Plant transport and methane production as controls on methane flux from arctic wet meadow tundra[J]. Biogeochemistry. 1995(28):183-200.
    [44]孙丽,宋长春,黄耀.沼泽湿地N2O通量特征及N2O与CO2排放间的关系[J].中国环境科学.2006,26(5):532-536.
    [45]Turetsky M R, Wieder R K, Vitt D H. Boreal peatland C fluxes under varying permafrost regimes [J]. Soil Biology and Biochemistry.2002,34:907-912.
    [46]杨继松,刘景双,孙丽娜.三江平原草甸湿地土壤呼吸和枯落物分解的CO2释放[J].生态学报.2008(28):805-811.
    [47]J W RAICH, W H SCHLESINGER. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate[J].Tellus. Series B:Chemical and Physical Meteorology.1992(44B):81-99.
    [48]赵光影,刘景双,王洋等.CO2浓度升高和氮输入影响下湿地生态系统CO2排放研究[J].农业现代化研究,2009,30(2):220-224.
    [49]张丽华,宋长春,王德宣.沼泽湿地CO2、CH4、N2O排放对氮输入的响应[J].环境科学学报,2005,25(8):1112-1118.
    [50]张法伟,刘安花,李英年等.青藏高原高寒湿地生态系统CO2通量[J].生态学报,2008,28(2):453-462.
    [51]王德宣,宋长春,王跃思等.若尔盖高原泥炭沼泽湿地CO2呼吸通量特征[J].生态环境,2005,41(6):880-883.
    [52]金研铭,徐奇锋,徐惠风.乌拉苔草湿地土壤CO2和CO的变化特征[J].东北林业大学学报,2006,34(6):29-30.
    [53]Ball AS, Drake BG. Stimulation of soil respiration by carbon dioxide enrichment of marsh vegetation[J]. Soil Biology and Biochemistry. 1998(30):1203-1205.
    [54]Morris JT,Whiting GJ.Emission of gaseous carbon dioxide from salt-marsh sediments and its relation to other carbon losses[J].Estuaries.1986(9):9-19.
    [55]Cory J D Matthews, Elizabeth M Joyce, Vincent L St Louis, et al. Carbon Dioxide and Methane Production in Small Reservoirs Flooding Upland Boreal Forest [J]. Ecosystems (2005) 8:267-285.
    [56]Magenheimer JF, Moore TR, Chmura GL, et al. Methane and carbon dioxide flux from a macrotidal salt marsh, Bay of Fundy, New Brunswick[J]. Estuaries. 1996, (19):139-145.
    [57]王维奇,曾从盛,仝川.水盐特征与植物入侵对潮汐湿地土壤甲烷产生潜力的影响[J].农业系统科学与综合研究,2009,25(4):481-486.
    [58]刘苍宇,贾海林,陈祥锋.闽江河口沉积结构与沉积作用[J].海洋与湖沼.2001.32(2):177-184
    [59]曾从盛主编.福建典型区生态环境研究.中国环境科学出版社.2006,4:206[60]刘剑秋主编.闽江河口湿地研究.北京:科学出版社.2006,9.
    [61]王维奇,曾从盛,仝川.闽江口芦苇湿地土壤甲烷产生与氧化能力研究[J].湿地科学.2008,6(1):60-68
    [62]宋长春,张丽华,王毅勇等.淡水沼泽湿地CO2、CH4和N2O排放通量年际变化及其对氮输入的响应[J].环境科学,2006,27(12):2369-2375.
    [63]Ding W X, Cai Z C. Effect of plants on methane production, oxidation and emission. Chinese Journal of Applied Ecology,2003,14(8):1379-1384.
    [64]丁维新,蔡祖聪.植物在CH4产生、氧化和排放中的作用[J].应用生态学报,2003,14(8):1379-1384.
    [65]Chanton J P, Whiting G J, Showers W J, et al.1992. Methane flux from Peltandra virginica:Stable isotope tracing and chamber effects. Global Biogeochem Cyc,6:15-31
    [66]卢妍,宋长春,王毅勇等.植物对沼泽湿地生态系统C02和CH4排放的影响[J].西北植物学报,2007,27(11):2306-2313.
    [67]段晓男,王效科,欧阳志云等.乌梁素海湖泊湿地植物区甲烷排放规律[J].环境科学,2007(28)3:454-459.
    [68]Fumiko Nakagawa, Naohiro Yoshida. Stable isotope and radiocarbon composition of methane emitted from tropical rice paddies and swaps in South Thailand[J]. Biogeochemistry,2002,61:1-19.
    [69]Carroll P, Crill P. Carbon balance of a temperate poor fen [J]. Global Biogeochem Cycle,1997,11:349-356.
    [70]Alm J, Schulman L, Waldon J. Carbon balance of a boreal bog during a year with an exceptionally dry summer [J]. Ecology,1999,80:161 174.
    [71]王德宣,宋长春,王毅勇等.若尔盖高原沼泽湿地与草地二氧化碳通量的比较[J].应用生态学报,2008,19(2):285-289.
    [72]Van der Nat F W J, Middelburg J J. Methane emission from tidal freshwater marshes[J]. Biogeochemistry,2000,49:103-121.
    [73]Schutz H. The effect of temperature on methane emissions from paddy soil[J]. Biogeochem,1990, (11):77-83.
    [74]Bartlett K B, Crill P M, Sass R L, et al. Methane emissions from tundra environments in the Yukon-Kuskikwim delta, Alaska[J]. Journal of Geophysical Research,1992,97(16):645-660.
    [75]Fechner-Levy E J, Hemond H F. Trapped methane volume and potential effects on methane ebullition in a northern peatland. Limnology and Oceanography, 1996,41(7):1375-1383.
    [76]Alford D P, Delaune R D, Lindau C W. Methane flux from Mississippi River deltaic plain wetlands [J].Biogeochemistry,1997,37 (4):227-236.
    [77]Singh S N, Kulshreshtha K, Agnihotri S. Seasonal dynamics of methane emission from wetlands [J]. Chemisphere:Global Change Science,2000, (2): 39-46.
    [78]Wang B, Neue H U, Samonte H P. The effect of controlled soil temperature on diel CH4 emission variation [J]. Chemosphere,1997,35 (9):2083-209
    [79]Bartlett K B, Crill P M, Sass R L, et al. Methane emissions from tundra environments in the Yukon-Kuskikwim delta, Alaska[J]. Journal of Geophysical Research,1992,97(16):645-660.
    [80]宋长春,王毅勇.湿地生态系统土壤温度对气温的响应特征及对CO2排放的影响[J].应用生态学报,2006,17(4):625-629.
    [81]仝川,曾从盛.湿地生态系统碳循环过程及碳动态模型[J].亚热带资源与环境学报,2006,1(1):84-92.
    [82]Mishra S,Rath AK.Adhya TK, et al.1997. Effect of continuous and alternate water regimes on methane efflux from rice under greenhouse conditions. Biol Fert Soils,24:399-405
    [83]Karen B. Bartlett, Robert C. Harriss, Daniel I. Sebacher. Methane Flux from Coastal Salt Marshes [J].J. Geophys. Res.,1985,90(D3):5710-5720.
    [84]Delaune R D, Smith C J.Patrick W H. Methane release from gulf coast wetlands[J].Tellus,1983, (35B):8-15.
    [85]Sotomayor D, Corredor J E, Morell J M. Methane flux from mangrove sediments along the southwestern coast of Puerto Rico[J].Estuaries,1994, 17 (1B):140-147.
    [86]丁维新,蔡祖聪.氮肥对土壤甲烷产生的影响[J].农业环境科学学报,2003,22(3):380-383.
    [87]马静,徐华,蔡祖聪.稻田甲烷氧化研究方法进展[J].土壤,2007,39(2):153-156.
    [88]King GM. In situ analyses of methane oxida tion associated with the roots and rhizomes of a bur reed, spargainium eurycarpum, in a Maine wetland. Applied and Environmental Microbioloby,1996,62(12):4548-4555
    [89]Oremland RS, Taylor BE. Inhibition of methanogenesis in marine sediments by acetylene and ethylene:Validity of the acetylene reduction assay for anaerobic microcosms. Applied Microbiology,1975,30(4):707-709
    [90]Watanabe I, Hashimoto Shimoyama A. Methane—oxidizing activities and methanotrophic populations associated with wetland rice plants. Biology and Fertility of Soils,1997,24:261-265
    [91]王维奇.闽江河口芦苇湿地甲烷排放及其主要环境影响因子分析[D].福建师范大学硕士研究生论文,2008.
    [92]Frans-Gaco, Va Der Nat, Jac J Minddelburg. Methane emission from tidal freshwater marshes[J]. Biogeochemistry,2000,49:103-121.
    [93]Kim J, Venma D P, Billesbach D P, et al. Seasonal variation in methane emission from a teperate Phragmates-dominated marsh:effect of growth stage and plant-mediated transport [J]. Global Change biology,1998,5:433-440.
    [94]Jay, G. and Schimel, P. Controls on soil carbon dioxide and methane fluxes in a variety of Taiga forest stands in interior Alaska[J]. Ecosystems, 2000, (3):269-282.
    [95]FWA Van Der Nat, JFC De Brouwer, JJ Middelburg, et al. Spatial Distribution and Inhibition by Ammonium of Methane Oxidation in Intertidal Freshwater Marshes[J]. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1997,63(12):4734-4740.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700