电磁弹耦合材料的断裂问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电磁弹耦合材料作为一种新型的智能材料,其应用范围涉及航天航空、精密制造、电子封装、核电设备等各个领域,电磁弹耦合材料的压电性能、压磁性能以及电磁耦合性能也日益受到广大学者的重视。本文从经典断裂理论和非局部理论两个方面对电磁弹耦合材料的断裂问题进行了分析研究,得到了一些具有重要实用价值的结论。
     第一章分析评述了电磁弹耦合材料断裂问题研究现状和存在的问题,根据相关研究现状和存在问题,确立了本文要研究的内容。
     第二章求解了功能梯度电磁弹性材料的多个非对称裂纹反平面断裂静态问题以及共线界面裂纹的反平面动态问题。利用裂纹上下面的位移间断函数和Fourier变换将断裂问题转化为成对的对偶积分方程的求解,再通过Jacobi多项式将位移间断函数展开,进而采用Schmidt方法求解,求得了裂纹附近应力场、电位移场和磁感应强度场的表达式以及裂纹尖端的应力强度因子、电位移强度因子和磁感应强度因子的数学表达式,给出了裂纹个数、裂纹长短、裂纹分布情况、材料属性变化情况、载荷类型等因素对于材料断裂特性的影响规律,结果表明裂纹的分布情况,材料的梯度参数等对材料的断裂特性的影响是明显的。
     第三章研究了具有限制性电场和磁场导通性裂纹边界条件下多裂纹相互作用的平面断裂问题。首先利用广义Almansi理论给出本问题的基本解,进而将问题的求解转化为对偶积分方程的求解,随后利用Schmidt方法对此对偶积分方程进行求解,求得了有限导通电磁边界条件下多裂纹间相互作用的问题,进而得到了裂纹尖端的应力、电位移和磁感应强度因子的数学表达式,首次给出了裂纹内部介质的介电常数和磁导率对电磁弹耦合材料中裂纹断裂特性的影响规律,结果表明裂纹内部介质的介电常数和磁导率等对裂纹尖端附近电场、磁场的影响是明显的,而对应力场影响却很小。
     第四章在考虑了裂纹内部介质介电常数和磁导率的情况下,利用广义Almansi理论求得了电磁弹性材料中矩形裂纹的基本解,给出了裂纹内部介质的介电常数、磁导率、裂纹间距离以及裂纹的几何形状对电磁弹耦合材料中矩形裂纹断裂特性的影响规律,给出了矩形裂纹的薄弱位置。
     第五章首次把非局部理论推广应用到电磁弹耦合材料和功能梯度材料的断裂性能分析当中,克服了以往求解此类问题时遇到的数学问题,经过复杂的数学推导,最终将断裂问题转化为对偶积分方程的求解,与经典断裂理论所得的解相比,本文所得的非局部理论解中的应力场、电位移场和磁感应强度场在裂纹尖端处没有奇异性,而是一个具有明确物理意义的有限值,从而可以采用这一有限值来预测裂纹是否达到破坏的条件,同时也给出了裂纹内部介质的介电常数和磁导率对电磁弹性材料中裂纹尖端附近非奇异应力、电位移和磁感应强度场的影响规律。
     本文关于电磁弹耦合材料断裂性能的研究,对其设计、生产和安全使用具有重要参考价值。
The megnetoelectroelastic composite material, as a kind of intelligent materials, which has been used in aeronautics/astronautics, precision manufacturing, electric packaging, nuclear equipment, and so on, attracts extensive attention of many researchers due to its properties of piezoelectric effect, piezomagnetic effect and coupled effect of magneto-electric. The fracture problem of megnetoelectroelastic materials was investigated in this article using the classical theory or the non-local theory. Some useful conclusions were achieved in analyzing the fracture mechanism of megnetoelectroelastic materials.
     In chapter one, the research and problem about the fracture of megnetoelectroelastic composite materials are reviewed, the main research contents of this article were confirmed according to these comments.
     In chapter two, the anti-plane static fracture problems of non-symmetrical multi-cracks and the anti-plane dynamic fracture problems of collinear cracks were solved in functionally graded megnetoelectroelastic composite materials. The problems were formulated through Fourier transform into dual integral equations, in which the unknown variables are the jumps of displacements across the crack surfaces. To solve the dual integral equations, the Schmidt method was used. Then the expressions of the full field stress, electric displacement, magnetic induction, the stress intensity factor, the electric displacement intensity factor and the magnetic induction intensity factor were obtained. The numerical results reveal the effects of the number, length and distributing of cracks, the changing of material properties and the loading of kind on the fracture characteristics of magnetoelectroelastic material. And it can be concluded that the material gradient parameter has obvious effects on the fracture characteristics of magnetoelectroelastic material.
     In chapter three, the multiple mode-I cracks fracture problems were studied with the electromagnetic limited-permeable boundary conditions. The basic solution of multiple mode-I crack problem was formulated by using general Almansi theory. Then this problem was translated into the dual integral equations which could be solved using the Schmidt method. Finally, the stress intensity factors, electric displacement intensity factors and magnetic induction intensity factors at the crack tips were achieved. The effects of the dielectric permittivities and magnetic permeabilities of the medium inside cracks on fracture characteristics of cracks were drawn. It can be found that the dielectric permittivities and magnetic permeabilities of the medium inside cracks have clear impact on electric and magnetic fields near the crack tips.
     In chapter four, considering the dielectric permittivities and magnetic permeabilities of the medium inside cracks, the basic solutions of the rectangular cracks in megnetoelectroelastic composite material were derived in three-dimension using general Almansi theory. As a result, the effects of the dielectric permittivities and magnetic permeabilities of the medium inside cracks, the distance between two rectangular cracks and the rectangular geometry of cracks were summarized on fracture characteristics of rectangular cracks in magnetoelectroelastic composite material. And the weak parts of the rectangular crack were given.
     In chapter five, the non-local theory was firstly employed to study the fracture problem of megnetoelectroelastic material or functionally graded material. The mathematical difficult encountered in similar problems in previous literature were conquered by transforming the fracture problems into the dual integral equations. Different from the classical solutions, that the present non-local theory solution exhibits no stress, electric displacement and magnetic flux singularities at the crack tips in a magnetoelectroelastic media. The finite value of the stress fields at the crack tips exhibits the clear physical meaning, which make it possible using maximum stress criterion to predict the destroy condition of crack. At the same time, the rules of the effects of the dielectric permittivities and magnetic permeabilities of the medium inside cracks on fracture characteristics of cracks were given.
     In this article, the investigation on fracture characteristics of megnetoelectroelastic composite material is very important to designing, manufacture and application of megnetoelectroelastic composite material.
引文
1 J. Ahola, T. Liedes, P. Kroneld, K. Nevala. On Magnetic Shape Memory Alloy Actuator Characteristics. Journal of Vibroengineering. 2009, 11(3): 443-449.
    2 N. Tajima, T. Sakurai, M. Sasajima, N. Takeda, T. Kishi. Overview of Demonstrator Program of Japanese Smart Materials and Structures System Project. Smart Structures and Materials 2003: Industrial and Commercial Applications of Smart Structures Technologies, Proceedings of the Society of Photo-optical Instrumentation Engineers (SPIE). 2003, 5054: 165-174.
    3 R. Dapkus. Combined Piezoelectrical-Magnetostrictive Transducers for the Express Diagnostic of Mechanical Properties of Materials. Proceedings of the 6th International Conference Vibroengineering. 2006: 109-115.
    4 J. Van Suchtelen. Product Properties: a New Application of Composite Materials. Phillips Research Reports. 1972, 27: 28-37.
    5 P.M. Davis. Computed Piezomagnetic Anomaly Field for Kilauea-Volcano. Hawaii, J. Geomagn. Geoelectr. 1976, 28: 113-122.
    6 P.M. Davis. Piezomagnetic Computation of Magnetic-Anomalies due to Ground Loading by a Man-Made Lake. Pure Appl. Geophys.. 1974, 112: 811-819.
    7 M. Tinkham. Electromagnetic Properties of Superconductors. Review Modern Physics. 1974, 46: 587-596.
    8 J. Vandenboomgaard, A.M.J.G. Vanrun, J. Vansuchtelen. Magnetoelectricity in Piezoelectric-Magnetostrictive Composites. Ferroelectrics. 1976, 10: 295-298.
    9 J. Vandenboomgaard, A.M.J.G. Vanrun, J. Vansuchtelen. Piezoelectric -Piezomagnetic Composites with Magnetoelectric Effect. Ferroelectrics. 1976, 14: 727-728.
    10 C.J. Vanderhoeven, B.P.J. Vanoorschot, P. Meffert. Distortion of Piezoelectric Transducers. Journal of Physics E–Scientific Instruments. 1976, 9: 1053-1054.
    11 N.F. Jordan, A.C. Eringen. On the Static Nonlinear Theory of Electromagnetic Thermoelastic Solids-I. International Journal of Engineering Science. 1964, 2: 59-95.
    12 N.F. Jordan, A.C. Eringen. On the Static Nonlinear Theory of Electromagnetic Thermoelastic Solids-II. International Journal of Engineering Science. 1964, 2: 97-114.
    13 A.M.J.G. Vanrun, D.R. Terrell, J.H. Scholing. An in Situ Grown Eutectic Magnetoelectric Composite material. Journal of Materials Science. 1974, 9: 1710-1714.
    14 C.W. Nan. Magnetoelectric Effect in Composites of Piezoelectric and Piezomagnetic Phases. Physical Review B. 1994, B50: 6082-6088.
    15 Z.R. Chen, S.W. Yu, L. Meng, et al.. Effective Properties of Layered Magneto-Electro-Elastic Composites. Composite Structures. 2002, 57: 177-182.
    16 H. Zheng, J. Wang, S.E. Lofland, et al.. Multiferroic BaTiO3-CoFe2O4 Nanostructures. Science. 2004, 303: 661-663.
    17聂军武,徐国跃,蒋楠.晶粒可控BaTiO3-CoFe2O4磁电复合陶瓷制备及生长机制研究.功能材料. 2007, 38(2): 252-255.
    18 J. Lee, J.G. IV. Boyd, D.C. Lagoudas. Effective Properties of Three-Phase Electro-Magneto-Elastic Composites. International Journal of Engineering Science. 2005, 43:790-825.
    19 J.Y. Li, Srinivas, Y.C. Zhou, A.K. Soh. The Effective Magnetoelectroelastic Moduli of Matrix-Based Multiferroic Composites. Journal of Applied Physics. 2006, 99:1-7.
    20 S.X. Dong, J.F. Li, D. Viehland. Longitudinal and Transverse Magnetoelectric Voltage Coefficients of Magnetostrictive Piezoelectric Laminate Composite: Theory. IEEE Transactions On Ultrasonics, Ferroelectrics, and Frequency Control. 2003, 50(10):1253-1261.
    21 L.P.M. Bracke, R.G. Van Vliet. A Broadband Magneto-Electric Transducer Using a Composite Material. International Journal of Electronics. 1981, 51: 255-262.
    22 G. Harshe, J.P. Dougherty, R.E. Nwenham. Theoretical Modeling of 3-0/0-3 Magneto-Electric Composites. International Journal of Applied Electromagnetics in Materials. 1993, 4(2):161-171.
    23 S.X. Dong, J.Y. Zhai, J.F. Li, D. Viehland. Near-Ideal Magnetoelectricity in Highpermeability Magnetostrictive/Piexofiber Lamimates with a(2-1) Connectivity. Applied Physics Letters. 2006, 89:252904.
    24 S.X. Dong, J.Y. Zhai, J.F. Li, D. Viehland. Magnetoelectric Gyration Effect in Tb1-xDyxFe2-y/Pb(Zr,Ti)O3 Laminated Composites at the Electromechanical Resonance. Applied Physics Letters. 2006, 89:243512.
    25杨卫.力电失效学.北京:清华大学出版社. 2001.
    26王保林.压电材料及其结构的断裂力学.北京:国防工业出版社. 2003.
    27李显方.压电材料的断裂分析(博士后出站报告).长沙:国防科学技术大学. 2004.
    28 J. Chen, Z.X. Liu. On the Dynamic Behavior of a Functionally Graded Piezoelectric Strip with Periodic Cracks Vertical to the Boundary. International Journal of Solids and Structures. 2005, 42: 3133-3146.
    29 B.L. Wang, J.C. Han. Multiple Surface Cracks in a Piezoelectric Layer Bonded toan Elastic Substrate under Transient Electromechanical Loads. Mechanics of Materials. 2007, 39: 291-304.
    30 SQ. Ren, M. Laver, M. Wuttig. Nanolamellar Magnetoelectric BaTiO3-CoFe2O4 Bicrystal. Applied Physics Letters. 2009, 95(15): 154504.
    31 T.J.C. Liu, C.H. Chue. On the Singularities in a Bimaterial Magneto-Electro- Elastic Composite Wedge under Antiplane Deformation. Composite Structures. 2006, 72: 254-265.
    32 J. Echigoya, S. Hayashi, Y. Obi. Directional Solidification and Interface Structure of BaTiO3-CoFe2O4 Eutectic. Journal of Materials Science. 2000, 35(22): 5587-5591.
    33 J. Van Suchtelen. Product Properties: A New Application of Composite Materials. Philips Research Raports. 1972, 27: 28.
    34 J. Ryu, A. V. Carazo, K. Uchino, H. E. Kim. Piezoelectric and Magnetoelectric Properties of Lead Zirconate TitanatePNi-Ferrite Particulate Composites. Journal of Electroceramics. 2001, 7: 17.
    35 Y. Dai, P. Bao, J.S. Zhu, J.G. Wan, H.M. Shen, J.M. Liu. Internal Friction Study on CuFe2O4/PbZr0.53 Ti0.47O3 Composites. Applied Physics Letters. 2004, 96(10): 5687.
    36 K.K. Patankar, V.L. Mathe, R.P. Mahajan, S.A. Patil, R.M. Reddy, K.V. Siva Kumar. Dielectric Behavior and Magnetoelectric Effect in CuFe2O4- Ba0.8Pb0.2TiO3 Composites. Materials Chemistry and Physics. 2001, 72: 23.
    37 G.V. Duong, R. Groessinger. Effect of Preparation Conditions on Magnetoelectric Properties of CoFe2O4-BaTiO3 Magnetoelectric Composites. Journal of Magnetism and Magnetic Materials. 2007, 316: 624.
    38 M. Kiyotake, W. Manfred. Magnetoelectric Coupling in Terfenol-DP Ppolyvinylidenedifluoride Composites. Applied Physics Letters. 2002,81(1):100.
    39 C.W. Nan, L. Liu, N. Cai, J. Zhai, Y. Ye, Y.H. Lin, L.J. Dong, C.X. Xiong. A Three-Phase Magnetoelectric Composite of Piezoelectric Ceramics, Rare-Earth Iron Alloys , and Polymer. Applied Physics Letters. 2002, 81(20): 3831.
    40 C.W. Nan, M. Li, X.Q. Feng, S.W. Yu. Possible Giant Magnetoelectric Effect of Ferromagnetic Rare-Earth-Iron-Alloys-Filled Ferroelectric Polymers. Applied Physics Letters. 2001, 78(17): 2527.
    41 N. Cai, Y. Zhao, X.H. Geng, S. Or. Dynamic Magnetoelectric Effect in Polymer-Based Laminate Composite. Journal of Alloys and Compounds. 2007, 16298: 7.
    42 J. Ryu, A. V. Carazo, K. Uchino, H.E. Kim. Magnetoelectric Properties in Piezoelectric and Magnetostrictive Laminate Composites. Japanese JournalApplied Physics. 2001, 40(1-8): 4948.
    43 J. Pyu, S. Priya, A. V. Carazo, K. Uchino, H. E. Kim. Effect of the Magnetostrictive Layer on Magnetoelectric Properties in Lead Zir-Conate. Journal of the American Ceramic Society. 2001, 84: 2905.
    44 K. Zhao, Y.R. Dai, J.G. Wan, Z.F. Zhang, J.S. Zhu. The Study of Magnetic Field-Induced Strain of Ni2MnGaPPb(Zr0.52 Ti0.48)O3 Composite. Materials Science and Engineering: A. 2006, 438:1019.
    45 Y.M. Jia, S. W. Or, J. Wang, H. L. W. Chan, X.Y. Zhao, H.S. Luo. High Magnetoelectric Effect in Laminated Composites of Giant Magnetostrictive Alloy and Lead-Free Piezoelectric Ceramic. Journal of Applied Physics. 2007, 101(10): 104103.
    46王茂祥,孙平.磁控溅射制备PST薄膜的介电与铁电性能.真空科学与技术学报. 2006, 6: 522-525.
    47孙平,王茂祥,孙彤,舒庆.磁控溅射制备(Pb_(1-x)Sr_x)TiO_3系铁电薄膜的实验研究. 2001, 4: 70-72.
    48 K. Ueda, H. Tabata, T. Kawai. Coexistence of Ferroelectricity and Ferromagnetism in BiFeO3-BaTiO3 Thin Films at Room Temperature. Applied Physics Letters. 1999, 75(4): 555.
    49 Mikhailov, G.K., Parton, V.S., 1990. Electromagnetoelasticity. Hemisphere, New York.
    50 H.L. Dai, X. Wang. Magneto-Thermo-Electro-Elastic Transient Response in a Piezoelectric Hollow Cylinder Ssubjected to Complex Loadings. International Journal of Solids and Structures. 2006,43: 5628-5646.
    51 X. Wang, Y.P. Shen. The General Solution of Three-Dimensional Problems in Magnetoelectroelastic Media. International Journal of Engineering Science. 2002, 40: 1069-1080.
    52 M. Avellaneda, G. Harshe. Magnetoelectric Effect in Piezoelectric/ Magnetostrictive Multiplayer (2-2) Composites. Journal of Intelligent Material Systems and Structures. 1994, 5: 501-513.
    53 T.L. Wu, J.H. Huang. Closed-Form Solutions for the Magnetoelectric Coupling Coefficients in Fibrous Composites with Piezoelectric and Piezomagnetic Phases. International Journal of Solids and Structures. 2000, 37: 2981-3009.
    54 P. Tan, L.Y. Tong. Modeling for the Electro-Magneto-Thermo-Elastic Properties of Piezoelectric-Magnetic Fiber Reinforced Composites. Composites Part A-Applied Science and Manufacturing. 2002,33: 631-645.
    55 G. Liu, C.W. Nan, J. Sun. Coupling Interaction in Nanostructured Piezoelectric/Magnetostrictive Multiferroic Complex Films. ACTA Materialia.2006, 54: 917-925.
    56 B.L. Wang, Y.W. Mai. Crack Tip Field in Piezoelectric/Piezomagnetic Media. European Journal of Mechanics A/Solid. 2003, 22(4): 591-602.
    57 Z.G. Zhou, L.Z. Wu, B. Wang. A Closed Form Solution of a Crack in Magneto-Electro-Elastic Composites under Anti-Plane Shearstress Loading. JSME International Journal Series A-Solid Mechanics and Material Engineering. 2005, 48: 151-154.
    58 Z.G. Zhou, B. Wang. Two Parallel Symmetry Permeable Cracks in Functionally Graded Piezoelectric/Piezomagnetic Materials under Anti-Plane Shear Loading. International Journal of Solids and Structures. 2004, 41:4407-4422.
    59 K.Q. Hu, G.Q. Li. Constant Moving Crack in a Magnetoelectroelastic Material under Anti-Plane Shear Loading. International Journal of Solids and Structures. 2005, 42: 2823-2835.
    60 K.Q. Hu, G.Q. Li. Electro-Magneto-Elastic Analysis of a Piezoelectromagnetic Strip with a Finite Crack under Longitudinal Shear. Mechanics of Materials. 2005, 37: 925-934.
    61 X.F. Li. Dynamic Analysis of a Cracked Magnetoelectroelastic Medium under Anti-Plane Mechanical and In-Plane Electric and Magnetic Impacts. International Journal of Solids and Structures. 2005, 42: 3185-3205.
    62 T.Y. Zhang, P. Tong. Fracture Mechanics for a Mode III Crack in a Piezoelectric Material. International Journal of Solids and Structures. 1996, 33: 343-359.
    63 R. Li, G.A. Kardomateas. The Mode III Interface Crack in Piezo-Electro-Magneto-Elastic Dissimilar Bimaterials. TASME - Journal of Applied Mechanics. 2006, 73: 220-227.
    64 T.Y. Zhang, J.E. Hack. Mode-III Cracks in Piezoelectric Materials. Journal of Applied Physics. 1992, 71 (12):5865-5870.
    65 Z.H. Tong, C.P. Jiang, S.H. Lo. Y.K. Cheung. A Closed Form Solution to the Antiplane Problem of Doubly Periodic Cracks of Unequal Size in Piezoelectric Materials. Mechanics of Materials. 2006, 38: 269-286.
    66 Z.G. Zhou, J.C. Han, S.Y. Du. Investigation of a Griffith Crack Subject to Anti-Plane Shear by Using the Non-Local Theory. International Journal of Solids and Structures. 1999, 36(26): 3891-3901.
    67 R. Li, G.A. Kardomateas. The Mode III Interface Crack in Piezo-Electro-Magneto-Elastic Dissimilar Bimaterials. TASME - Journal of Applied Mechanics. 2006, 73: 220-227.
    68 B.L. Wang, Y.W. Mai. Closed-Form Solution for an Antiplane Interface Crack Between Two Dissimilar Magnetoelectroelastic Layers. TASME - Journal ofApplied Mechanics. 2006, 73: 281-290.
    69 C.H. Chue, T.J.C. Liu. Magneto-Electro-Elastic Antiplane Analysis of a Bimaterial BaTiO3-CoFe2O4 Composite Wedge with an Interface Crack. Theoretical and Applied Fracture Mechanics. 2005, 44: 275-296.
    70 A.K. Soh, J.X. Liu. Mode III Interfacial Edge Crack in a Magnetoelectroelastic Biomaterial. Key Engineering Materials. 2004,(261-263): 393-398.
    71 K.Q. Hu, Y.L. Kang, G.Q. Li. Moving Crack at the Interface Between Two Dissimilar Magnetoelectroelastic Materials. ACTA Mechanica. 2006, 182: 1-16.
    72 Z.G.. Zhou, B. Wang, Y.G. Sun. Two Collinear Interface Crack in Magneto-Electro-Elastic Composite. International Journal of Engineering Science. 2004, 42: 1155-1167.
    73周振功,王彪.压电压磁材料中界面裂纹对弹性波的散射.应用数学与力学. 2005, 6: 17-26.
    74 J.L. Sun, Z.G. Zhou, B. Wang. Dynamic Behavior of Unequal Parallel Permeable Interface Multi-Cracks in a Piezoelectric Layer Bonded to Two Piezoelectric Materials Half Planes. European Journal of Mechanics A/Solids. 2004, 23(6): 993-1005.
    75 W.J. Feng, R.K.L. Su. Dynamic Internal Crack Problem of a Functionally Graded Magneto-Electro-Elastic Strip. International Journal of Solids and Structures. 2006, 43: 5196-5216.
    76 Z.G. Zhou, B. Wang. The Scattering of the Harmonic Anti-Plane Shear Stress Waves by Two Collinear Interface Cracks Between Two Dissimilar Functionally Graded Piezoelectric/Pezomagnetic Material Half-Infinite Planes Dynamic Loading. Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science. 2006, 220: 137-148.
    77 Z.G. Zhou, B. Wang. The Behavior of Two Parallel Symmetry Permeable Cracks in Magneto-Electro-Elastic Composites under Anti-Plane Shear Stress Loading. International Journal of Applied Electromagnetics and Mechanics. 2005, 21(1): 39-48.
    78 Z.G. Zhou, L. Z. Wu, B. Wang. The Dynamic Behavior of Two Collinear Interface Cracks in Magneto-Electro-Elastic Composites. European Journal of Mechanics A/Solids. 2005, 24(2): 253-262.
    79 Z.G. Zhou, L.Z. Wu, B. Wang. The Behavior of a Crack in Functionally Graded Piezoelectric/Piezomagnetic Materials under Antiplane Shear Loading. Archive of Applied Mechanics. 2005, 74(8): 526-535.
    80周振功,王彪.压电压磁材料中一对平行裂纹对弹性波的散射.应用数学与力学. 2006, 27: 519-526.
    81 R.K.L. Su, W.J. Feng, J. Liu. Transient Response of Interface Cracks between Dissimilar Magneto-Electro-Elastic Strips under Out-Of Mechanical and In-Plane Magneto-Electrical Impact Loads. Composite Structures. 2007, 78: 119-128.
    82 Y.P. Wan, D.N. Fang, A.K. Soh, K.C. Hwang. Effect of Magnetostriction on Fracture of a Soft Ferromagnetic Medium with a Crack-Like Flaw. Fatigue & Fracture of Engineering Materials & Structures. 2003, 26: 1091-1102.
    83 Q.H. Qin. 2D Green’s Functions of Defective Magnetoelectroelastic Solids under Thermal Loading. Engineering Analysis with Boundary Elements. 2005, 29: 577-585.
    84 X. Jiang, E. Pan. Exact Solution for 2D Polygonal Inclusion Problem in Anisotropic Magnetoelectroelastic Full-, Half-, and Biomaterial Planes, International Journal of Solids and Structures. 2004, 41: 4361-4382.
    85 M.Y. Chung, T.C.T. Ting. The Green Function for a Piezoelectric Piezomagnetic Anisotropic Elastic Medium with an Elliptic Hole or Rigid Inclusion. Philosophical Magazine Letters. 1995, 72: 405-410.
    86 J.X. Liu, X.L. Liu, Y.B. Zhao. Green’s Functions for Anisotropic Magnetoelectroelastic Solids with an Elliptical Cavity or a Crack. International Journal of Engineering Science. 2001, 39(12): 1405-1418.
    87 C. F. Gao, H. Kessler, H. Balke. Crack Problems in Magnetoelectroelastic Solids. Part I: Exact Solution of a Crack. International Journal of Engineering Science. 2003, 41(9): 969-981.
    88 Y.N. Podil’chuk. The Stress State of a Ferromagnetic with an Elliptic Crack in a Homogeneous Magnetic Field. International Applied Mechanics. 2001, 37: 213-221.
    89 Y.N. Podil’chuk. The Stress State of a Ferromagnetic with a Spheroidal Inclusion in a Homogeneous Magnetic Field. International Applied Mechanics. 2002, 38: 1201-1209.
    90 Y.N. Podil’chuk, O.G. Dashko. The Stress-Strain State of an Elastic Ferromagnetic Medium with an Ellipsoidal Inclusion in a Homogeneous Magnetic Field. International Applied Mechanics. 2003, 39: 802-811.
    91 Y.N. Podil’chuk, O.G. Dashko. Stress-Strain State of a Ferromagnetic with a Paraboloidal Inclusion in a Homogeneous Magnetic Field. International Applied Mechanics. 2004, 40: 517-526.
    92 Y.N. Podil’chuk, I.Y. Podil’chuk. Stress State of a Transversely Isotropic Ferromagnetic with an Elliptic Crack in a Homogeneous Magnetic Field. International Applied Mechanics. 2005, 41: 32-41.
    93 Y.P. Wan, D.N. Fang, A.K. Soh. A Small-Scale Magnetic-Yielding Model for anInfinite Magnetostrictive Plane with a Crack-Like Flaw. International Journal of Solids and Structures. 2004,41: 6129-6146.
    94 J. Aboudi. Micromechanical Prediction of the Effective Behavior of Fully Coupled Electro-Magneto-Thermo-Elastic Multiphase Composites. NASA/CR-2000-209787. 2000.
    95 J. Aboudi. Micromechanical Analysis of Fully Coupled Electro-Magneto- Thermo-Elastic Multiphase Composites. Smart Materials & Structures. 2001,10: 867-877.
    96 W.Y. Tian, U. Gabbert. Parallel Crack near the Interface of Magnetoelectroelastic Bimaterials. Computational Material Science. 2005, 32: 562-567.
    97 Z.G. Zhou, J.C. Han, S.Y. Du. Investigation of a Griffith Crack Subject to Anti-Plane Shear by Using the Non-Local Theory. International Journal of Solids and Structures. 1999, 36(26): 3891-3901.
    98 C.B. Lin, C.S. Yeh. The Magnetoelastic Problem of a Crack in a Soft Ferromagnetic Solid. International Journal of Solids and Structures. 2002, 39: 1-17.
    99 W. Liang, D. Fang, Y. Shen, A.K. Soh. Nonlinear Magnetoelastic Coupling Effects in a Soft Ferromagnetic Material with a Crack. International Journal of Solids and Structures. 2002,39: 3997-4011.
    100 G.C. Sih, R. Jones, Z.F. Song. Piezomagnetic and Piezoelectric Poling Effects on Mode I and II Crack Initiation Behavior of Magnetoelectroelastic Materials. Theoretical and Applied Fracture Mechanics. 2003, 40: 161-186.
    101 V.S. Parton. Fracture Mechanics of Piezoelectric Materials. ACTA Astronautra. 1976, 3: 671-683.
    102 W.E.F. Deeg. The Analysis of Dislocation, Crack and Inclusion Problems in Piezoelectric solids. Ph.D. thesis. Stanford University. 1980.
    103 J.J. Han, Y.H. Chen. Multiple Parallel Cracks Interaction Problem in Piezoelectric Ceramics. International Journal of Solids and Structures. 1999, 36: 3375-3390.
    104 A.K. Soh, D.N. Fang, K.L. Lee. Analysis of a Bi-Piezoelectric Ceramic Layer with an Interfacial Crack Subjected to Anti-Plane Shear and In-Plane Electric Loading. European Journal of Mechanics A/Solid. 2000, 19: 961-977.
    105 T.H. Hao, Z.Y. Shen. A New Electric Boundary Condition of Electric Fracture Mechanics and Its Applications. Engineering Fracture Mechanics. 1994, 47(6): 793-802.
    106 T.H. Hao. Multiple Collinear Cracks in a Piezoelectric Material. International Journal of Solids and Structures. 2001, 38(50–51): 9201-9208.
    107 D. Dascalu, D. Homentcovschi. An Intermediate Crack Model for Flaws in Piezoelectric Solids. ACTA Mechanica. 2002, 154(1-4): 85-100.
    108 D.N. Fang, Y.P. Wan, A.K. Soh. Magnetoelastic Fracture of Soft Ferromagnetic Materials. Theoretical and Applied Fracture Mechanics. 2004, 42: 317-334.
    109 B.L. Wang, Y.W. Mai. Applicability of the Crack-Face Electromagnetic Boundary Conditions for Fracture of Magnetoelectroelastic Materials. International Journal of Solids and Structures. 2007, 44: 387-398.
    110 Z.G. Zhou, Z.T. Chen. Basic Solution of a Mode-I Limited-Permeable Crack in Functionally Graded Piezoelectric/Piezomagnetic Materials. International Journal of Solids and Structures. 2008, 45(7-8): 2265-2296.
    111 C.F. Gao, N. Noda. Thermal-Induced Interfacial Cracking of Magnetoelectroelastic Material. International Journal of Engineering Science. 2004, 42: 1347-1360.
    112 C.F. Gao, H. Kessler, H. Balke. Fracture Analysis of Electromagnetic Thermoelastic Solids. European Journal of Mechanics A/Solid. 2003, 22(3): 433-442.
    113 C.F. Gao, H. Kessler, H. Balke. Crack Problems in Magnetoelectroelastic Solids. Part II: General Solution of Collinear Cracks. International Journal of Engineering Science. 2003, 41(9): 983-994.
    114 C.B. Lin, H.M. Lin. The Magnetoelastic Problem of Cracks in Bonded Dissimilar Materials. International Journal of Solids and Structures. 2002, 39: 2807-2826.
    115 S.X. Zhao, K.Y. Lee. Interfacial Crack Problem in Layered Soft Ferromagnetic Materials in Uniform Magnetic Field. Mechanics Research Communications. 2007, 34: 19-30.
    116 S.X. Zhao, K.Y. Lee. Layered Soft Ferromagnetic Materials with Moving Interfacial Crack in Uniform Magnetic Field. International Journal of Applied Electromagnetics and Mechanics. 2007, 26(1-2): 69-85.
    117 S.X. Zhao, K.Y. Lee. Moving Interfacial Crack between Two Dissimilar Soft Ferromagnetic Materials in Uniform Magnetic Field. Journal of Mechanical Science and Technology. 2007, 21(5): 745-754.
    118 W.Y. Tian, U. Gabbert. Multiple Crack Interaction Problem in Magnetoelectroelastic Solids. European Journal of Mechanics A/Solid. 2004, 23: 599-614.
    119 S.C. Chen, C.B. Lin. On Multiple Circular Inclusions in Plane Magnetoelasticity. International Journal of Solids and Structures. 2006, 43: 6243-6260.
    120 W. Liang, Y.P. Shen, M. Zhao. Magnetoelastic Formulation of Soft Ferromagnetic Elastic Problems with Collinear Cracks: Energy Density FractureCriterion. Theoretical and Applied Fracture Mechanics. 2000, 34: 49-60.
    121 Z.G. Zhou, B. Wang, Y.G. Sun. Two Collinear Interface Cracks in Magneto-Electro-Elastic Composites. International Journal of Engineering Science. 2004, 42: 1157-1167.
    122 Z.G. Zhou, Y.Y. Bai, X.W. Zhang. Two Collinear Griffith Cracks Subjected to Uniform Tension in Infinitely Strip. International Journal of Solids and Structures. 1999, 36 (36):5597-5609.
    123 P.M. Morse, H. Feshbach. Methods of Theoretical Physics, vol. 1. McGraw-Hill, New York. 1958:828-930.
    124 W.J. Feng, R.J. Hao, J.X. Liu, S.M. Duan. Scattering of SH Waves by Arc-Shaped Interface Cracks Between a Cylindrical Magneto-Electro-Elastic Inclusion and Matrix: near Fields. Archive of Applied Mechanics. 2005, 74: 649-663.
    125 W.J. Feng, Y. Xue, Z.Z. Zou, Crack Growth of an Interface Crack Between Two Dissimilar Magneto-Electro-Elastic Materials under Antiplane Mechanical and In-plane Electric Magnetic Impact. Theoretical and Applied Fracture Mechanics. 2005, 43: 376-394.
    126 E. Pan. Three-Dimensional Green’s Functions in Anisotropic Magneto-Electro-Elastic Bimaterials. Zeitschrift fur Angewandte Mathematik und Physik. 2002, 53: 815-838.
    127 X. Wang, Y.P. Shen. The General Solution of Three-Dimensional Problems in Magnetoelectroelastic Media. International Journal of Engineering Science. 2002, 40: 1069-1080.
    128 P.F. Hou. A.Y.T. Leung. A Spheroidal Inclusion in an Infinite Magneto-Electro-Elastic Material. International Journal of Engineering Science. 2004, 42: 255-1273.
    129 W.Q. Chen, K.Y. Lee, H.J. Ding. General Solution for Transversely Isotropic Magneto-Electro-Thermo-Elasticity and the Potential Theory Method. International Journal of Engineering Science. 2004, 42: 1361-1379.
    130 O.P. Niraula, B.L. Wang. Thermal Stress Analysis in Magneto-Electro-Thermo-Elasticity with a Penny-Shaped Crack under Uniform Heat Flow. Journal of thermal Stresses. 2006, 29: 423-437.
    131 O.P. Nlraula, B.L. Wang. A Magneto-Electro-Eelastic Material with a Penny-Shaped Craek Subjected to temperature Loading. Acta Mechanica. 2006, 187: 151-168.
    132 M.H. Zhao, F. Yang, T. Liu. Analysis of a Penny-Shaped Crack in a Magneto-Electro-Elastic Medium. Philosophical Magazine. 2006, 86: 4397-4416.
    133 W.Y. Tian, R.K.N.D. Rajapakse. Field Intensity Factors of a Penny-Shaped Crack in a Magnetoelectroelastic Layer. Journal of Alloys and Compounds. 2008, 449: 161-171.
    134 B.L. Wang, Y.W. Mai. A Periodic Array of Cracks in Functional Graded Materials Subjected to Thermo-Mechanical Loading. International Journal of Engineering Science. 2005, 43: 432-446.
    135 B.L. Wang, Y.W. Mai. Fracture of Piezoelectromagnetic Materials. Mechanics Research Communications. 2004; 31(1): 65-73.
    136 M.H. Zhao, C.Y. Fan, F. Yang, T. Liu. Analysis Method of Planar Cracks of Arbitrary Shape in the Isotropic Plane of a Three-Dimensional Transversely Isotropic Magnetoelectroelastic Medium International Journal of Solids and Structures. 2007, 44: 4505-4523.
    137 M.H. Zhao, C.Y. Fan, F. Yang, T. Liu. Analysis Method of Planar Cracks of Arbitrary Shape in the Isotropic Plane of a Three-Dimensional Transversely Isotropic Magnetoelectroelastic Medium. International Journal of Solids and Structures. 2007, 44: 4505-4523.
    138 S. Itou. Dynamic Stress Concentration around a Rectangular Crack in an Infinite Elastic Medium. ZAMM Journal of Applied Mathematics and Mechanics. 1980, 60: 317-322.
    139 S. Itou. Transient Response of a Finite Crack in a Strip with Stress Free Edges. ASME Journal of Applied Mechanics. 1980, 47: 958-959.
    140 S. Itou. Dynamic Stress Concentration around Two Rectangular Cracks in an Infinite Elastic Medium. Transactions of the Japan Society of Mechanical Engineering. 1980, 46: 575-583
    141 S. Itou. Transient Analysis of Stress Waves around Two Rectangular Cracks under Impact Load. Engineering Fracture Mechanics. 1981,14(4): 685-695.
    142 S. Itou. Dynamic Stress Concentration around Four Rectangular Cracks in an Infinite Elastic Medium. Transactions of the Japan Society of Mechanical Engineering. 1981, 47: 492.
    143 S. Itou. Dynamic Stress Intensity Factors around Four Rectangular Cracks in an Infinite Elastic Medium under Impact Load. Engineering Fracture Mechanics. 1982,16(2):247-256.
    144 S. Itou. Transient Dynamic Stresses around a Rectangular Crack under an Impact Shear Load. Engineering Fracture Mechanics. 1991, 39(3):487-492.
    145 S. Itou. 3D Dynamic Stress Intensity Factors at Three Rectangular Cracks in an Infinite Elastic Medium Subjected to a Time-Harmonic Stress Wave. Archive of Applied Mechanics.1999, 69: 286-298.
    146 S. Itou. Three-dimensional Dynamic Stress Intensity Factors around Two Parallel Square Cracks in an Infinite Elastic Medium Subjected to a Time-Harmonic Stress Wave. ACTA Mechanica. 2000,143: 79-90.
    147 S. Itou. 3D Dynamic Stress Intensity Factors around Two Parallel Square Cracks in an Infinite Elastic Medium under Impact Load. Archive of Applied Mechanics. 2001. 71: 53-62.
    148 S. Itou. Dynamic Stress Intensity Factors around a Rectangular Crack in a Half-Space under Impact Load. Zeitschrift fur Angewandte Mathematik und Mechanik. 1982,62(7):301-311.
    149 S. Itou. Dynamic Stress Intensity Factors around a Rectangular Crack in an Infinite Plate under Impact Load. Engineering Fracture Mechanics. 1983, 18(1):145-153.
    150 S. Itou. Dynamic Stress Intensity Factors around Two Rectangular Cracks in a Half Space under Impact Load. ACTA Mechanica. 1997, 121:153-164.
    151 T.Y. Qin, N.A. Noda. Stress Intensity Factors of a Rectangular Crack Meeting a Bimaterial Interface. International Journal of Solids and Structures. 2003, 40: 2473-2486.
    152 T.Y. Qin, N.A. Noda. Analysis of a Three-Dimensional Crack Terminating at an Interface Using a Hypersingular Integral Equation Method. Journal of Applied Mechanics. 2002, 69: 626-631.
    153 N.A. Noda. Stress Intensity Formulas for Three-Dimensional Cracksin Homogeneous and Bonded Dissimilar Materials. Engineering Fracture Mechanics. 2004, 71: 1-15.
    154 N.A. Noda, T.A. Kihara. Variation of the Stress Intensity Factor along the Front of a 3-D Rectangular Crack Subjected to Mixed-Mode Load. Archive of Applied Mechanics. 2002, 72: 599-614.
    155 B.J. Zhu, T.Y. Qin. Hypersingular Integral Equation Method for a Three-Dimensional Crack in Anisotropic Electro-Magneto-Elastic Bimaterials. Theoretical and Applied Fracture Mechanics. 2007, 47: 219-232.
    156 B.J. Zhu, T.Y. Qin. Application of Hypersingular Integral Equation Method to Three-dimensional Crack in Electromagnetothermoelastic Multiphase Composites. International Journal of Solids and Structures. 2007, 44: 5994-6012.
    157 A.C. Eringen. Continuum Theory of Micromorphic Electromagnetic Thermoelastic Solids. International Journal of Engineering Science. 2003,41: 653-665.
    158 G.Y. Bagdasarian, D.J. Hasanian. Magnetoelastic Interaction between a Soft Ferromagnetic Elastic Half-Plane with a Crack and a Constant Magnetic Field.International Journal of Solids and Structures. 2000,37,:5371-5383.
    159 J.Y. Li. Magnetoelectroelastic Multi-Inclusion and Inhomogeneity Problems and Their Applications in Composite Materials. International Journal of Engineering Science. 2000, 38: 1993-2011.
    160 T.H. He, Y.P. Shen, X.G. Tian. A Two-Dimensional Generalized Thermal Shock Problem for a Half-Space in Electromagnetothermoelasticity. International Journal of Engineering Science. 2004, 42: 809-823.
    161 T.H. He, X.G. Tian, Y.P. Shen. A Generalized Electromagneto-Thermoelastic Problem for an Infinitely Long Solid Cylinder. European Journal of Mechanics A/Solids. 2005,24:349-359.
    162 C.F. Gao, P. Tong, T.Y. Zhang. Interfacial Crack Problems in Magneto-Electro-Elastic Solids. International Journal of Engineering Science. 2003; 41(18): 2105-2121.
    163 J. Aboudi. Micromechanical Analysis of Fully Coupled Electro-Magneto-Thermo-Elastic Multiphase Composites. Smart Materials & Structures. 2001,10: 867-877.
    164 B.L Wang, Y.W. Mai. Impermeable Crack and Permeable Crack Assumptions, Which One is More Realistic. Journal of Applied Mechanics. 2004, 71(4):575-578.
    165 J.R. Rice. A Path Independent Integral and the Approximate Analysis of Strain Concentrations by Notches and Cracks. ASME Journal of Applied Mechanics. 1968, 35: 379-386.
    166 D.G.B. Edelen. Non-Local Field Theory. In: A.C. Eringen (ed.), Continuum Physics. Vol.4. New York: Academic Press. 1976: 75-204.
    167 A.C. Eringen. Non-Local Polar Field Theory. In: A.C. Eringen (ed.), Continuum Physics. Vol.4. New York: Academic Press. 1976: 205-267.
    168 A.E. Green, R.S. Rivilin. Multipolar Continuum Mechanics: Functional Theory.Ι. Proceeding of The Royal Society of London A. 1965, 284: 303-315.
    169 A.C. Eringen. Nonlocal Continuum Mechanics and Some Applications, In: Nonlinear Equations of Physics and Mathematics. Edited by A.O. Barut, Reidel Publishing Company, Dordrecht, Holland. 1978, 271.
    170 A.C. Eringen. On Differential Equations of Nonlocal Elasticity and Solutions of Screw Dislocation and Surface waves. Journal of Applied Physics (D). 1983, 54(9): 4703.
    171 A.C. Eringen. Theory of Nonlacal Elasticity and Some Applications. Res Mechanica. 1987, 21(4): 313-342.
    172虞吉林,郑哲敏.一种非局部弹塑性理论连续体模型与裂纹尖端附近的应力分布.力学学报. 1984, 16(5): 485.
    173王锐.非局部弹性中的裂纹问题.中国科学(A). 1989, 34(10): 1056.
    174程品三.脆性断裂的非局部理论.力学学报. 1992, 24(3): 329.
    175 K.L. Pan, N. Takeda. Non-Local Stress Field of Interface Dislocations. Archive of Applied Mechanics. 1998, 68: 179-184.
    176 A.C. Eringen, C.G. Speziale, B.S. Kim. Crack Tip Problem in Non-Local Elasticity. Journal of Mechanics and Physics of Solids. 1977, 25(5): 339-355.
    177 A.C. Eringen. Linear Crack Subject to Shear. International Journal of Fracture. 1978, 14(4): 367-379.
    178 A.C. Eringen. Linear Crack Subject to Anti-Plane Shear. Engineering Fracture Mechanics. 1979, 12(2): 211-219.
    179 Z.G. Zhou, L.Z. Wu, S.Y. Du. Non-Local Theory Solution for a Mode I Crack in Piezoelectric Materials. European Journal of Mechanics A/Solids. 2006, 25(5): 793-807.
    180 Z.G. Zhou, L.Z. Wu, S.Y. Du. Non-local Theory Solution of Two Mode-I Collinear Cracks in the Piezoelectric Materials. Mechanics of Advanced Materials and Structures. 2007, 14(3): 191-201.
    181 Z.G. Zhou, B. Wang, S.Y. Du, Investigation of the Scattering of Harmonic Elastic Anti-Plane Shear Waves by a Finite Crack Using the Non-Local Theory. International Journal of Fracture. 1998, 91(1): 13-22.
    182 Z.G. Zhou, Y.P. Shen. Investigation of the Scattering of Harmonic Shear Waves by Two Collinear Cracks Using the Non-local Theory. ACTA Mechanica. 1999, 135(3-4): 169-179.
    183 Z.G. Zhou, B. Wang, S.Y. Du, Investigation of Anti-Plane Shear Behavior of Two Collinear Permeable Cracks in a Piezoelectric Material by Using the Non-Local Theory. ASME Journal of Applied Mechanics. 2002, 69(3): 388-390.
    184 Z.G. Zhou, B. Wang, Investigation of Anti-Plane Shear Behavior of Two Collinear Impermeable Cracks in the Piezoelectric Materials by Using the Non-Local Theory. International Journal of Solids and Structure. 2002, 39(7): 1731-1742.
    185 M. Koizumi. The Concept of FGM. In: J.B. Holt, et al. (Eds.). Ceramic Transactions, Functionally Graded Materials. American Ceramic Society, Ohio. 1993, 34: 3-10.
    186 Y. D. Lee, F. Erdogan. Residual/Thermal Stress in FGM and Laminated Thermal Barrier Coating. International Journal of Fracture. 1994, 69: 145-165.
    187 S. Suresh, A. Mortensen. Functionally Graded Metals and Metal-Ceramic Composites: Part 2 Thermomechanical Behaviour. International MaterialsReviews. 1977, 29: 306-312.
    188 F. Delale, F. Erdogan. On the Mechanical Modeling of the Interfacial Region in Bonded Half-Planes. ASME Journal of Applied Mechanics. 1998, 55: 317-324.
    189 Y.F. Chen. Interface Crack in Nonhomogeneous Bonded Materials of Finite Thickness. Ph.D. Dissertation, Lehigh University. 1990.
    190 M. Ozturk, F. Erdogan. Axisymmetric Crack Problem in Bonded Materials with a Graded Interfacial Region. International Journal of Solids and Structures. 1996, 33: 193-219.
    191 I.S. Gradshteyn, I.M. Ryzhik. Table of Integrals, Series and Products, Academic Press, New York. 1980, 480.
    192 A. Erdelyi. Tables of Integral Transforms. McGraw-Hill, New York. 1954, Vol.1.
    193 Z.G. Zhou, B. Wang. Investigation of the Behavior of a Mode-I Interface Crack in Piezoelectric Materials by Using the Schmidt Method. Applied Mathematics and Mechanics, 2006, 27(7): 871-882.
    194 S. Itou. Three Dimensional Waves Propagation in a Cracked Elastic Solid. ASME Journal of Applied Mechanics. 1978, 45: 807-811.
    195 M. Ratwani, G.D. Gupta. Interaction between Parallel Cracks in Layered Composites. International Journal of Solids and Structures. 1974, 10(7): 701-708.
    196 Y. Benveniste. Magnetoelectric Effect in Fibrous Composites with Piezoelectric and Magnetostrictive Phases. Physical Review B. 1995, 51: 16424-16427.
    197 J.H. Huang, W.S. Kuo. The Analysis of Piezoelectric/Piezomagnetic Composite Materials Containing Ellipsoidal Inclusions. Journal of Applied Physics. 1997, 81(3): 1378-1386.
    198 V.B. Govorukha. On the Influence of the Electric Permeability on an Interface Crack in a Piezoelectric Biomaterial Compound. International Journal of Solids and Structures. 2006,43: 1979-1990.
    199 S. Itou. Dynamic Stress Intensity Factors Around Two Rectangular Cracks in an Infinite Elastic Plate under Impact Load. Mechanics Research Communications. 2002, 29: 225-234.
    200 H. J. Ding, B. Chen, J. Liang. General Solutions for Coupled Equations for Piezoelectric Media. International Journal of Solids and Structures. 1996, 33(16): 2283-2296.
    201 F.Q. Yang. Fracture Mechanics for a Mode I Crack in Piezoelectric Materials. International Journal of Solids and Structures. 2001, 38: 3813-3830.
    202 W.F. Yan. Axisymmetric Slipless Indentation of an Infinite Elastic Cylinder. SIAM Journal of Applied Mathematics. 1967, 15: 219-227.
    203 M.C. Chen. 3D Mode I Crack Analysis of Piezoelectrics. Computer Methods inApplied Mechanics and Engineering. 2005, 194: 957-968.
    204 Z.F. Song, G.C. Sih. Crack Initiation Behavior in Magnetoelectroelastic Composite under In-Plane Deformation. Theoretical and Applied Fracture Mechanics. 2003, 39(3): 189-207.
    205 C.P. Spyropoulos, G.C. Sih, Z.F. Song. Magnetoelectroelastic Composite with Poling Parallel to Plane of Line Crack under Out-Of-Plane Deformation. Theoretical and Applied Fracture Mechanics. 2003, 39(3): 281-289.
    206 A.C. Eringen, B.S. Kim. Relation between Non-Local Elasticity and Lattice Dynamics. Crystal Lattice Defects. 1977, 7: 51-57.
    207 C. Atkinson. On Some Recent Crack Tip Stress Calculations in Non-Local Elasticity. Archives of Mechanics. 1980, 32(2): 317-328.
    208 C. Atkinson. Crack Problems in Non-Local Elasticity. Archives of Mechanics. 1980, 32(4): 567-614.
    209 A. Amemiya, T. Taguchi. Numerical Analysis and Fortran, Maruzen, Tokyo, 1969: 425-430.
    210 P.F. Hou, G.H. Teng, H.R. Chen. Three-Dimensional Green’s Function for a Point Heat Source in Two-Phase Transversely Isotropic Magneto-Electro-Thermo-Elastic Material. Mechanics of Materials. 2009, 41: 329-338.
    211 A.C. Eringen. Interaction of a Dislocation with a Crack. Journal of Applied Physics. 1983, 54: 6811-6817.
    212 A.C. Eringen, B.S. Kim, On the Problem of Crack in Nonlocal Elasticity. In: P. Thoft-Christensen (ed.): Continuum Mechanics Aspects of Geodynamics and Rock Fracture Mechanics. Dordrecht, Holland: Reidel. 1974: 81-113.
    213 A.C. Eringen. Continuum Mechanics at the Atomic Scale. Crystal Lattice Defects. 1977, 7(1): 109-130.
    214 F. Erdogan, B.H. Wu. The Surface Crack Problem for a Plate with Functionally Graded Properties. Journal of Applied Mechanics. 1997, 64(3): 449-456.
    215 J.L. Nowinski. On Non-local Aspects of the Propagation of Love Waves. International Journal of Engineering Science. 1984, 22: 383-392.
    216 J.L. Nowinski. On Non-local Theory of Wave Propagation in Elastic Plates. Journal of Applied Mechanics. 1984, 51: 608-613.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700