磷钠锶钡石中Sm~(2+)的还原和发光结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稀土离子掺杂的发光材料在发光器件、激光和探测等多种领域得到广泛应用。Sm~(2+)掺杂的发光材料可以实现永久光谱烧孔,对高密度光存储具有潜在的的应用。在照明和显示领域Eu~(3+)是应用最多的红发光激活离子。Sm~(2+)和Eu~(3+)还是很好的结构探针离子,在晶格之中的周围环境对于其发光光谱和衰减影响很大。利用这个特点,可以研究Sm~(2+)和Eu~(3+)离子所处的周围结晶学环境,提供了基质中不同发光中心格位的对称性,进而给出物质结构的详细信息。
     本论文选择了正磷酸盐作为基质材料,以Sm~(3+)和Eu~(3+)作为激活离子,用高温固相反应法分别制备了Sm~(3+)和Eu~(3+)离子掺杂的磷锶钡钠石(NaSr_(1-x)Ba_xPO_4)、并用X射线辐照法实现了Sm~(2+)离子在磷锶钡钠石和KSrPO_4中的还原,研究了Sm~(2+)和Eu~(3+)离子的发光性能,讨论了缺陷和发光性能的内在关联。
     第三章探讨了不同的锶、钡比对NaSr_(1-x)Ba_xPO_4晶体结构、Sm~(2+)还原效率及其发光性能的影响;通过对荧光光谱的分析,研究了NaSr_(1-x)Ba_xPO_4样品中稀土离子的晶体学环境。结果表明:随着Ba含量的增加,NaSr_(1-x)Ba_xPO_4的晶胞参数和单胞体积逐渐增大,并且伴随着XRD衍射峰向低角度的迁移;随着Ba含量的增加,NaSr_(1-x)Ba_xPO_4中Sm~(2+)离子的还原效率增强,而相应的5D0→7F0发光跃迁的衰减时间减小;Sm~(2+)在NaSr_(1-x)Ba_xPO_4中的结构具有一个强烈扰动的晶体场环境,主要是由Sr(Ba)在晶格中的占位混乱和晶格中由X射线辐照产生的复杂缺陷造成的。
     第四章探讨了Sm~(2+)离子掺杂KSrPO_4的发光光谱、Sm~(2+)离子的晶体学位置和温度对荧光特性的影响。研究表明:Sm~(2+)在KSrPO_4的晶格中占据三种不同晶体学结构的阳离子位置。Sm~(2+)离子的发光光谱有一组线状的发光谱线(688-715 nm)与位于650–800 nm处的宽带发射组成,线状光谱来自Sm~(2+)离子的5D0→7FJ (J=0, 1, 2)跃迁,宽带发射则归因于Sm~(2+)离子的5d→4f辐射跃迁。Sm~(2+)离子5D0→7F0的宽带发射跃迁同时也表明Sm~(2+)掺杂的KSrPO_4结构具有一个强烈扰动的晶体场环境,主要是由Sr/?K位置占位混乱和基质中Sm~(2+)离子在Sr/?K位置上的复杂取代作用造成的。该结论对于其他稀土离子在KSrPO_4中的发光和应用研究具有参考意义。例如,Sm~(2+)和Eu~(2+)离子半径和化学性质近似,可以由此推测出KSrPO_4中Eu~(2+)的结晶学位置和发光光谱特点。
     第五章,用X射线衍射(XRD)、傅里叶变换红外光谱(FT-IR)、傅里叶变换拉曼光谱(FT-Raman)和扫描电镜(SEM)等技术对Eu~(3+)掺杂的NaSr_(1-x)Ba_xPO_4物相组成、结构和晶体形貌进行了表征。探讨了不同晶体结构中Sr/Ba比对晶体结构,发光性能和发光寿命的影响。实验通过对Eu~(3+)的发光特点的表征和研究,分别测试了Eu~(3+)离子的室温激发光谱和发射光谱。研究表明:NaSr_(1-x)Ba_xPO_4属简单六方晶系,所有的振动均来自PO_43?阴离子基团;Eu~(3+)占据非反演中心的格位,该材料中阳离子位置具有高度扰动性的特点;Eu~(3+)离子的发光衰减是单指数衰减曲线。随着晶体结构之中钡含量的增加,Eu~(3+)离子5D0→7F2与5D0→7F1的发光强度之比明显增大,说明Eu~(3+)离子在晶格中的对称性明显降低。该高比值,对掺杂材料的发光强度和发光的色度都是有益的。
     本论文创新点是在NaSr_(1-x)Ba_xPO_4中成功实现了Sm~(2+)在X射线辐照下的还原,并首次报道了稀土掺杂的NaSr_(1-x)Ba_xPO_4的微结构、X射线辐照时间和钡含量对Sm~(2+)还原效率的影响;Sm~(2+)离子掺杂的KSrPO_4结构特点,Sm~(2+)离子的晶体学位置和温度对样品荧光性的影响。这些对于NaSr_(1-x)Ba_xPO_4和KSrPO_4的进一步应用、稀土离子的还原方法的发展都具有参考借鉴和实际应用价值。
Rare-earth doped light-emitting material has been paid intense attention because it has been widely used in various fields, such as in display devices, laser and display. Sm~(2+) ion has potential application in high-density optical storage because of its property of persistent spectral hole burning. Eu~(3+) as activating ions has been the most widely used in the field of luminescence and display. Sm~(2+) and Eu~(3+) ions are also two good kinds of probe material. It highly affected on the spectra and decay. Take advantage of this feature, we can study the surrounding environment of Sm~(2+) and Eu~(3+) ions which provides the symmetry of different luminescence centers in the matrix and then gives details of physical structures.
     This paper chose the orthophosphate as a substrate material, Sm~(3+) and Eu~(3+) as activating ions, Sm~(3+) and Eu~(3+) ions doped strontium barium phosphate sodalite (NaSr_(1-x)Ba_xPO_4). Sm~(2+) ion was reduced by X-ray irradiation in strontium barium phosphate sodalite and KSrPO_4. We studied the luminescence of Sm~(2+) and Eu~(3+) ions and discussed the relationgship between defect and luminescence.
     In the chapter three, the effect of different mole ratios of Sr/Ba on the crystal structure, the reduction of Sm~(2+) and the luminescence of Sm~(2+) in NaSr_(1-x)Ba_xPO_4 were also discussed; we studied the crystal field environment of RE ions in NaSr_(1-x)Ba_xPO_4 through the analysis of the fluorescence spectra. The results show that with increasing of Ba atoms the crystallography parameters and the volume of cell in NaSr_(1-x)Ba_xPO_4 is increased and the main XRD peaks shift to low degree, the reductive efficiencies of Sm~(2+) ions in NaSr_(1-x)Ba_xPO_4 are enhanced, while the corresponding decay time of 5D0→7F0 transition decreases rapidly. The structure of Sm~(2+) in NaSr_(1-x)Ba_xPO_4 is a heavily disturbed crystalline environment due to the Sr(Ba) disorder and the complicated defects in the lattice created by the X-ray irradiation.
     In the chapter four, we discussed the fluorescence spectra of Sm~(2+)-doped KSrPO_4, crystallographic position of Sm~(2+) ions and the temperature effects on the fluorescence. It was found that there were three crystallographic cationic sites available for Sm~(2+). Fluorescence spectra of Sm~(2+) ions is made up of the emission lines (688-715 nm) and the broad emission bands of 650–800 nm. The emission lines came from the 5D0→7FJ (J=0,1,2) transitions of Sm~(2+) ions. The broad emission bands are referred to the 5d→4f transition of Sm~(2+) ions. The 5D0→7F0 transitions of Sm~(2+) ions are broad which proves the structure of Sm~(2+) doped KSrPO_4 is a heavily disturbed crystalline environment due to the Sr/K disorder and the complicated substitutions among K, Sr and Sm~(2+) ions. These results can be helpful for the luminescence and application of the other RE ions in KSrPO_4. Since the ionic radii and the chemical properties for Sm~(2+) and Eu~(2+) are nearly identical, one may expect the crystallographic position and luminescence of Eu~(2+) in KSrPO_4.
     In the chapter five, characteristics of Eu~(3+)-doped NaSr_(1-x)Ba_xPO_4 were investigated by the use of XRD, SEM, FTIR and FT-IRaman spectra. The effect of different mole ratios of Sr/Ba on the crystal structure was also discussed. The excitation and emission spectra of Eu~(3+)-doped NaSr_(1-x)Ba_xPO_4 were discussed. The results show that NaSr_(1-x)Ba_xPO_4 belongs to hexagon system, all the vibrations were from PO_43? anion unit, the Eu~(3+) ion in crystal was located in non-reversion center in the lattice, the crystallographic site of cation in the crystal is highly disturbed and disordered. The decay exhibit a single exponential curve indecated that there is only one Eu~(3+) luminescence center. With the barium content increasing, luminous intensity ratio of 5D0→7F2 and 5D0→7F1 of Eu~(3+) ion increased significantly which indicated that Eu~(3+) ions in the crystal lattice symmetry decresed significantly. The high ratio is useful to the luminous intensity and color of the doped material.
     The novelties of this desertation are the following: we successfully achieved the reduction of Sm~(2+) in the NaSr_(1-x)Ba_xPO_4 by X-ray irradiation. The microstructure of the RE ions doped NaSr_(1-x)Ba_xPO_4, X-ray irradiation time and the content of Ba effect on the reduction efficiency of Sm~(2+) were first reported. Besides this, we also discussed the structural features of Sm~(2+)-doped KSrPO_4, crystallographic position of Sm~(2+) ions in KSrPO_4 and the temperature effects on the fluorescence. These results are helpful in further research of NaSr_(1-x)Ba_xPO_4 and KSrPO_4. And this also are good references for the reduction of rare-earth ions.
引文
[1]徐长远,王永生,黄最明等.发光材料研究进展[J]光电子技术与信息, 1997, 10, 8-12.
    [2]刘行仁,王晓君,何大伟.加入WTO我国稀土发光材料面临的机遇和挑战[J]中国稀土学报, 2002, 20, 6, 491-494.
    [3] Wegh R T,Donker H,Oskam K D. Visible quantum cutting in Eu3+-doped gadolinium fluorides via downconversion [J] J. Lumin, 1999, 82, 283, 663.
    [4] Huang L H, Liu X R, Liu H et al. Room temperature intense emission at 1534 nm in Er-doped Gd3Al2Si3O12 glass [J] Appl. Phys. Lett, 2000, 77, 18, 2849.
    [5]李建宇.稀土发光材料及其应用[J]北京:化学工业出版社. 2003, 34-36.
    [6] Yang J H, Gong J, Fan H G, eta1. Structure and luminescence characteristics of europium activated strontium silicates Sr(Eu,Bi)SiO3 and Sr(Eu,Bi)2SiO4 [J]Chemical Research in Chinese Universities, 2003, 19, 4, 450-453.
    [7] Qi Pangm, Jianxin Shi, Yu Liu, et al. A novel approach for preparation of Y2O3: Eu3+ nanoparticles by microemulsion-microwave heating [J] Mater. Sci. Eng., B, 2003, 103, 57-61.
    [8] Wu C, Qin W, Qin G, Zhao D, Zhang J, Huang S, Photoluminescence from surfactant-assembled Y2O3: Eu nanotubes [J] Appl. Phys. Lett., 2003, 82, 520-522.
    [9]杨水金,袁良杰,孙聚堂.掺杂Eu3+离子LaPO4的合成及其发光特性研究[J]发光学报,2003, 24, 5, 527-530.
    [10]闵庆旺,牛淑云,付晓燕,张洪武,辛勤.超微发光粉体LaPO4: Eu的制备及表征[J]功能材料,2005, 11, 36, 1167-1169.
    [11] Winnacker A., Shelby R. M., Macfarlane R. M. Photon- gated hole-buring: a new mechanism using two step photoionization [J] Opt. Lett., 1985, 10, 350-352.
    [12] Zhang Jiahua, Huang Shihua, Qin Weiping. Process of persistent spectral hole burning in SrFCl: Sm2+ [J] J. Lumin., 1992, 53, 275-278.
    [13] Mikhail P, Schnieper M, Bill H and Hulliger J. Optical Hole Burning on Sm2+ at 5K in Czochralski Grown Sr2MgSi2O7: Sm Crystals [J] Phys. Status Solidi B, 1999, 215, 17.
    [14] Nogami Mand Suzuki K. Fast Spectral Hole Burning in Sm2+-doped Al2O3-SiO2 Glasses [J] Adv. Mater., 2002, 14, 923-926.
    [15] Qiu J, Miura K, Nouchi K, Suzuki T, Kondo Y, Mitsuyu T and Hirao K.Valence manipulation by lasers of samarium ion in micrometer-scale dimensions inside transparent glass [J] Solid State Commun., 2000, 113, 341.
    [16] Huang Shihua, Quan Shanyu, Qin Weiping, et al . The dependence of hole width and depth on burning laser duratio [J] J. L umin. , 1992, 53, 231-234.
    [17] Zhang Jiahua, Huang Shihua, Yu Jiaqi. High temperature stability of a spectral hole burnt in Sm-doped SrFCl crystals [J] Opt. Lett., 1992, 17, 16, 1146-1148.
    [18] Zeng Q, Pei Z, Wang S, Su Q and Lu S. The luminescent properties of Sm2+ in strontium tetraborates (SrB4O7: Sm2+) [J] J. Phys. Chem. Solid., 1999, 60, 515-520.
    [19] Khomyakov, A P, Semenov Y I, Shumyatskaya N G, Timoshenkov I M, Laputina I P, and Smolyaninova N N. Ce3+ ion doped olgite Na(Sr,Ba)PO4 [J] Miner. Obshch,1980, 109, 347–351.
    [20] Sokolova, E V, Yegorov-Tismenko Y K, Yamnova N A, and Simonov M A, Sov. Ce3+ ion doped olgite Na(Sr,Ba)PO4 [J] Phys. Crystal. 1984, 29, 1079-1083.
    [21] Lammers J.J., Verhaar H.C.G., Blasse G., Lumine scence of Ce3+ and Tb3+ in M3(PO4)2 (M = Sr,Ba) [J] Chem. Phys. 1986, 16, 63-66.
    [22] Yang Luyun, Da Ning, Chen Danping, Zhao Quanzhong, Jiang Xiongwei, Zhu Congshan, Qiu Jianrong. Valence state change and refractive index change induced by femtosecond laser irradiation in Sm3+ doped fluoroaluminate glass [J] J. Non-Cryst. Solids. 2008, 354, 12-13, 1353-1356.
    [23] Malchukova E, Boizot B, Ghaleb D and Petite G.. Optical properties of pristine andγ-irradiated Sm doped borosilicate glasses [J] Nucl. Instr. Meth. Phys. Res. A. 2005, 537, 411.
    [24]Qiu J and Hirao K.γ-ray induced reduction of Sm3+ to Sm2+ in sodium aluminoborate glasses [J] J. Mater. Sci. Lett. 2001, 20, 691.
    [25] Malchukova E, Boizot B, Petite G, Ghale D. Optical properties and valence state of Sm ions in aluminoborosilicate glass underβ-irradiation [J] J. Non-Cryst. Solids. 2007, 353, 34-35, 2397-2402.
    [26] Seongtae Park, Kiwan Jang, Sangsu Kim, Ilgon Kim, HyoJin Seo. X-ray-induced reduction of Sm3+-doped SrB6O10 and its room temperature optical hole burning [J] J. Phys. Condens. Matter. 2006, 18, 1267-1274.
    [27] Alamo A, Bertin J.L, Shamardin V.K, Wident P. Mechanical properties of 9Cr martensitic steels and ODS-FeCr alloys after neutron irradiation at 325°C up to 42 dpa [J] J. Nucl. Mater. 2007, 367-370, 1, 54-59.
    [28] Tomokatsu H and Masayuki N. Electronic 4f-5d Structure and Persistent Spectral Hole Burning of Divalent Sm2+ Ions in Sol-Gel Derived Al2O3.SiO2 Glasses Photonics Based on Wavelength Integration and Manipulation, IPAP Books 2, 2005, 193.
    [29]Doo-Hee Cho, Kazuyuki Hiraoa, Katsuhisa Tanaka and Naohiro Saga.Acceleration of photochemical hole burning rate for Sm2+-doped borate glasses by X-ray irradiation [J] J. Lumin., 1996, 68, 171-178.
    [30] Park G., Hayakawa T and Nogami M. Formation of Sm2+ ions in femtosecond laser excited Al2O3-SiO2 glasses [J] J. Phys. Condens. Matter., 2003, 15, 1259-1265.
    [31] Nogami M. and Suzuki K. Formation of Sm2+ Ions and Spectral Hole Burning in X-Ray Irradiated Glasses [J] J. Phys. Chem. B., 2002, 106, 5395.
    [1]杨南如.无机非金属材料测试方法.汉川:武汉工业大学出版社. 2000.
    [2]张国栋.材料研究与测试方法.北京:冶金工业出版社. 2001.
    [3]朱和国.材料科学研究与测试方法.南京:东南大学出版社. 2008.
    [4]赖华生.彩色PDP用新型稀土荧光粉制备及发光特性研究.中国科学院研究生院. 2006.
    [5]方容川.固体光谱学.合肥:中国科学技术大学出版社,2001.
    [6]黄世华.激光光谱学原理和方法.长春:吉林大学出版社,2001.
    [7]黄彦林.钨酸铅晶体的发光性质和掺杂效应.上海:中国科学院上海硅酸盐研究所,博士论文. 2004.
    [1] Nogami M, Abe Y, Hirao K, Cho D.H. Room temperature persistent spectra hole burning in Sm2+-doped silicate glasses prepared by the sol-gel process [J] Appl. Phys. Lett., 1995, 66, 2952.
    [2] Nogami M, Hayakawa T. Persistent spectral hole burning of sol-gel-derived Eu3+ doped SiO2 glass [J] Phys. Rev. B., 1997, 56, 235-238.
    [3] Komatsu R., Kawano H., Oumaru Z, Shinoda K, Petrov V. Growth of transparentSrB4O7 single crystal and its new applications [J] J. Crystal Growth., 2005, 275, 843-847.
    [4] Parreu I, Sole′R, Gavalda` J, Massons J, Daz F, Aguilo M. Crystallization region, crystal growth, and phase transitions of KNd(PO3)4 [J] Chem. Mater., 2003, 15, 5059-5064.
    [5] Parreu J.J, Carvajal J, Solans X, D′az F, Aguilo M. Crystal Structure and OpticalCharacterization of Pure and Nd-Substituted Type III KGd(PO3)4 [J] Chem. Mater., 2006, 18, 1, 221-228.
    [6] Muller F.A, Muller L, Caillard D, Conforto E. Preferred growth orientation of biomimetic apatite crystals [J] J. Crystal Growth., 2007, 304, 464-471.
    [7] Yang C.-C, Chenand S.-Y, Liu D.-M. Phase characterization and tunable photoluminescence of Eu-doped strontium-substituted nanohalophosphate [J] J. Crystal Growth., 2006, 293, 113-117.
    [8] Vergeer P, Vlugt T.J.H, Kox M.H.F, Hertog M.I den, Van der Eerden J.P.J.M, Meijerink A. Quantum cutting by cooperative energy transfer in YbxY1-xPO4:Tb3+ [J] Phys. Rev. B., 2005, 71, 1, 014119.
    [9] Nakamura T, Takeyama T, Takahashi N, Jagannathan R, Karthikeyani A, Smith G.M, Riedi P.C. High-frequency EPR investigation of X-ray storage SrBPO5: Eu phosphor [J] J. Lumin., 2003, 102-103, 369-372.
    [10] Dexpert-Ghys J, Mauricot R, Faucher M.D. Spectroscopy of Eu3+ ions in monazite type lanthanide orthophosphates LnPO4, Ln = La or Eu [J] J. Lumin., 1996, 69, 203-215.
    [11]Justel T, Krupa J.C, Wiechert D.U. VUV spectroscopy of luminescent materials for plasma display panels and Xe discharge lamps [J] J. Lumin., 2001, 93, 179-189.
    [12]Khomyakov A P, Semenov Y I, Shumyatskaya N G, Timoshenkov I M, Laputina I P and Smolyaninova N N. Ce3+ ion doped olgite Na(Sr,Ba)PO4 [J] Miner. Obshch., 1980, 109, 347–351.
    [13]Sokolova E V, Yegorov-Tismenko Y K, Yamnova N and Simonov M A, Sov. Ce3+ ion doped olgite Na(Sr,Ba)PO4 [J] Phys. Crystal., 1984, 29, 1079-1083.
    [14]Moore P.B. Complex crystal structures related to glaserite, K3Na(SO4)2: evidence for very dense packings among oxysalts [J] Bull. Mineral., 1981, 104, 536-547.
    [15]Sokolova E V, Hawthorne F C, Khomyakov A P. Refinement of the crystal structure and revision of the chemical formula of olgite: (Ba,Sr)(Na,Sr,REE)2Na[PO4]2 [J] Can. Mineral., 2005, 43, 1521-1526
    [16]Van Sark W. G. J. H. M, Frederix P. L. T. M, Bol A. A, Gerritsen H. C and Meijerink A. Blueing, bleaching, and blinking of single CdSe/ZnS quantum dots [J]ChemPhysChem., 2002, 3, 871.
    [17]Koberling F, Kolb U, Philipp G, Potapova I, Basche T and Mews A. Fluorescence anisotropy and crystal structure of individual semiconductor nanocrystals [J] J. Phys. Chem. B., 2003, 107, 7463.
    [18]Gorller-Walrand C, Binnemans K. Rationalization of Crystal-Field Parametrization [A]. Jr Gschneidner K A, Eyring L. Handbook on the Physics and Chemistry of Rare-Earths [M] America: North-Holland, 1996.
    [19]He Z, Wang Y, Li S, Xu X. Dynamic studies on the time-resolved fluorescence of Sm2+ in BaCl2 [J] J. Lumin., 2002, 97, 102-106.
    [20]Hayakawa T, Nogami M. Electronic 4f-5d Structure and Persistent Spectral Hole Burning of Divalent Sm Ions in Sol-Gel derived Al2O3-SiO2 Glasses, Photonics Based on Wavelength Integration and Manipulation, IPAP Books., 2005, 2, 193.
    [21]You H, Hayakawa T, Nogami M, Optical properties and valence change of samarium ions in a sol–gel Al2O3–B2O3–SiO2 glass by femtosecond laser irradiation [J] J. Non-Cryst. Solids., 2006, 352, 2778-2782.
    [22]Crooker S. A, Barrick T, Hollingsworth J. A and Klimov V. I Multiple temperature regimes of radiative decay in CdSe nanocrystal quantum dots: Intrinsic limits to the dark-exciton lifetime [J] Appl. Phys. Lett., 2003, 82, 2793.
    [23]Fisher B. R, Eisler H. J, Stott N. E and Bawendi M. G. Emission intensity dependence and single-exponential behavior in single colloidal quantum dot fluorescence lifetimes [J] J. Phys. Chem. B., 2004, 108, 143
    [1] Lammers J.J., Verhaar H.C.G., Blasse G. Lumine scence of Ce3+ and Tb3+ in M3(PO4)2 (M = Sr,Ba) [J] Chem. Phys., 1986, 16, 63-66.
    [2] El Ammari L, El Koumiri M, Depmeier W, Hesse K.-F and Elouadi B. The crystal structure of the monophosphate KSrPO4 [J] Eur. J. Solid State Inorg. Chem., 1997,34, 563-569.
    [3] Elouadi B and El Ammari L. Crystal structure of the orthophosphate RbBaPO4 [J] Ferroelectrics., 1990, 107, 253-258.
    [4] Masse R and Durif A. Chemical preparation and crystal structure refinement of KBaPO4 monophosphate [J] J. Solid State Chem., 1987, 71, 574-576.
    [5] Waite M. S. Luminescence of Alkali-Alkaline Earth-Phosphates Activated with Eu2+ [J] J. Electmchem. Soc., 1974, 121, 1122-1123.
    [6] Poort S. H. M, Janssen W and Blasse G. Optical Properties of Eu2+-activated Orthosilicates and Orthophosphates [J] J. Alloys Compd., 1997, 260, 93-97.
    [7] Tang Y.-S, Hu S.-F, Lin C. C, Bagka N. Cr and Liu R.-S.Thermally stable luminescence of KSrPO4: Eu2+ phosphor for white light UV light-emitting diodes [J] Appl. Phys.Lett., 2007, 90, 151108.
    [8] Rubio O. J. Doubly-valent rare-earth ions in halide crystals [J] J. Phys. Chem. Solids., 1991, 52, 101.Spectroscopy of SrCl2: Sm2+ [J] Phys. Rev., 1963, 130, 945-952.
    [10] Dotsenko V. P, Radionov V. N and Voloshinovskii A. S. Luminescence of Sm2+ in strontium haloborates [J] Mater. Chem. Phys., 1998, 57, 134-137.
    [11] Zeng Q, Pei Z, Wang S, Su Q and Lu S. The luminescent properties of Sm2+ in strontium tetraborates (SrB4O7: Sm2+) [J] J. Phys. Chem. Solid., 1999, 60, 515-520.
    [12] Nogami M, Abe Y, Hirao K and Cho D. H. Room temperature persistent spectra hole burning in Sm2+-doped silicate glasses prepared by the sol-gel process [J] Appl. Phys. Lett., 1995, 66, 2952.
    [13] Mikhail P, Schnieper M, Bill H and Hulliger J. Optical Hole Burning on Sm2+ at 5 K in Czochralski Grown Sr2MgSi2O7: Sm Crystals [J] Phys. Status Solidi B., 1999, 215, 17.
    [14]Zeng Q, Kilah N, Riley M and Riesen H. Luminescence properties of Sm2+-activated barium hloroborates [J] J. Lumin., 2003, 104, 65-76.
    [15] He Z, Wang Y, Li S and Xu X. Dynamic studies on the time-resolved fluorescence of Sm2+ in BaCl2 [J] J. Lumin., 2002, 97, 102-106.
    [16] Ellens A, Zwaschka F, Kummer F, Meijerink A, Raukas M and Mishra K. Sm2+ in BAM: fluorescent probe for the number of luminescing sites of Eu2+ in BAM [J] J. Lumin., 2001, 93, 147-153.
    [17] Meijerink A and Dirksen G. J. Spectroscopy of divalent samarium in LiBaF3 [J] J. Lumin., 1995, 63, 189-201.
    [18] Yen W. M, Scott W. C and Schawlow A. L. Phonon-induced relaxation in excited optical states of trivalent praseodymium in LaF3 [J] Phys. Rev., 1964, 136, 1, 271-283.
    [19] Kushida T. Site-selective fluorescence spectroscopy of Eu3+ and Sm2+ ions in glass. [J] J. Lumin., 2002, 100, 73-88.
    [20] Motegi N and Shionoya S. Excitation migration among inhomogeneously broadened levels of Eu3+ ions [J] J. Lumin., 1973, 8, 1.
    [1] Parreu I, Sole′R, Gavalda` J, Massons J, D az F, Aguilo M. Crystallization region, crystal growth, and phase transitions of KNd(PO3)4 [J] Chem. Mater., 2003, 15, 5059-5064.
    [2] Parreu J.J, Carvajal J, Solans X, D′az F, Aguilo M. Crystal Structure and Optical Characterization of Pure and Nd-Substituted Type III KGd(PO3)4 [J] Chem. Mater., 2006, 18, 1, 221-228.
    [3] Muller F.A, Muller L, Caillard D, Conforto E. Preferred growth orientation of biomimetic apatite crystals [J] J. Crystal Growth., 2007, 304, 464-471.photoluminescence of Eu-doped strontium-substituted nanohalophosphate [J] J. Crystal Growth., 2006, 293, 113-117.
    [5] Lammers M J J, Verhaar H C G, Blasse G. Luminescence of Ce3+ and Tb3+ in M3(PO4)2(M=Sr, Ba) [J] Materials Chemistry and Physics, 1987, 16, 63-66.
    [6] Vergeer P, Vlugt T.J.H, Kox M.H.F, Hertog M.I. den, Eerden J.P.J.M. van der, Meijerink A. Quantum cutting by cooperative energy transfer in YbxY1-xPO4:Tb3+ [J] Phys. Rev. B., 2005, 71, 1, 014119.
    [7] Nakamura T, Takeyama T, Takahashi N, Jagannathan R, Karthikeyani A, Smith G.M, Riedi P.C. High-frequency EPR investigation of X-ray storage SrBPO5:Eu phosphor [J] J. Lumin., 2003, 102/103, 369-372.
    [8] Dexpert-Ghys J, Mauricot R, Faucher M.D. Spectroscopy of Eu3+ ions in monazite type lanthanide orthophosphates LnPO4, Ln = La or Eu [J] J. Lumin., 1996, 69, 203-215.
    [9] Justel T, Krupa J.C, Wiechert D.U. VUV spectroscopy of luminescent materials for plasma display panels and Xe discharge lamps [J] J. Lumin., 2001, 93, 179-189.
    [10] Yang J H, Gong J, Fan H G, et a1. Structure and luminescence characteristics of europium activated strontium silicates Sr(Eu,Bi)SiO3 and Sr(Eu,Bi)2SiO4 [J] Chemical Research in Chinese Universities, 2003, 19, 4, 450-453.
    [11] Wu C F, Qin W P, Qin G S, et al. Photolum inescence from surfactant assembled Y2O3: Eu nanotubes [J] Appl. Phys. Lett., 2003, 82, 4, 520-522.
    [12] Bihari B, Eilers H, Tissue B M. Spectra and dynamics of monoclinic Eu2O3 and Eu3+: Y2O3 nanocrystals [J] J. Lumin., 1997, 75, 1-10.
    [13] Sokolova E, Hawthorne F C, Khomyakov A P. Refinement of the crystal structure and revision of the chemical formula of olgite: (Ba,Sr)(Na,Sr,REE)2Na[PO4]2 [J]Can. Mineral., 2005, 43, 1521-1526.
    [14] Nyquist R A, Kagel R O. Infrared Spectra of Inorganic Compounds (3800-45cm-1) [M] New York: Academic Press, 1997, 4, 232.
    [15] Nejjar R, Rghioui L, Benarafa L, Knidiri M, Lorriaux A, Wallart F. Etude vibrationnelle des monophosphates SrM2(PO4)2 avec M=Co, Ni [J] Spectrochim.Acta, Part A: Molecular and Biomolecular Spectroscopy, 2002, 58, 2951-2960.
    [16] Vivekanandan K, Selvasekarapandian S, Kolandaivel P, Sebastian M T, Suma S. Raman and FT-IR spectroscopic characterisation of flux grown KTiOPO4 and KRbTiOPO4 non-linear optical crystals [J] Mater. Chem. Phys., 1997, 49, 204-210.
    [17] Frost R L, JiǐíC, Weier M. A Raman spectroscopic study of the uranyl phosphate mineral threadgoldite [J] Spectrochim. Acta, Part A: Molecular and Biomolecular Spectroscopy, 2006, 65, 797-801.
    [18]Gorller-Walrand C, Binnemans K. Rationalization of Crystal-Field Parametrization [A] Jr Gschneidner K A, Eyring L. Handbook on the Physics and Chemistry of Rare-Earths [M] Amsterdam: North-Holland, 1996.
    [19]Crooker S. A, Barrick T, Hollingsworth J. A and Klimov V. I. Multiple temperature regimes of radiative decay in CdSe nanocrystal quantum dots: Intrinsic limits to the dark-exciton lifetime [J] Appl. Phys. Lett. 2003, 82, 2793.
    [20] Fisher B. R, Eisler H. J, Stott N. E and Bawendi M. G. Emission intensity dependence and single-exponential behavior in single colloidal quantum dot fluorescence lifetimes [J] J. Phys. Chem. B, 2004, 108, 143

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700