微量水及羟基化有机锡的荧光传感设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在化学、生物学以及材料科学中,许多重要的作用过程都是在一个极其微观的系统中发生的。作为一种探索微观体系的重要工具,光学分子传感器可以将一些微妙的分子过程转换成可视化的信号,从而直观揭示微观系统中相关的化学或生物活动。由于荧光技术的无创、可实现在体实时监测的特点,在生命科学的高端研究领域具有无可替代的优点,荧光分子传感器不断受到重视和发展。在已有的分子传感设计经验的基础上,本文重点在传感机理方面进行创新,开展一些目前研究相对较少的环境及生理物种的荧光传感研究。本论文共分四章,分别包括以下内容:
     第一章为绪论。首先简要介绍了荧光分子传感的基本概念;随后,重点对有机溶剂中微量水分及毒性过渡金属的荧光传感研究的进展进行综述;最后,对这些相关研究进行分析总结,结合本实验室的实验条件和工作基础,提出本论文的研究设想。
     第二章为非质子性溶剂中微量水的荧光传感研究。本章中我们将一种特殊的荧光体——Pb_4Br_(11)~(3-)团簇用于非质子性溶剂中的荧光传感。Pb_4Br_(11)~(3-)团簇的发光对其周围的溶剂层的性质极为敏感,而其溶剂层的性质又与水分的存在密切相关。实验发现,随着体系中水分的增加,荧光团簇溶液的发光强度呈梯度下降并伴随着激发波长的蓝移,其Stokes位移值与水含量之间具有良好的线性关系。这种新颖的基于Stokes位移的“荧光尺”定量模式非常适用于非质子性有机溶剂中微量水的便捷分析。
     第三章为羟基化有机锡的荧光传感研究。本章介绍了一种可用于水溶液中羟基化有机锡的高选择性检测的荧光分子探针。在受体设计中,我们把邻羟基西夫碱和硼酸基团融合在一起,利用前者对有机锡的络合作用和后者对多羟基物种的强结合能力实现对目标物的协同识别。实验发现,在生理pH条件下,探针对羟基化有机锡有高选择性的荧光增强响应。据此,我们建立了首例羟基化金属的荧光分子传感器。
     第四章主要把本人硕士阶段未完成的工作——氨基酸的荧光手性识别研究的初探进行简单地介绍。
Many important processes concerned in chemistry,biology and material science usually occur in micro systems.As a strong tool for exploring these systems, fluorescent chemosensors(FCSs) convert the subtle molecular interactions or processes to visible signals,making the vivid output of the chemical or biological information in the explored systems available to the researchers.Fluorescence is highly applicable to advanced researches in life sciences since it is hurtless to organisms and can be measured in real time and/or real space.Therefore,FCS is attracting much current research interest.On the basis of our previous works concerning optical chemosensors,this dissertation is aimed at developing FCSs for some environmental and biological species important yet less reported.Meanwhile, novel sensing mechanisms are emphasized in our researches.This dissertation consists of four chapters summarized as follows:
     In chapter 1,a general introduction to FCSs was presented.Emphasis was paid on the developments of FCSs for micro water content in organic solvents and toxic transition metal cations.Based on the analysis of the relative literatures,the objective of this dissertation was proposed.
     In chapter 2,we described a novel fluorescent probe for micro water content in aprotic organic solvents based on Pb_4Br_(11)~(3-) clusters.The indicator fluorophore exists in a special local environment which is highly sensitive and accessible to water.A linear decrease of fluorescence intensity and synchronous blue shift of the excitation band were observed with increasing water content.Meanwhile,there was also a good linearity between the Stokes' shift value(SSV) and the water concentration. The new water-sensing mechanism and SSV-based signaling mode make the developed probe greatly suitable for applications in routine analytical processes.
     In chapter 3,a specific FCS for hydroxylated organotins(HOTs) was developed.A simple Schiff base fluorophore was found to show a highly selective fluorescence response to HOTs in aqueous solution.The new receptor nicely combines the binding character of an o-hydroxyl Schiff base for the transition metal and boronic acid for the vicinal diol.Addition of HOTs induced a sensitive fluorescence enhancement of the receptor at physiological pH.This is the first report of a fluorescent receptor for hydroxylated metal species.
     In chapter 4,some of the primary experiments on chiral recognition of amino acids with optical probes were summarized.
引文
[1] Oshovsk, G V., Reinhoudu, D. N., Verboom, W., Supramolecular Chemistry in water. Angew. Chem. Int. Ed., 2007, 46, 2366-2393.
    [2] Anlslyn, E. V., Supramolecular Analytical Chemistry. J. Org. Chem., 2007, 72,687-699.
    [3] Lehn, J. M. Supramolecular Chemistry. Wiley-VCH: Weinheinm, Germany,1995.
    [4] Elisabeth Bardez, Isabelle Devol, Bernadette Larrey, and Bernard Valeur.Excited-state processes in 8-hydroxyquinoline: Photoindced tautomerization and salvation effects. J. Phys. Chem. B., 1997, 101, 7786-7793.
    [5] Jun Soo Kim, Myung Gil Choi, Youn Huh, Mi Hee Kim, So Hee Kim, Se Yeon Wang, and Suk-Kyu Chang. Determination of water content in aprotic organic solvents using 8-hydroxyquinoline based fluorescent probe. Bull. Korean Chem. Soc,2006, 27, 12, 2058-2060.
    [6] Young-Hee Kim, Jin-Soo Youk, So Hee Kim, and Suk-Kyu Chang.Solvatochromic Fluorescence Behavior of 8-Aminoquinoline-Benzothiazole: A Sensitive Probe for Water Composition in Binary Aqueous Solutions. Bull. Korean Chem. Soc, 2005, 26, 1, 47-50.
    [7] Daniel Citterio,Katsuya Minamihashi,Yuka Kuniyoshi,Hideaki Hisamoto,Shin-ichi Sasaki,and Koji Suzuki. Optical Determination of Low-Level Water Concentrations in Organic Solvents Using Fluorescent Acridinyl Dyes and Dye-Immobilized Polymer Membranes. Anal. Chem., 2001, 73, 5339-5345.
    [8]Y. Jenkins, A.E. Friedman, N. J. Turro and J. K. Barton. Characterization of ipyridophenazine Complexes of Ruthenium (Ⅱ): The Light Switch Effect as a Function of Nucleic Acid Sequence and Conformation. Biochemistry, 1992, 31,10809-10816.
    [9]Qing Chang, Zakir Murtaza, Joseph R. Lakowicz, Govind Rao. A fluorescence lifetime-based solid sensor for water. Analytica Chimica Acta, 1997, 350, 97-104.
    [10]Susan J. Glenn, Brian M. Cullum, Rajesh B. Nair, Delana A. Nivens, Catherine J.Murphy, S. Michael Angel. Lifetime-based fiber-optic water sensor using a luminescent complex in a lithium-treated Nadion™ membrane. Analytic Chimica Acta., 2001,448,1-8.
    [11] Wanhui Liu,Ying Wang,Weijun Jin,Guoli Shena,Ruqin Yu. Solvatochromogenic flavone dyes for the detection of water in acetone. Analytica Chimica Acta, 1999,383, 299-307.
    [12] Mingshu Li, Gilbert E. Pacey. Spectrophotometric determination of trace water in organic solvents with a near infrared absorbing dye. Talanta, 1997, 44,1949-1958.
    [13] Myung Gil Choi, Mi Hee Kim, Hee Jung Kim, Ji-eun Park, and Suk-Kyu Chang.A simple rationmetric probe system for the determination of water content in organic solvents. Bull. Korean Chem. Soc, 2007, 28, 10, 1818-1820.
    [14] Sadakatsu Kumoi, Hiroshi Kobayashi and Keihei Ueno. Spectrophotometric determination of water in organic solvents with solvatochromic dyes. Talanta, 1972,19,505-513.
    [15] S. K. Dutta, M. W. Perkovic. Lead as its own luminescent sensor. Inorg.Chem.,2002,41,26,6938-6940.
    [16] Hideaki Hisamoto, Yukiko Manabe, Hiroko Yanai, Hajime Tohma, Toshiki Yamada, and Koji Suzuki. Molecular Design, Characterization, and Application of Multiinformation Dyes for Multidimensional Optical Chemical Sensings. 2.Preparation of the Optical Sensing Membranes for the Simultaneous Measurements of pH and Water Content in Organic Media. Anal. Chem., 1998, 70, 1255-1261.
    [16] D. W. Domaille, E. L. Que, C. J. Chang, Synthetic fluorescent sensors for studying the cell biology of metals. Nature Chem. Biol, 2008, 4, 168-175.
    [17] S. W. Thomas, G. D. Joly, T. M. Swager, Chemical Sensors Based on Amplifying Fluorescent Conjugated Polymers. Chem. Rev., 2007, 107, 1339-1386.
    [18] P.-J. Jiang, Z.-J. Guo, Fluorescent detection of zinc in biological systems: recent development on the design of chemosensors and biosensors. Coord. Chem. Rev., 2004, 248, 205-229.
    [19] K. Rurack, Flipping the light switch 'ON'-the design of sensor molecules that show cation-induced fluorescence enhancement with heavy and transition metal ions. Spectrochim. Acta Part A, 2001, 57, 2161-2195.
    [20] L. Prodi, F. Bolletta, M. Montalti, N. Zaccheroni, Luminescent chemosensors for transition metal ions. Coord. Chem. Rev., 2000, 205, 59-83.
    [21] B. Valeur, I. Leray, Coord. Design principles of fluorescent molecular sensors for cation recognition. Chem. Rev., 2000, 205, 3-40.
    [22] deSilva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Huxley, A. J. M; McCoy,C. P.; Rademacher, J. T.; Rice, T. E. Signaling Recognition Events with Fluorescent Sensors and Switches. Chem. Rev., 1997, 97, 1515-1566.
    [23] L. Fabbrizzi, M. Licchelli, P. Pallavicini, D. Sacchi, A. Taglietti, Sensing of transition metals through fluorescence quenching or enhancement. Analyst, 1996,121,1763.
    [24] Minh-Huong Ha-Thi, Mael Penhoat, V(?)eronique Michelet and Isabelle Leray,Highly selective and sensitive Hg~(2+) fluorescent sensors based on a phosphane sulfide derivative, Org. Biomol. Chem., 2009, 7, 1665-1673.
    [25] Moloy Sarkar, Sandip Banthia and Anunay Samanta, A highly selective 'off-on' luorescence chemosensor for Cr(Ⅲ), Tetrahedron Letters, 2006, 47, 7575-7578.
    [26] Emmanuel Roussakis, Spiros A. Pergantis and Haralambos E. Katerinopoulos,Coumarin-based ratiometric fluorescent indicators with high specificity for lead ions,Chem. Commun., 2008, 6221-6223.
    [27] Xu, Z.; Qian, X.; Cui, J.; Zhang, R. Exploiting the deprotonation mechanism for the design of ratiometric and colorimetric Zn2+ fluorescent chemosensor with a large red-shift in emission, Tetrahedron, 2006, 62, 43, 10117-10122.
    [28] Zhiguo Zhou, Mengxiao Yu, Hong Yang, Kewei Huang, Fuyou Li, Tao Yi, and Chunhui Huang, FRET-based sensor for imaging chromium(Ⅲ) in living cells, Chem.Commun., 2008, 3387-3389.
    [29] Bishnu Prasad Joshi, Junwon Park,Wan In Lee, Keun- Hyeung Lee, Ratiometric and turn-on monitoring for heavy and transition metal ions in aqueous solution with a fluorescent peptide sensor, Talanta, 2009, 78, 903-909.
    [30] A. Changela, K. Chen, Y. Xue, J. Holschen, C.E. Outten, T.V. O'Halloran, A.Mondragon, Molecular Basis of Metal-Ion Selectivity and Zeptomolar Sensitivity by CueR. Science, 2003, 301, 1383-1387.
    [31] G. Veglia, F. Porcelli, T. DeSilva, A. Prantner, S.J. Opella, The Structure of the Metal-Binding Motif GMTCAAC Is Similar in an 18-Residue Linear Peptide and the Mercury Binding Protein MerP. J. Am. Chem. Soc, 2000, 122, 23892390.
    [32] Y. Chen, R. Pasquinelli, M. Ataai, R.R. Koepsel, R.A. Kortes, R.E. Shepherd,Coordination of Two High-Affinity Hexamer Peptides to Copper(Ⅱ) and Palladium(Ⅱ) Models of the Peptide-Metal Chelation Site on IMAC Resins. Inorg.Chem., 2000, 39, 1180-1186.
    [33] P. Rousselot-Pailley, O. Seneque, C. Lebrun, S. Crouzy, D. Boturyn, P. Dumy,M. Ferrand, P. Delangle, Model Peptides Based on the Binding Loop of the Copper Metallochaperone Atxl: Selectivity of the Consensus Sequence MxCxxC for Metal Ions Hg(Ⅱ), Cu(Ⅰ), Cd(Ⅱ), Pb(Ⅱ), and Zn(Ⅱ). Inorg. Chem., 2006, 45, 5510.
    [34] G.B. Fields, R.L. Nobel, Int. J. Pept. Protein Res., 1990, 35.
    [35] Jun Soo Kim, Myung Gil Choi, Ki Cheol Song, Kyoung Tai No, Sangdoo Ahn,and Suk-Kyu Chang, Ratiometric Determination of Hg~(2+) Ions Based on Simple Molecular Motifs of Pyrene and Dioxaoctanediamide. Org. Lett., 2007, 9, 6,1129-1132.
    [36] Zhuo Wang, Deqing Zhang and Daoben Zhu, A sensitive and selective "turn on"fluorescent chemosensor for Hg(Ⅱ) ion based on a new pyrene-thymine dyad. Analytica ChimicaActa, 2005, 549, 10-13.
    [37] Ju Hee Kim, Ah-Ran Hwang and Suk-Kyu Chang, Hg~(2+)-selective fluoroionophore of p-tert-butylcalix[4]arenediaza-crown ether having pyrenylacetamide subunits. Tetrahedron Letters, 2004, 45, 7557-7561.
    [38] Pablo Wessig, Sylvia Czapla and Uwe Schedler, Fluorescence Switches Triggered by Metal Ions. Helvetica Chimica Acta, 2008, 91, 1166-1176.
    [39] Kazuhisa Fujimoto,~* Yu Muto, and Masahiko Inouye, A DNA Duplex-Based,Tailor-Made luorescent Sensor for Porphyrin Derivatives. Bioconjugate Chem., 2008, 19,1132-1134.
    [40]Su Ho Kim,Jung Kyu Choi,Sung Kuk Kim,Wonbo Simb and Jong Seung Kima,On/off fluorescence switch of a calix[4]arene by metal ion exchange.Tetrahedron Letters,2006,47,3737-3741.
    [41]Xiao-Liang Tang,Xiao-Hong Peng,Wei Dou,Jie Mao,Jiang-Rong Zheng,Wen-Wu Qin,Wei-Sheng Liu,Jin Chang,and Xiao-Jun Yao,Design of a Semirigid Molecule as a Selective Fluorescent Chemosensor for Recognition of Cd(Ⅱ).Organic Letters,2008,10,17,3653-3656.
    [42]Jie Mao,Lina Wang,Wei Dou,Xiaoliang Tang,Yong Yan,and Weisheng Liu,Tuning the Selectivity of Two Chemosensors to Fe(Ⅲ) and Cr(Ⅲ),Organic Letters,2007,9,22,4567-4570.
    [43]Kewei Huang,Hong Yang,Zhiguo Zhou,Mengxiao Yu,Fuyou Li,Xia Gao,Tao Yi,and Chunhui Huang,Multisignal Chemosensor for Cr~(3+) and Its Application in Bioimaging,Organic Letters,2008,10,12,2557-2560.
    [44]Hong Zheng,ZH Qian,L Xu,et al.,Switching the recognition preference of rhodamine B spirolactam by replacing one atom:design of rhodamine B thiohydrazide for recognition of Hg(Ⅱ) in aqueous solution.Organic Letters,2006,8,859-861.
    [45]XQ Zhang,ZH Qian,H Zheng,BY Su,et al.,Rhodamine thiospirolactone.Highly selective and sensitive reversible sensing of Hg(Ⅱ).Chem.Commun.,2008,16,1859-1861.
    [46]Weimin Liu,Liwei Xu,Ruilong Sheng,Pengfei Wang,Huaping Li,and Shikang Wu,A Water-Soluble "Switching On" Fluorescent Chemosensor of Selectivity to Cd~(2+).Organic Letters,2007,9,19,3829-3832.
    [47]S.K.Dutta and M.W.Perkovic.Lead as its own luminescent sensor.Inorg.Chem.,2002,41,26,6938-6940.
    [48]Xin Yang,Cheng-Gang Niu,Zhao-Jie Shang,Guo-Li Shen,Ru-Qin Yu,Optical-fiber sensor for determining water content in organic solvents.Sensors and Actuators B,2001,75,43-47.
    [49]席小朝,溶剂中微量水的卡尔—费休电化学分析.河南化工,2005,22,11,38-39.
    [50]K.Fischer,Neues Verfahren zur maβanalytischen Bestimmung des Wassergehaltes von Fl(?)ssigkeiten und festen K(?)rpern.Angew.Chem.,1935,48,394-396.
    [51]Yola Y.Liang,Automation of Karl Fischer water titration by flow injection sampling.Anal Chem.,1990,62,22,2504-2506.
    [52]Christina.Oraedd,Anders.Cedergren,Coulometric Study of Recovery Rates for Karl Fischer Titration of Water in Aldehydes and Ketones Using Rapidly Reacting Methanolic and 2-Methoxyethanolic Reagents.Anal.Chem.,1995,67,5,999-1004.
    [53]R.Oguchi,K.Yamaguchi and T.Shibamato,Determination of water content in common organic solvents by a gas chromatograph equipped with a megabore fused-silica column and a thermal conductivity detector.J.Chromatogr.Sci.,1988,26,588-590.
    [54]Nancy E.Fortier and James S.Fritz,Use of a post-column reaction and a spectrophotometric detector for the liquid chromatographic determination of water.Journal of Chromatography A,1989,462,323-332.
    [55]邓明,王宝珠.水分测定法[M].北京:高等教育出版社,1992.
    [56]A.R.Jones and D.A.Aikens.The nature of Pb(Ⅱ)-bromide complexes in propylene carbonate.Polyhedron,1982,1,2,169-174.
    [57]J.R.Lakowicz,Principles of Photoluminescence Spectroscopy,Kluwer Academic/Plenum Publishers,Dordrecht,2nd edn,1999.
    [58]许金钩,王尊本.荧光分析法(第三版).北京:科学出版社,2006.
    [59]C.Pellerito,L.Nagy,L.Pellerito and A.Szorcsik,Biological activity studies on organotin(Ⅳ)~(n+) complexes and parent compounds,J.Organomet.Chem.,2006,691,1733-1747.
    [60]V.C.Karpiak and C.L.Eyer,Differential gliotoxicity of organotins,Cell Biol.Toxicol.,1999,15,261
    [61]于立红,王孟雪,张有利,有机锡化合物对环境的污染及其毒性.黑龙江 农业科学,2008,2,91-92.
    [62]王永芳,有机锡化合物的污染及其毒性.中国食品卫生杂志,2003,15,3,224-227.
    [63]王珊珊,冯流,有机锡化合物的毒性效应及其影响因素.安全与环境学报,2005,5,3,12-15.
    [64]B.A.Buck-Koehntop,F.Porcelli,J.L.Lewin,C.J.Cramer and G.Veglia,Biological chemistry of organotin compounds:Interactions and dealkylation by dithiols.J.Organomet.Chem.,2006,691,1748.
    [65]S.K.Dubey and U.Roy,Biodegradation of tributyltins(organotins) by marine bacteria.Appl.Organomet.Chem.,2003,17,3-8.
    [66]M.Hoch,Organotin compounds in the environment.Appl.Geochem.,2001,16,719-743.
    [67]L.Pellerito and L.Organotin(Ⅳ)~(n+) complexes formed with biologically active ligands:equilibrium and structural studies,and some biological aspects.Coord,Chem.Rev.,2002,224,111.
    [68]M.Nath,S.Pokharia and R.Yadav,Nagy,Organotin(Ⅳ) complexes of amino acids and peptides.Coord,Chem.Rev.,2001,215,99.
    [69]迟杰,黄国兰,环境中有机锡化合物形态分析方法进展.环境科学进展,1999,7,2,31-39.
    [70]赵孔祥,卓黎阳,有机锡分析方法研究进展,国外医学卫生学分册,2005,32,5,299-305.
    [71]江桂斌,徐福正等,有机锡化合物测定方法研究进展.海洋环境科学,1999,18,3,61-68
    [72]H.Yin,J.Cui and Y.Qiao,The first 1D tetranuclear organotin(Ⅳ) complex with NO-acylsalicylhydrazide:Synthesis,characterization and crystal structure.Inorg.Chem.Commun.,2008,11,684-686.
    [73]T.S.B.Baul,C.Masharing,G.Ruisi,R.Jir(?)sko,M.Hol(?)apek,D.de Vos,D.Wolstenholme and A.Linden,Self-assembly of extended Schiff base amino acetate skeletons,2-{[(2Z)-(3-hydroxy-1-methyl-2-butenylidene)]amino}phenylpropionate and 2-{[(E)-1-(2-hydroxyaryl)alkylidene]amino}phenylpropionate skeletons incorporating organotin(Ⅳ) moieties:Synthesis,spectroscopic characterization,crystal structures,and in vitro cytotoxic activity.J.Organomet.Chem.,2007,692,4849-4862.
    [74]M.Celebier,E.Sahin,N.Ancm,N.A.(?)ztas and S.G.(?)ztas,Synthesis and characterization of diorganotin(Ⅳ) complexes of Schiff bases with ONO-type donors and crystal structure of [N-(2-hydroxy-4-nitrophenyl)-3-ethoxysalicylideneiminato]diphenyltin(Ⅳ).Appl.Organomet.Chem.,2007,21,913-918.
    [75]B.Samanta,J.Chakraborty.D.K.Dey.V.Gramlich and S.Mitra,Synthesis,characterisation and structural aspects of a new diorganotin(Ⅳ) complex with N-(5-bromo-2-hydroxybenzylidene) benzoylhydrazone ligand.Struct.Chem.,2007,18,287-293.
    [76]J.M.Rivera,D.Guzm(?)n,M.Rodriguez,J.F.Lam(?)re,K.Nakatani,R.Santillan,P.G.Lacroix and N.Farf(?)n,Synthesis,characterization and nonlinear optical properties in a series of new chiral organotin(Ⅳ) Schiff base complexes.J.rganomet.Chem.,2006,691,1722-1732.
    [77]G.J.Mohr,New chromogenic and fluorogenic reagents and sensors for neutral and ionic analytes based on covalent bond formation-a review of recent evelopments.Anal.Bioanal.Chem.,2006,386,1201-1214.
    [78]J.P.Lorand and J.Edwards,Polyol complexes and structure of the benzeneboronate ion.J.Org.Chem.,1959,24,769-774.
    [79]H.Cao and M.D.Heagy,Fluorescent chemosensors for carbohydrates:A decade's worth of bright spies for saccharides in review.J.Fluoresc.,2004,14,569-584.
    [80]Jia-Sheng Wu,Wei-Min Liu,Xiao-Qing Zhuang,Fang Wang,Peng-Fei Wang,Si-Lu Tao,Xiao-Hong Zhang,Shi-Kang Wu,and Shuit-Tong Lee,luorescence Turn On of Coumarin Derivatives by Metal Cations:A New Signaling Mechanism Based on C=N Isomerization.Org.Lett.,2007,9,33-36.
    [81]G.-Q.Yang,F.Morlet-Savary,Z.-K.Peng,S.-K.Wu and J.P.Fouassier,Triplet-triplet absorption of 2-(2'-hydroxyphenyl) benzoxazole(HBO) in polar solvents. Chem. Phys. Lett., 1996, 256, 536-542.
    [82] Masayuki Matsushita, Michael M. Meijler, Peter Wirsching, Richard A. Lerner,and Kim D.Janda, A Blue Fluorescent Antibody-Cofactor Sensor for Mercury.Org.Lett., 2005, 7, 22, 4943-4946.
    [83] Jianzhang Zhao, Matthew G. Davidson, Mary F. Mahon, Gabriele Kociok-Khn,and Tony D. James, An Enantioselective Fluorescent Sensor for Sugar Acids. J. AM.CHEM. SOC.,2004, 126, 16179-16186.
    [84] Stephan M. Levonis, Milton J. Kiefel and Todd A. Houston~*, Boronolectin with divergent fluorescent response specific for free sialic acid. Chem. Commun., 2009,2278-2280.
    [85] Jianzhang Zhao, Thomas M. Fyles, and Tony D. James~*, Chiral Binol-Bisboronic Acid as Fluorescence Sensor for Sugar Acids. Angew. Chem. Int.Ed, 2004, 43, 3461 -3464.
    [86] Zi-Bo Li, Jing Lin, and Lin Pu~*, A Cyclohexyl-1,2-diamine-Derived Bis(binaphthyl) Macrocycle: Enhanced Sensitivity and Enantioselectivity in the Fluorescent Recognition of Mandelic Acid. Angew. Chem. Int. Ed., 2005, 44, 1690-1693.
    [87] Wing-Leung Wong, Ka-Hung Huang, Pang-Fei Teng, Chi-Sing Lee and Hoi-Lun Kwong~*, A novel chiral terpyridine macrocycle as a fluorescent sensor for enantioselective recognition of amino acid derivatives. Chem.Commun., 2004, 384 -385.
    [88] Christian Wolf,~*Shuanglong Liu and Brian C. Reinhardt, An enantioselective fluorescence sensing assay for quantitative analysis of chiral carboxylic acids and amino acid derivatives. Chem. Commun., 2006, 4242-4244.
    [89] Shuanglong Liu, John Paul C. Pestano, and Christian Wolf~*, Enantioselective Fluorescence Sensing of Chiral r-Amino Alcohols. J. Org. Chem., 2008, 73,4267-4270.
    [90] J. Frantz Folmer-Andersen, Vincent M. Lynch, and Eric V. Anslyn~*,Colorimetric Enantiodiscrimination of r-Amino Acids in Protic Media. J. AM.CHEM. SOC, 2005, 127, 7986-7987.
    [91] J. Frantz Folmer-Andersen, Masanori Kitamura, and Eric V. Anslyn~*,Pattern-Based Discrimination of Enantiomeric and Structurally Similar Amino Acids:An Optical Mimic of the Mammalian Taste Response. J. AM. CHEM. SOC, 2006,128, 5652-5653.
    [92] Xuefeng Mei and Christian Wolf~*, Determination of Enantiomeric Excess and Concentration of Unprotected Amino Acids, Amines, Amino Alcohols, and Carboxylic Acids by Competitive Binding Assays with a Chiral Scandium Complex.J. AM. CHEM. SOC, 2006, 128, 13326-13327.
    [93] Diana Leung, J. Frantz Folmer-Andersen, Vincent M. Lynch, and Eric V.Anslyn~*, Using Enantioselective Indicator Displacement Assays To Determine the Enantiomeric Excess of r-Amino Acids. J. AM. CHEM. SOC, 2008, 130,12318-12327.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700